0xnu commited on
Commit
ccf31d1
·
verified ·
1 Parent(s): 66436ab

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitkeep ADDED
File without changes
README.md CHANGED
@@ -1,339 +1,81 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
- - computer-vision
5
  - image-classification
6
- - vision
7
- base_model: google/vit-base-patch16-224-in21k
 
8
  datasets:
9
- - 0xnu/skincare
10
  metrics:
11
  - accuracy
12
  - f1
13
- model-index:
14
- - name: skincare-detection
15
- results: []
16
- inference: true
17
- widget:
18
- - src: https://huggingface.co/0xnu/skincare-detection/resolve/main/joe.jpeg
19
- example_title: Sample Skin Image
20
  ---
21
 
22
- ## skincare-detection
23
 
24
- A custom model for skincare image classification.
25
 
26
- ### Data Classes (Training)
27
 
28
- The data classes are available [here](data_classes.txt).
29
 
30
- ### Model Performance (Evaluation Results)
 
 
 
31
 
32
- ```sh
33
- eval_loss: 0.2097
34
- eval_accuracy: 0.9779
35
- eval_f1: 0.9778
36
- eval_precision: 0.9794
37
- eval_recall: 0.9779
38
- eval_runtime: 14.2159
39
- eval_samples_per_second: 19.1340
40
- eval_steps_per_second: 0.6330
41
- epoch: 12.0000
42
- ```
43
 
44
- ### Confusion Matrix
 
45
 
46
- ![Confusion Matrix](confusion_matrix.png "Confusion Matrix")
47
 
48
- ### Usage
 
 
 
 
49
 
50
- ```python
51
- #!/usr/bin/env python3
52
 
53
- import torch
 
 
54
  from transformers import ViTImageProcessor, ViTForImageClassification
55
  from PIL import Image
56
- import numpy as np
57
- from pathlib import Path
58
- import json
59
- from typing import List, Dict, Union
60
- import argparse
61
 
62
- class SkincareClassifier:
63
- """Skincare classifier with detailed outputs."""
64
-
65
- def __init__(self, model_name: str = '0xnu/skincare-detection'):
66
- """Initialize the classifier with model loading."""
67
- print(f"🔄 Loading model: {model_name}")
68
-
69
- try:
70
- self.processor = ViTImageProcessor.from_pretrained(model_name)
71
- self.model = ViTForImageClassification.from_pretrained(model_name)
72
- self.model.eval()
73
-
74
- # Get class information
75
- self.id2label = self.model.config.id2label
76
- self.label2id = self.model.config.label2id
77
- self.num_classes = len(self.id2label)
78
-
79
- print(f"✅ Model loaded successfully!")
80
- print(f"📊 Classes ({self.num_classes}): {list(self.id2label.values())}")
81
-
82
- except Exception as e:
83
- print(f"❌ Error loading model: {e}")
84
- raise e
85
-
86
- def classify_single_image(self, image_path: Union[str, Path],
87
- show_all_scores: bool = True,
88
- min_confidence: float = 0.01) -> Dict:
89
- """
90
- Classify a single image and return detailed results.
91
-
92
- Args:
93
- image_path: Path to the image file
94
- show_all_scores: Whether to show all class scores
95
- min_confidence: Minimum confidence to display (0.0 to 1.0)
96
-
97
- Returns:
98
- Dictionary with classification results
99
- """
100
-
101
- try:
102
- # Load and process image
103
- image = Image.open(image_path).convert('RGB')
104
- inputs = self.processor(images=image, return_tensors="pt")
105
-
106
- # Make prediction
107
- with torch.no_grad():
108
- outputs = self.model(**inputs)
109
- logits = outputs.logits
110
- probabilities = torch.softmax(logits, dim=-1)[0]
111
-
112
- # Get top prediction
113
- predicted_class_id = logits.argmax().item()
114
- predicted_label = self.id2label[predicted_class_id]
115
- predicted_confidence = float(probabilities[predicted_class_id])
116
-
117
- # Prepare all scores
118
- all_scores = {}
119
- for class_id, class_name in self.id2label.items():
120
- confidence = float(probabilities[class_id])
121
- if confidence >= min_confidence:
122
- all_scores[class_name] = confidence
123
-
124
- # Sort by confidence
125
- sorted_scores = dict(sorted(all_scores.items(),
126
- key=lambda x: x[1], reverse=True))
127
-
128
- result = {
129
- 'image_path': str(image_path),
130
- 'image_name': Path(image_path).name,
131
- 'predicted_class': predicted_label,
132
- 'predicted_confidence': predicted_confidence,
133
- 'all_scores': sorted_scores if show_all_scores else None,
134
- 'image_size': image.size,
135
- 'num_classes': self.num_classes
136
- }
137
-
138
- return result
139
-
140
- except Exception as e:
141
- return {
142
- 'image_path': str(image_path),
143
- 'error': str(e)
144
- }
145
-
146
- def classify_multiple_images(self, image_paths: List[Union[str, Path]],
147
- **kwargs) -> List[Dict]:
148
- """Classify multiple images and return results."""
149
-
150
- results = []
151
- total_images = len(image_paths)
152
-
153
- print(f"🔄 Processing {total_images} images...")
154
-
155
- for i, image_path in enumerate(image_paths, 1):
156
- print(f" Processing {i}/{total_images}: {Path(image_path).name}")
157
- result = self.classify_single_image(image_path, **kwargs)
158
- results.append(result)
159
-
160
- return results
161
-
162
- def classify_directory(self, directory_path: Union[str, Path],
163
- **kwargs) -> List[Dict]:
164
- """Classify all images in a directory."""
165
-
166
- directory_path = Path(directory_path)
167
-
168
- # Find all image files
169
- image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'}
170
- image_paths = [
171
- p for p in directory_path.rglob('*')
172
- if p.suffix.lower() in image_extensions
173
- ]
174
-
175
- if not image_paths:
176
- print(f"❌ No images found in {directory_path}")
177
- return []
178
-
179
- print(f"📁 Found {len(image_paths)} images in {directory_path}")
180
- return self.classify_multiple_images(image_paths, **kwargs)
181
-
182
- def print_results(self, results: Union[Dict, List[Dict]],
183
- detailed: bool = True):
184
- """Print classification results in a nice format."""
185
-
186
- if isinstance(results, dict):
187
- results = [results]
188
-
189
- print(f"\n🔍 CLASSIFICATION RESULTS")
190
- print("=" * 60)
191
-
192
- successful_results = [r for r in results if 'error' not in r]
193
- failed_results = [r for r in results if 'error' in r]
194
-
195
- # Print successful classifications
196
- for i, result in enumerate(successful_results, 1):
197
- print(f"\n📸 Image {i}: {result['image_name']}")
198
- print(f" Size: {result['image_size'][0]}x{result['image_size'][1]} pixels")
199
-
200
- # Top prediction
201
- pred_class = result['predicted_class']
202
- pred_conf = result['predicted_confidence']
203
- print(f"\n🎯 TOP PREDICTION:")
204
- print(f" {pred_class.upper()}: {pred_conf:.1%}")
205
-
206
- # All scores if detailed
207
- if detailed and result.get('all_scores'):
208
- print(f"\n📊 ALL SCORES:")
209
- for class_name, confidence in result['all_scores'].items():
210
- # Create progress bar
211
- bar_length = int(confidence * 40) # Scale to 40 chars
212
- bar = "█" * bar_length + "░" * (40 - bar_length)
213
-
214
- print(f" {class_name:>8}: {confidence:.1%} {bar}")
215
-
216
- print(f" {'-' * 50}")
217
-
218
- # Print failed classifications
219
- if failed_results:
220
- print(f"\n❌ FAILED CLASSIFICATIONS ({len(failed_results)}):")
221
- for result in failed_results:
222
- print(f" {result['image_path']}: {result['error']}")
223
-
224
- # Summary
225
- if len(successful_results) > 1:
226
- print(f"\n📈 SUMMARY:")
227
- print(f" Successfully processed: {len(successful_results)} images")
228
- print(f" Failed: {len(failed_results)} images")
229
-
230
- # Class distribution
231
- class_counts = {}
232
- for result in successful_results:
233
- pred_class = result['predicted_class']
234
- class_counts[pred_class] = class_counts.get(pred_class, 0) + 1
235
-
236
- print(f"\n📊 CLASS DISTRIBUTION:")
237
- for class_name, count in sorted(class_counts.items()):
238
- percentage = (count / len(successful_results)) * 100
239
- print(f" {class_name:>8}: {count:>3} images ({percentage:.1f}%)")
240
-
241
- def save_results(self, results: List[Dict], output_file: str):
242
- """Save results to JSON file."""
243
-
244
- try:
245
- with open(output_file, 'w') as f:
246
- json.dump(results, f, indent=2, default=str)
247
- print(f"💾 Results saved to: {output_file}")
248
- except Exception as e:
249
- print(f"❌ Error saving results: {e}")
250
 
251
- def main():
252
- """Main function with command line interface."""
253
-
254
- parser = argparse.ArgumentParser(description="Skincare Image Classification")
255
- parser.add_argument('input', help='Image file or directory path')
256
- parser.add_argument('--model', default='0xnu/skincare-detection',
257
- help='HuggingFace model name')
258
- parser.add_argument('--output', help='Output JSON file for results')
259
- parser.add_argument('--min-confidence', type=float, default=0.01,
260
- help='Minimum confidence to display (0.0-1.0)')
261
- parser.add_argument('--brief', action='store_true',
262
- help='Show only top prediction')
263
- parser.add_argument('--batch-size', type=int, default=1,
264
- help='Batch size for processing (not implemented yet)')
265
-
266
- args = parser.parse_args()
267
-
268
- try:
269
- # Initialize classifier
270
- classifier = SkincareClassifier(args.model)
271
-
272
- input_path = Path(args.input)
273
-
274
- if input_path.is_file():
275
- # Single image
276
- result = classifier.classify_single_image(
277
- input_path,
278
- show_all_scores=not args.brief,
279
- min_confidence=args.min_confidence
280
- )
281
- classifier.print_results(result, detailed=not args.brief)
282
-
283
- if args.output:
284
- classifier.save_results([result], args.output)
285
-
286
- elif input_path.is_dir():
287
- # Directory of images
288
- results = classifier.classify_directory(
289
- input_path,
290
- show_all_scores=not args.brief,
291
- min_confidence=args.min_confidence
292
- )
293
- classifier.print_results(results, detailed=not args.brief)
294
-
295
- if args.output:
296
- classifier.save_results(results, args.output)
297
-
298
- else:
299
- print(f"❌ Error: {input_path} is not a valid file or directory")
300
-
301
- except Exception as e:
302
- print(f"❌ Error: {e}")
303
 
304
- if __name__ == "__main__":
305
- # If run directly, you can also use it programmatically
306
- import sys
307
-
308
- if len(sys.argv) == 1:
309
- print("🔬 Skincare Classification")
310
- print("=" * 40)
311
-
312
- # Initialize classifier
313
- classifier = SkincareClassifier('0xnu/skincare-detection')
314
-
315
- # Example with your image
316
- image_path = 'joe.jpeg' # Your image
317
-
318
- if Path(image_path).exists():
319
- result = classifier.classify_single_image(image_path)
320
- classifier.print_results(result)
321
- else:
322
- print(f"❌ Image not found: {image_path}")
323
- print("\n💡 Usage examples:")
324
- print("python skincare.py joe.jpeg")
325
- print("python skincare.py image_directory/")
326
- print("python skincare.py joe.jpeg --output results.json")
327
- else:
328
- main()
329
  ```
330
 
331
- ### Limitations and Bias
332
 
333
  - The model performance depends on the quality and diversity of training data
334
  - May not generalise well to skincare images significantly different from training distribution
335
  - Evaluate model performance on your specific use case before deployment
336
 
337
- ### Copyright
338
 
339
- (c) Copyright 2025 Finbarrs Oketunji. All Rights Reserved.
 
 
 
1
  ---
2
  license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
  tags:
 
5
  - image-classification
6
+ - computer-vision
7
+ - skincare
8
+ - vision-transformer
9
  datasets:
10
+ - custom
11
  metrics:
12
  - accuracy
13
  - f1
14
+ pipeline_tag: image-classification
 
 
 
 
 
 
15
  ---
16
 
17
+ # skincare-detection
18
 
19
+ ## Model Description
20
 
21
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) for skincare image classification.
22
 
23
+ ## Model Performance
24
 
25
+ - **Accuracy**: N/A
26
+ - **F1 Score**: N/A
27
+ - **Precision**: N/A
28
+ - **Recall**: N/A
29
 
30
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
31
 
32
+ ### Training Data
33
+ Custom dataset with 3378 training samples
34
 
35
+ ### Training Hyperparameters
36
 
37
+ - Learning rate: 1e-05
38
+ - Batch size: 1
39
+ - Number of epochs: 1
40
+ - Optimizer: AdamW
41
+ - Scheduler: Linear with warmup
42
 
43
+ ### Classes
44
+ Classes: acanthosis-nigricans, acne, acne-and-rosacea, acral-lentiginous-melanoma, acrodermatitis-enteropathica, alopecia-areata, alopecia-totalis, androgenetic-alopecia, aplasia-cutis, arsenicosis...
45
 
46
+ ## Usage
47
+
48
+ ```python
49
  from transformers import ViTImageProcessor, ViTForImageClassification
50
  from PIL import Image
51
+ import torch
52
+
53
+ # Load model and processor
54
+ processor = ViTImageProcessor.from_pretrained('0xnu/skincare-detection')
55
+ model = ViTForImageClassification.from_pretrained('0xnu/skincare-detection')
56
 
57
+ # Process image
58
+ image = Image.open('path_to_your_image.jpg')
59
+ inputs = processor(images=image, return_tensors="pt")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
+ # Make prediction
62
+ with torch.no_grad():
63
+ outputs = model(**inputs)
64
+ logits = outputs.logits
65
+ predicted_class_id = logits.argmax().item()
66
+ predicted_label = model.config.id2label[predicted_class_id]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ print(f"Predicted class: {predicted_label}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  ```
70
 
71
+ ## Limitations and Bias
72
 
73
  - The model performance depends on the quality and diversity of training data
74
  - May not generalise well to skincare images significantly different from training distribution
75
  - Evaluate model performance on your specific use case before deployment
76
 
77
+ ## Training Environment
78
 
79
+ - Framework: Transformers
80
+ - PyTorch: 2.8.0
81
+ - Hardware: cpu
checkpoint-53/config.json ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ViTForImageClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "encoder_stride": 16,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.0,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "acanthosis-nigricans",
12
+ "1": "acne",
13
+ "2": "acne-and-rosacea",
14
+ "3": "acral-lentiginous-melanoma",
15
+ "4": "acrodermatitis-enteropathica",
16
+ "5": "alopecia-areata",
17
+ "6": "alopecia-totalis",
18
+ "7": "androgenetic-alopecia",
19
+ "8": "aplasia-cutis",
20
+ "9": "arsenicosis",
21
+ "10": "athlete-foot",
22
+ "11": "becker-nevus",
23
+ "12": "behcets-disease",
24
+ "13": "bowens",
25
+ "14": "calcinosis-cutis",
26
+ "15": "candidiasis",
27
+ "16": "cellulitis",
28
+ "17": "cellulitis-impetigo",
29
+ "18": "cheilitis",
30
+ "19": "chickenpox",
31
+ "20": "chromoblastomycosis",
32
+ "21": "cutaneous-larva-migrans",
33
+ "22": "dariers-disease",
34
+ "23": "dermatomyositis",
35
+ "24": "discoid-lupus-erythematosus",
36
+ "25": "drug-eruptions",
37
+ "26": "dyshidrotic-eczema",
38
+ "27": "ecthyma",
39
+ "28": "eczema",
40
+ "29": "ehlers-danlos-syndrome",
41
+ "30": "epidermal-nevus",
42
+ "31": "epidermolysis-bullosa",
43
+ "32": "epidermolysis-bullosa-pruriginosa",
44
+ "33": "epidermolytic-hyperkeratosis",
45
+ "34": "erythema-annulare-centrifigum",
46
+ "35": "erythema-elevatum-diutinum",
47
+ "36": "erythema-multiforme",
48
+ "37": "erythema-nodosum",
49
+ "38": "exanthems-and-drug-eruptions",
50
+ "39": "factitial-dermatitis",
51
+ "40": "fixed-eruptions",
52
+ "41": "folliculitis",
53
+ "42": "fordyce-spots",
54
+ "43": "granuloma-annulare",
55
+ "44": "granulomatous-diseases",
56
+ "45": "hair-loss-alopecia",
57
+ "46": "hair-loss-photos-alopecia-and-other-hair-diseases",
58
+ "47": "halo-nevus",
59
+ "48": "hemangioma",
60
+ "49": "herpes",
61
+ "50": "herpes-hpv-and-other-stds",
62
+ "51": "herpes-simplex",
63
+ "52": "herpes-zoster",
64
+ "53": "hidradenitis",
65
+ "54": "hypertrophic-lichen-planus",
66
+ "55": "ichthyosis",
67
+ "56": "impetigo",
68
+ "57": "impetigo-contagiosa",
69
+ "58": "incontinentia-pigmenti",
70
+ "59": "infectious-erythema",
71
+ "60": "infestations-and-bites",
72
+ "61": "juvenile-xanthogranuloma",
73
+ "62": "kaposi-sarcoma",
74
+ "63": "keloid",
75
+ "64": "keratoderma",
76
+ "65": "keratosis-pilaris",
77
+ "66": "langerhans-cell-histiocytosis",
78
+ "67": "lentigo-maligna",
79
+ "68": "lichen-amyloidosis",
80
+ "69": "lichen-simplex",
81
+ "70": "linear-scleroderma",
82
+ "71": "livedo-reticularis",
83
+ "72": "lupus-and-other-connective-tissue-diseases",
84
+ "73": "lupus-vulgaris",
85
+ "74": "lymphangioma",
86
+ "75": "malignant-acanthosis-nigricans",
87
+ "76": "malignant-melanoma",
88
+ "77": "measles",
89
+ "78": "melanoacanthoma",
90
+ "79": "melanoma-skin-cancer-nevi-and-moles",
91
+ "80": "milia",
92
+ "81": "moles",
93
+ "82": "molluscum-contagiosum",
94
+ "83": "monkeypox",
95
+ "84": "mucinosis",
96
+ "85": "mucous-cyst",
97
+ "86": "mycosis-fungoides",
98
+ "87": "nail-fungus",
99
+ "88": "necrobiosis-lipoidica",
100
+ "89": "neurodermatitis",
101
+ "90": "neurofibromatosis",
102
+ "91": "neurotic-excoriations",
103
+ "92": "neutrophilic-dermatoses",
104
+ "93": "nevus-of-ota",
105
+ "94": "nevus-sebaceus",
106
+ "95": "nevus-spilus",
107
+ "96": "normal",
108
+ "97": "oral-lichen-planus",
109
+ "98": "pagets",
110
+ "99": "papilomatosis-confluentes-and-reticulate",
111
+ "100": "pediculosis-capitis",
112
+ "101": "pemphigus-vulgaris",
113
+ "102": "perioral-dermatitis",
114
+ "103": "photodermatoses",
115
+ "104": "pilar-cyst",
116
+ "105": "pilomatricoma",
117
+ "106": "pityriasis-lichenoides-chronica",
118
+ "107": "pityriasis-rosea",
119
+ "108": "pityriasis-rubra-pilaris",
120
+ "109": "pityriasis-versicolor",
121
+ "110": "poison-ivy-photos-and-other-contact-dermatitis",
122
+ "111": "porokeratosis-actinic",
123
+ "112": "porphyria",
124
+ "113": "port-wine-stain",
125
+ "114": "prurigo-nodularis",
126
+ "115": "psoriasis-pictures-lichen-planus-and-related-diseases",
127
+ "116": "pyogenic-granuloma",
128
+ "117": "rhinophyma",
129
+ "118": "ringworm",
130
+ "119": "rosacea",
131
+ "120": "sarcoidosis",
132
+ "121": "scabies",
133
+ "122": "scabies-lyme-disease-and-other-infestations-and-bites",
134
+ "123": "scleroderma",
135
+ "124": "scleromyxedema",
136
+ "125": "seborrheic-dermatitis",
137
+ "126": "seborrheic-keratoses",
138
+ "127": "seborrheic-keratosis",
139
+ "128": "shingles",
140
+ "129": "skin-allergy",
141
+ "130": "skin-cancer",
142
+ "131": "skin-warts",
143
+ "132": "solar-lentigo",
144
+ "133": "solitary-mastocytosis",
145
+ "134": "stasis-edema",
146
+ "135": "stevens-johnson-syndrome",
147
+ "136": "striae-distensae",
148
+ "137": "sun-damage",
149
+ "138": "syringoma",
150
+ "139": "systemic-disease",
151
+ "140": "systemic-lupus-erythematosus",
152
+ "141": "telangiectases",
153
+ "142": "tinea",
154
+ "143": "tinea-barbae",
155
+ "144": "tinea-corporis",
156
+ "145": "tinea-faciei",
157
+ "146": "tinea-nigra",
158
+ "147": "tinea-pedis",
159
+ "148": "tinea-versicolor",
160
+ "149": "trichoepithelioma",
161
+ "150": "tuberculosis-verrucosa-cutis",
162
+ "151": "tuberous-sclerosis",
163
+ "152": "tungiasis",
164
+ "153": "urticaria-hives",
165
+ "154": "varicella",
166
+ "155": "verruca",
167
+ "156": "warts",
168
+ "157": "xanthomas",
169
+ "158": "xeroderma-pigmentosum"
170
+ },
171
+ "image_size": 224,
172
+ "initializer_range": 0.02,
173
+ "intermediate_size": 3072,
174
+ "label2id": {
175
+ "acanthosis-nigricans": 0,
176
+ "acne": 1,
177
+ "acne-and-rosacea": 2,
178
+ "acral-lentiginous-melanoma": 3,
179
+ "acrodermatitis-enteropathica": 4,
180
+ "alopecia-areata": 5,
181
+ "alopecia-totalis": 6,
182
+ "androgenetic-alopecia": 7,
183
+ "aplasia-cutis": 8,
184
+ "arsenicosis": 9,
185
+ "athlete-foot": 10,
186
+ "becker-nevus": 11,
187
+ "behcets-disease": 12,
188
+ "bowens": 13,
189
+ "calcinosis-cutis": 14,
190
+ "candidiasis": 15,
191
+ "cellulitis": 16,
192
+ "cellulitis-impetigo": 17,
193
+ "cheilitis": 18,
194
+ "chickenpox": 19,
195
+ "chromoblastomycosis": 20,
196
+ "cutaneous-larva-migrans": 21,
197
+ "dariers-disease": 22,
198
+ "dermatomyositis": 23,
199
+ "discoid-lupus-erythematosus": 24,
200
+ "drug-eruptions": 25,
201
+ "dyshidrotic-eczema": 26,
202
+ "ecthyma": 27,
203
+ "eczema": 28,
204
+ "ehlers-danlos-syndrome": 29,
205
+ "epidermal-nevus": 30,
206
+ "epidermolysis-bullosa": 31,
207
+ "epidermolysis-bullosa-pruriginosa": 32,
208
+ "epidermolytic-hyperkeratosis": 33,
209
+ "erythema-annulare-centrifigum": 34,
210
+ "erythema-elevatum-diutinum": 35,
211
+ "erythema-multiforme": 36,
212
+ "erythema-nodosum": 37,
213
+ "exanthems-and-drug-eruptions": 38,
214
+ "factitial-dermatitis": 39,
215
+ "fixed-eruptions": 40,
216
+ "folliculitis": 41,
217
+ "fordyce-spots": 42,
218
+ "granuloma-annulare": 43,
219
+ "granulomatous-diseases": 44,
220
+ "hair-loss-alopecia": 45,
221
+ "hair-loss-photos-alopecia-and-other-hair-diseases": 46,
222
+ "halo-nevus": 47,
223
+ "hemangioma": 48,
224
+ "herpes": 49,
225
+ "herpes-hpv-and-other-stds": 50,
226
+ "herpes-simplex": 51,
227
+ "herpes-zoster": 52,
228
+ "hidradenitis": 53,
229
+ "hypertrophic-lichen-planus": 54,
230
+ "ichthyosis": 55,
231
+ "impetigo": 56,
232
+ "impetigo-contagiosa": 57,
233
+ "incontinentia-pigmenti": 58,
234
+ "infectious-erythema": 59,
235
+ "infestations-and-bites": 60,
236
+ "juvenile-xanthogranuloma": 61,
237
+ "kaposi-sarcoma": 62,
238
+ "keloid": 63,
239
+ "keratoderma": 64,
240
+ "keratosis-pilaris": 65,
241
+ "langerhans-cell-histiocytosis": 66,
242
+ "lentigo-maligna": 67,
243
+ "lichen-amyloidosis": 68,
244
+ "lichen-simplex": 69,
245
+ "linear-scleroderma": 70,
246
+ "livedo-reticularis": 71,
247
+ "lupus-and-other-connective-tissue-diseases": 72,
248
+ "lupus-vulgaris": 73,
249
+ "lymphangioma": 74,
250
+ "malignant-acanthosis-nigricans": 75,
251
+ "malignant-melanoma": 76,
252
+ "measles": 77,
253
+ "melanoacanthoma": 78,
254
+ "melanoma-skin-cancer-nevi-and-moles": 79,
255
+ "milia": 80,
256
+ "moles": 81,
257
+ "molluscum-contagiosum": 82,
258
+ "monkeypox": 83,
259
+ "mucinosis": 84,
260
+ "mucous-cyst": 85,
261
+ "mycosis-fungoides": 86,
262
+ "nail-fungus": 87,
263
+ "necrobiosis-lipoidica": 88,
264
+ "neurodermatitis": 89,
265
+ "neurofibromatosis": 90,
266
+ "neurotic-excoriations": 91,
267
+ "neutrophilic-dermatoses": 92,
268
+ "nevus-of-ota": 93,
269
+ "nevus-sebaceus": 94,
270
+ "nevus-spilus": 95,
271
+ "normal": 96,
272
+ "oral-lichen-planus": 97,
273
+ "pagets": 98,
274
+ "papilomatosis-confluentes-and-reticulate": 99,
275
+ "pediculosis-capitis": 100,
276
+ "pemphigus-vulgaris": 101,
277
+ "perioral-dermatitis": 102,
278
+ "photodermatoses": 103,
279
+ "pilar-cyst": 104,
280
+ "pilomatricoma": 105,
281
+ "pityriasis-lichenoides-chronica": 106,
282
+ "pityriasis-rosea": 107,
283
+ "pityriasis-rubra-pilaris": 108,
284
+ "pityriasis-versicolor": 109,
285
+ "poison-ivy-photos-and-other-contact-dermatitis": 110,
286
+ "porokeratosis-actinic": 111,
287
+ "porphyria": 112,
288
+ "port-wine-stain": 113,
289
+ "prurigo-nodularis": 114,
290
+ "psoriasis-pictures-lichen-planus-and-related-diseases": 115,
291
+ "pyogenic-granuloma": 116,
292
+ "rhinophyma": 117,
293
+ "ringworm": 118,
294
+ "rosacea": 119,
295
+ "sarcoidosis": 120,
296
+ "scabies": 121,
297
+ "scabies-lyme-disease-and-other-infestations-and-bites": 122,
298
+ "scleroderma": 123,
299
+ "scleromyxedema": 124,
300
+ "seborrheic-dermatitis": 125,
301
+ "seborrheic-keratoses": 126,
302
+ "seborrheic-keratosis": 127,
303
+ "shingles": 128,
304
+ "skin-allergy": 129,
305
+ "skin-cancer": 130,
306
+ "skin-warts": 131,
307
+ "solar-lentigo": 132,
308
+ "solitary-mastocytosis": 133,
309
+ "stasis-edema": 134,
310
+ "stevens-johnson-syndrome": 135,
311
+ "striae-distensae": 136,
312
+ "sun-damage": 137,
313
+ "syringoma": 138,
314
+ "systemic-disease": 139,
315
+ "systemic-lupus-erythematosus": 140,
316
+ "telangiectases": 141,
317
+ "tinea": 142,
318
+ "tinea-barbae": 143,
319
+ "tinea-corporis": 144,
320
+ "tinea-faciei": 145,
321
+ "tinea-nigra": 146,
322
+ "tinea-pedis": 147,
323
+ "tinea-versicolor": 148,
324
+ "trichoepithelioma": 149,
325
+ "tuberculosis-verrucosa-cutis": 150,
326
+ "tuberous-sclerosis": 151,
327
+ "tungiasis": 152,
328
+ "urticaria-hives": 153,
329
+ "varicella": 154,
330
+ "verruca": 155,
331
+ "warts": 156,
332
+ "xanthomas": 157,
333
+ "xeroderma-pigmentosum": 158
334
+ },
335
+ "layer_norm_eps": 1e-12,
336
+ "model_type": "vit",
337
+ "num_attention_heads": 12,
338
+ "num_channels": 3,
339
+ "num_hidden_layers": 12,
340
+ "patch_size": 16,
341
+ "pooler_act": "tanh",
342
+ "pooler_output_size": 768,
343
+ "problem_type": "single_label_classification",
344
+ "qkv_bias": true,
345
+ "torch_dtype": "float32",
346
+ "transformers_version": "4.55.0"
347
+ }
checkpoint-53/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83cbfc1fdf7c6b40429ddb68f01d7d48307eb162d9ced809ebfb96016ce2ebcc
3
+ size 343706916
checkpoint-53/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9292bd6759d9638138952482a57eb69fbf234a0cdd7b9c31a086eda67fd39bf
3
+ size 687529483
checkpoint-53/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cddf27219365242ec1046a3532a63a24c3f350c77f100e4f973369db2cc849d
3
+ size 14455
checkpoint-53/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:755481ad10b74a89af420d23fdc6142fa727a6d473c73200a7699696566fdd56
3
+ size 1465
checkpoint-53/trainer_state.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 2000,
7
+ "global_step": 53,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [],
12
+ "logging_steps": 500,
13
+ "max_steps": 53,
14
+ "num_input_tokens_seen": 0,
15
+ "num_train_epochs": 1,
16
+ "save_steps": 5000,
17
+ "stateful_callbacks": {
18
+ "EarlyStoppingCallback": {
19
+ "args": {
20
+ "early_stopping_patience": 3,
21
+ "early_stopping_threshold": 0.0
22
+ },
23
+ "attributes": {
24
+ "early_stopping_patience_counter": 0
25
+ }
26
+ },
27
+ "TrainerControl": {
28
+ "args": {
29
+ "should_epoch_stop": false,
30
+ "should_evaluate": false,
31
+ "should_log": false,
32
+ "should_save": true,
33
+ "should_training_stop": true
34
+ },
35
+ "attributes": {}
36
+ }
37
+ },
38
+ "total_flos": 2.621362854093742e+17,
39
+ "train_batch_size": 1,
40
+ "trial_name": null,
41
+ "trial_params": null
42
+ }
checkpoint-53/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a73ede35c1452ae2fd0c3059251b4eaa3734ed8e19c2d8dfab9f2c950bb85b9
3
+ size 5713
config.json CHANGED
@@ -8,35 +8,329 @@
8
  "hidden_dropout_prob": 0.0,
9
  "hidden_size": 768,
10
  "id2label": {
11
- "0": "acne",
12
- "1": "athlete-foot",
13
- "2": "cellulitis",
14
- "3": "chickenpox",
15
- "4": "cutaneous-larva-migrans",
16
- "5": "eczema",
17
- "6": "impetigo",
18
- "7": "nail-fungus",
19
- "8": "normal",
20
- "9": "ringworm",
21
- "10": "rosacea",
22
- "11": "shingles"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  },
24
  "image_size": 224,
25
  "initializer_range": 0.02,
26
  "intermediate_size": 3072,
27
  "label2id": {
28
- "acne": 0,
29
- "athlete-foot": 1,
30
- "cellulitis": 2,
31
- "chickenpox": 3,
32
- "cutaneous-larva-migrans": 4,
33
- "eczema": 5,
34
- "impetigo": 6,
35
- "nail-fungus": 7,
36
- "normal": 8,
37
- "ringworm": 9,
38
- "rosacea": 10,
39
- "shingles": 11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  },
41
  "layer_norm_eps": 1e-12,
42
  "model_type": "vit",
 
8
  "hidden_dropout_prob": 0.0,
9
  "hidden_size": 768,
10
  "id2label": {
11
+ "0": "acanthosis-nigricans",
12
+ "1": "acne",
13
+ "2": "acne-and-rosacea",
14
+ "3": "acral-lentiginous-melanoma",
15
+ "4": "acrodermatitis-enteropathica",
16
+ "5": "alopecia-areata",
17
+ "6": "alopecia-totalis",
18
+ "7": "androgenetic-alopecia",
19
+ "8": "aplasia-cutis",
20
+ "9": "arsenicosis",
21
+ "10": "athlete-foot",
22
+ "11": "becker-nevus",
23
+ "12": "behcets-disease",
24
+ "13": "bowens",
25
+ "14": "calcinosis-cutis",
26
+ "15": "candidiasis",
27
+ "16": "cellulitis",
28
+ "17": "cellulitis-impetigo",
29
+ "18": "cheilitis",
30
+ "19": "chickenpox",
31
+ "20": "chromoblastomycosis",
32
+ "21": "cutaneous-larva-migrans",
33
+ "22": "dariers-disease",
34
+ "23": "dermatomyositis",
35
+ "24": "discoid-lupus-erythematosus",
36
+ "25": "drug-eruptions",
37
+ "26": "dyshidrotic-eczema",
38
+ "27": "ecthyma",
39
+ "28": "eczema",
40
+ "29": "ehlers-danlos-syndrome",
41
+ "30": "epidermal-nevus",
42
+ "31": "epidermolysis-bullosa",
43
+ "32": "epidermolysis-bullosa-pruriginosa",
44
+ "33": "epidermolytic-hyperkeratosis",
45
+ "34": "erythema-annulare-centrifigum",
46
+ "35": "erythema-elevatum-diutinum",
47
+ "36": "erythema-multiforme",
48
+ "37": "erythema-nodosum",
49
+ "38": "exanthems-and-drug-eruptions",
50
+ "39": "factitial-dermatitis",
51
+ "40": "fixed-eruptions",
52
+ "41": "folliculitis",
53
+ "42": "fordyce-spots",
54
+ "43": "granuloma-annulare",
55
+ "44": "granulomatous-diseases",
56
+ "45": "hair-loss-alopecia",
57
+ "46": "hair-loss-photos-alopecia-and-other-hair-diseases",
58
+ "47": "halo-nevus",
59
+ "48": "hemangioma",
60
+ "49": "herpes",
61
+ "50": "herpes-hpv-and-other-stds",
62
+ "51": "herpes-simplex",
63
+ "52": "herpes-zoster",
64
+ "53": "hidradenitis",
65
+ "54": "hypertrophic-lichen-planus",
66
+ "55": "ichthyosis",
67
+ "56": "impetigo",
68
+ "57": "impetigo-contagiosa",
69
+ "58": "incontinentia-pigmenti",
70
+ "59": "infectious-erythema",
71
+ "60": "infestations-and-bites",
72
+ "61": "juvenile-xanthogranuloma",
73
+ "62": "kaposi-sarcoma",
74
+ "63": "keloid",
75
+ "64": "keratoderma",
76
+ "65": "keratosis-pilaris",
77
+ "66": "langerhans-cell-histiocytosis",
78
+ "67": "lentigo-maligna",
79
+ "68": "lichen-amyloidosis",
80
+ "69": "lichen-simplex",
81
+ "70": "linear-scleroderma",
82
+ "71": "livedo-reticularis",
83
+ "72": "lupus-and-other-connective-tissue-diseases",
84
+ "73": "lupus-vulgaris",
85
+ "74": "lymphangioma",
86
+ "75": "malignant-acanthosis-nigricans",
87
+ "76": "malignant-melanoma",
88
+ "77": "measles",
89
+ "78": "melanoacanthoma",
90
+ "79": "melanoma-skin-cancer-nevi-and-moles",
91
+ "80": "milia",
92
+ "81": "moles",
93
+ "82": "molluscum-contagiosum",
94
+ "83": "monkeypox",
95
+ "84": "mucinosis",
96
+ "85": "mucous-cyst",
97
+ "86": "mycosis-fungoides",
98
+ "87": "nail-fungus",
99
+ "88": "necrobiosis-lipoidica",
100
+ "89": "neurodermatitis",
101
+ "90": "neurofibromatosis",
102
+ "91": "neurotic-excoriations",
103
+ "92": "neutrophilic-dermatoses",
104
+ "93": "nevus-of-ota",
105
+ "94": "nevus-sebaceus",
106
+ "95": "nevus-spilus",
107
+ "96": "normal",
108
+ "97": "oral-lichen-planus",
109
+ "98": "pagets",
110
+ "99": "papilomatosis-confluentes-and-reticulate",
111
+ "100": "pediculosis-capitis",
112
+ "101": "pemphigus-vulgaris",
113
+ "102": "perioral-dermatitis",
114
+ "103": "photodermatoses",
115
+ "104": "pilar-cyst",
116
+ "105": "pilomatricoma",
117
+ "106": "pityriasis-lichenoides-chronica",
118
+ "107": "pityriasis-rosea",
119
+ "108": "pityriasis-rubra-pilaris",
120
+ "109": "pityriasis-versicolor",
121
+ "110": "poison-ivy-photos-and-other-contact-dermatitis",
122
+ "111": "porokeratosis-actinic",
123
+ "112": "porphyria",
124
+ "113": "port-wine-stain",
125
+ "114": "prurigo-nodularis",
126
+ "115": "psoriasis-pictures-lichen-planus-and-related-diseases",
127
+ "116": "pyogenic-granuloma",
128
+ "117": "rhinophyma",
129
+ "118": "ringworm",
130
+ "119": "rosacea",
131
+ "120": "sarcoidosis",
132
+ "121": "scabies",
133
+ "122": "scabies-lyme-disease-and-other-infestations-and-bites",
134
+ "123": "scleroderma",
135
+ "124": "scleromyxedema",
136
+ "125": "seborrheic-dermatitis",
137
+ "126": "seborrheic-keratoses",
138
+ "127": "seborrheic-keratosis",
139
+ "128": "shingles",
140
+ "129": "skin-allergy",
141
+ "130": "skin-cancer",
142
+ "131": "skin-warts",
143
+ "132": "solar-lentigo",
144
+ "133": "solitary-mastocytosis",
145
+ "134": "stasis-edema",
146
+ "135": "stevens-johnson-syndrome",
147
+ "136": "striae-distensae",
148
+ "137": "sun-damage",
149
+ "138": "syringoma",
150
+ "139": "systemic-disease",
151
+ "140": "systemic-lupus-erythematosus",
152
+ "141": "telangiectases",
153
+ "142": "tinea",
154
+ "143": "tinea-barbae",
155
+ "144": "tinea-corporis",
156
+ "145": "tinea-faciei",
157
+ "146": "tinea-nigra",
158
+ "147": "tinea-pedis",
159
+ "148": "tinea-versicolor",
160
+ "149": "trichoepithelioma",
161
+ "150": "tuberculosis-verrucosa-cutis",
162
+ "151": "tuberous-sclerosis",
163
+ "152": "tungiasis",
164
+ "153": "urticaria-hives",
165
+ "154": "varicella",
166
+ "155": "verruca",
167
+ "156": "warts",
168
+ "157": "xanthomas",
169
+ "158": "xeroderma-pigmentosum"
170
  },
171
  "image_size": 224,
172
  "initializer_range": 0.02,
173
  "intermediate_size": 3072,
174
  "label2id": {
175
+ "acanthosis-nigricans": 0,
176
+ "acne": 1,
177
+ "acne-and-rosacea": 2,
178
+ "acral-lentiginous-melanoma": 3,
179
+ "acrodermatitis-enteropathica": 4,
180
+ "alopecia-areata": 5,
181
+ "alopecia-totalis": 6,
182
+ "androgenetic-alopecia": 7,
183
+ "aplasia-cutis": 8,
184
+ "arsenicosis": 9,
185
+ "athlete-foot": 10,
186
+ "becker-nevus": 11,
187
+ "behcets-disease": 12,
188
+ "bowens": 13,
189
+ "calcinosis-cutis": 14,
190
+ "candidiasis": 15,
191
+ "cellulitis": 16,
192
+ "cellulitis-impetigo": 17,
193
+ "cheilitis": 18,
194
+ "chickenpox": 19,
195
+ "chromoblastomycosis": 20,
196
+ "cutaneous-larva-migrans": 21,
197
+ "dariers-disease": 22,
198
+ "dermatomyositis": 23,
199
+ "discoid-lupus-erythematosus": 24,
200
+ "drug-eruptions": 25,
201
+ "dyshidrotic-eczema": 26,
202
+ "ecthyma": 27,
203
+ "eczema": 28,
204
+ "ehlers-danlos-syndrome": 29,
205
+ "epidermal-nevus": 30,
206
+ "epidermolysis-bullosa": 31,
207
+ "epidermolysis-bullosa-pruriginosa": 32,
208
+ "epidermolytic-hyperkeratosis": 33,
209
+ "erythema-annulare-centrifigum": 34,
210
+ "erythema-elevatum-diutinum": 35,
211
+ "erythema-multiforme": 36,
212
+ "erythema-nodosum": 37,
213
+ "exanthems-and-drug-eruptions": 38,
214
+ "factitial-dermatitis": 39,
215
+ "fixed-eruptions": 40,
216
+ "folliculitis": 41,
217
+ "fordyce-spots": 42,
218
+ "granuloma-annulare": 43,
219
+ "granulomatous-diseases": 44,
220
+ "hair-loss-alopecia": 45,
221
+ "hair-loss-photos-alopecia-and-other-hair-diseases": 46,
222
+ "halo-nevus": 47,
223
+ "hemangioma": 48,
224
+ "herpes": 49,
225
+ "herpes-hpv-and-other-stds": 50,
226
+ "herpes-simplex": 51,
227
+ "herpes-zoster": 52,
228
+ "hidradenitis": 53,
229
+ "hypertrophic-lichen-planus": 54,
230
+ "ichthyosis": 55,
231
+ "impetigo": 56,
232
+ "impetigo-contagiosa": 57,
233
+ "incontinentia-pigmenti": 58,
234
+ "infectious-erythema": 59,
235
+ "infestations-and-bites": 60,
236
+ "juvenile-xanthogranuloma": 61,
237
+ "kaposi-sarcoma": 62,
238
+ "keloid": 63,
239
+ "keratoderma": 64,
240
+ "keratosis-pilaris": 65,
241
+ "langerhans-cell-histiocytosis": 66,
242
+ "lentigo-maligna": 67,
243
+ "lichen-amyloidosis": 68,
244
+ "lichen-simplex": 69,
245
+ "linear-scleroderma": 70,
246
+ "livedo-reticularis": 71,
247
+ "lupus-and-other-connective-tissue-diseases": 72,
248
+ "lupus-vulgaris": 73,
249
+ "lymphangioma": 74,
250
+ "malignant-acanthosis-nigricans": 75,
251
+ "malignant-melanoma": 76,
252
+ "measles": 77,
253
+ "melanoacanthoma": 78,
254
+ "melanoma-skin-cancer-nevi-and-moles": 79,
255
+ "milia": 80,
256
+ "moles": 81,
257
+ "molluscum-contagiosum": 82,
258
+ "monkeypox": 83,
259
+ "mucinosis": 84,
260
+ "mucous-cyst": 85,
261
+ "mycosis-fungoides": 86,
262
+ "nail-fungus": 87,
263
+ "necrobiosis-lipoidica": 88,
264
+ "neurodermatitis": 89,
265
+ "neurofibromatosis": 90,
266
+ "neurotic-excoriations": 91,
267
+ "neutrophilic-dermatoses": 92,
268
+ "nevus-of-ota": 93,
269
+ "nevus-sebaceus": 94,
270
+ "nevus-spilus": 95,
271
+ "normal": 96,
272
+ "oral-lichen-planus": 97,
273
+ "pagets": 98,
274
+ "papilomatosis-confluentes-and-reticulate": 99,
275
+ "pediculosis-capitis": 100,
276
+ "pemphigus-vulgaris": 101,
277
+ "perioral-dermatitis": 102,
278
+ "photodermatoses": 103,
279
+ "pilar-cyst": 104,
280
+ "pilomatricoma": 105,
281
+ "pityriasis-lichenoides-chronica": 106,
282
+ "pityriasis-rosea": 107,
283
+ "pityriasis-rubra-pilaris": 108,
284
+ "pityriasis-versicolor": 109,
285
+ "poison-ivy-photos-and-other-contact-dermatitis": 110,
286
+ "porokeratosis-actinic": 111,
287
+ "porphyria": 112,
288
+ "port-wine-stain": 113,
289
+ "prurigo-nodularis": 114,
290
+ "psoriasis-pictures-lichen-planus-and-related-diseases": 115,
291
+ "pyogenic-granuloma": 116,
292
+ "rhinophyma": 117,
293
+ "ringworm": 118,
294
+ "rosacea": 119,
295
+ "sarcoidosis": 120,
296
+ "scabies": 121,
297
+ "scabies-lyme-disease-and-other-infestations-and-bites": 122,
298
+ "scleroderma": 123,
299
+ "scleromyxedema": 124,
300
+ "seborrheic-dermatitis": 125,
301
+ "seborrheic-keratoses": 126,
302
+ "seborrheic-keratosis": 127,
303
+ "shingles": 128,
304
+ "skin-allergy": 129,
305
+ "skin-cancer": 130,
306
+ "skin-warts": 131,
307
+ "solar-lentigo": 132,
308
+ "solitary-mastocytosis": 133,
309
+ "stasis-edema": 134,
310
+ "stevens-johnson-syndrome": 135,
311
+ "striae-distensae": 136,
312
+ "sun-damage": 137,
313
+ "syringoma": 138,
314
+ "systemic-disease": 139,
315
+ "systemic-lupus-erythematosus": 140,
316
+ "telangiectases": 141,
317
+ "tinea": 142,
318
+ "tinea-barbae": 143,
319
+ "tinea-corporis": 144,
320
+ "tinea-faciei": 145,
321
+ "tinea-nigra": 146,
322
+ "tinea-pedis": 147,
323
+ "tinea-versicolor": 148,
324
+ "trichoepithelioma": 149,
325
+ "tuberculosis-verrucosa-cutis": 150,
326
+ "tuberous-sclerosis": 151,
327
+ "tungiasis": 152,
328
+ "urticaria-hives": 153,
329
+ "varicella": 154,
330
+ "verruca": 155,
331
+ "warts": 156,
332
+ "xanthomas": 157,
333
+ "xeroderma-pigmentosum": 158
334
  },
335
  "layer_norm_eps": 1e-12,
336
  "model_type": "vit",
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e51135ac7635a9a36723c23064bb400884097037a64fef2c237d15f684f8ac5c
3
- size 343254736
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83cbfc1fdf7c6b40429ddb68f01d7d48307eb162d9ced809ebfb96016ce2ebcc
3
+ size 343706916
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5c1fad4ba54b504a5110180cd6b64009b07e6b350131fe6cf05a4712d39c1b9f
3
  size 5713
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a73ede35c1452ae2fd0c3059251b4eaa3734ed8e19c2d8dfab9f2c950bb85b9
3
  size 5713
training_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "train_runtime": 1232.5529,
3
- "train_samples_per_second": 9.824,
4
- "train_steps_per_second": 0.078,
5
- "total_flos": 9.383571046956073e+17,
6
- "train_loss": 0.5641234858582417,
7
- "epoch": 12.0
8
  }
 
1
  {
2
+ "train_runtime": 396.1679,
3
+ "train_samples_per_second": 8.527,
4
+ "train_steps_per_second": 0.134,
5
+ "total_flos": 2.621362854093742e+17,
6
+ "train_loss": 5.013288965765035,
7
+ "epoch": 1.0
8
  }