Upload 15 files
Browse files- added_tokens.json +4 -0
- config.json +31 -0
- configuration_bitnet.py +195 -0
- eval_ppl.py +67 -0
- eval_task.py +63 -0
- eval_utils.py +133 -0
- generation_config.json +7 -0
- model.safetensors.index.json +321 -0
- modeling_bitnet.py +1387 -0
- special_tokens_map.json +33 -0
- tokenization_bitnet.py +482 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +62 -0
- utils_quant.py +48 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</line>": 32001,
|
| 3 |
+
"<pad>": 32000
|
| 4 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "1bitLLM/bitnet_b1_58-3B",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BitnetForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 3200,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"input_bits": 8,
|
| 14 |
+
"intermediate_size": 8640,
|
| 15 |
+
"max_position_embeddings": 2048,
|
| 16 |
+
"model_type": "llama",
|
| 17 |
+
"num_attention_heads": 32,
|
| 18 |
+
"num_hidden_layers": 26,
|
| 19 |
+
"num_key_value_heads": 32,
|
| 20 |
+
"pad_token_id": 32000,
|
| 21 |
+
"pretraining_tp": 1,
|
| 22 |
+
"rms_norm_eps": 1e-05,
|
| 23 |
+
"rope_scaling": null,
|
| 24 |
+
"rope_theta": 10000.0,
|
| 25 |
+
"tie_word_embeddings": true,
|
| 26 |
+
"torch_dtype": "float16",
|
| 27 |
+
"transformers_version": "4.39.0",
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 32002,
|
| 30 |
+
"weight_bits": 1
|
| 31 |
+
}
|
configuration_bitnet.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
""" LLaMA model configuration"""
|
| 21 |
+
|
| 22 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class BitnetConfig(PretrainedConfig):
|
| 32 |
+
r"""
|
| 33 |
+
This is the configuration class to store the configuration of a [`BitnetModel`]. It is used to instantiate an LLaMA
|
| 34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 35 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
| 36 |
+
|
| 37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 38 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 43 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
| 44 |
+
`inputs_ids` passed when calling [`BitnetModel`]
|
| 45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 46 |
+
Dimension of the hidden representations.
|
| 47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 48 |
+
Dimension of the MLP representations.
|
| 49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 50 |
+
Number of hidden layers in the Transformer decoder.
|
| 51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 53 |
+
num_key_value_heads (`int`, *optional*):
|
| 54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 60 |
+
`num_attention_heads`.
|
| 61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 62 |
+
The non-linear activation function (function or string) in the decoder.
|
| 63 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 64 |
+
The maximum sequence length that this model might ever be used with. Bitnet 1 supports up to 2048 tokens,
|
| 65 |
+
Bitnet 2 up to 4096, CodeBitnet up to 16384.
|
| 66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 69 |
+
The epsilon used by the rms normalization layers.
|
| 70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 72 |
+
relevant if `config.is_decoder=True`.
|
| 73 |
+
pad_token_id (`int`, *optional*):
|
| 74 |
+
Padding token id.
|
| 75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 76 |
+
Beginning of stream token id.
|
| 77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 78 |
+
End of stream token id.
|
| 79 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 80 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 81 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
| 82 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 83 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 84 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 85 |
+
Whether to tie weight embeddings
|
| 86 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 87 |
+
The base period of the RoPE embeddings.
|
| 88 |
+
rope_scaling (`Dict`, *optional*):
|
| 89 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 90 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 91 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 92 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 93 |
+
these scaling strategies behave:
|
| 94 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 95 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 96 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 97 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 98 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 99 |
+
The dropout ratio for the attention probabilities.
|
| 100 |
+
|
| 101 |
+
```python
|
| 102 |
+
>>> from transformers import BitnetModel, BitnetConfig
|
| 103 |
+
|
| 104 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
| 105 |
+
>>> configuration = BitnetConfig()
|
| 106 |
+
|
| 107 |
+
>>> # Initializing a model from the llama-7b style configuration
|
| 108 |
+
>>> model = BitnetModel(configuration)
|
| 109 |
+
|
| 110 |
+
>>> # Accessing the model configuration
|
| 111 |
+
>>> configuration = model.config
|
| 112 |
+
```"""
|
| 113 |
+
|
| 114 |
+
model_type = "llama"
|
| 115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 116 |
+
|
| 117 |
+
def __init__(
|
| 118 |
+
self,
|
| 119 |
+
vocab_size=32000,
|
| 120 |
+
hidden_size=4096,
|
| 121 |
+
intermediate_size=11008,
|
| 122 |
+
num_hidden_layers=32,
|
| 123 |
+
num_attention_heads=32,
|
| 124 |
+
num_key_value_heads=None,
|
| 125 |
+
hidden_act="silu",
|
| 126 |
+
max_position_embeddings=2048,
|
| 127 |
+
initializer_range=0.02,
|
| 128 |
+
rms_norm_eps=1e-6,
|
| 129 |
+
use_cache=True,
|
| 130 |
+
pad_token_id=None,
|
| 131 |
+
bos_token_id=1,
|
| 132 |
+
eos_token_id=2,
|
| 133 |
+
pretraining_tp=1,
|
| 134 |
+
tie_word_embeddings=False,
|
| 135 |
+
rope_theta=10000.0,
|
| 136 |
+
rope_scaling=None,
|
| 137 |
+
attention_bias=False,
|
| 138 |
+
attention_dropout=0.0,
|
| 139 |
+
weight_bits=1,
|
| 140 |
+
input_bits=8,
|
| 141 |
+
**kwargs,
|
| 142 |
+
):
|
| 143 |
+
self.vocab_size = vocab_size
|
| 144 |
+
self.max_position_embeddings = max_position_embeddings
|
| 145 |
+
self.hidden_size = hidden_size
|
| 146 |
+
self.intermediate_size = intermediate_size
|
| 147 |
+
self.num_hidden_layers = num_hidden_layers
|
| 148 |
+
self.num_attention_heads = num_attention_heads
|
| 149 |
+
|
| 150 |
+
# for backward compatibility
|
| 151 |
+
if num_key_value_heads is None:
|
| 152 |
+
num_key_value_heads = num_attention_heads
|
| 153 |
+
|
| 154 |
+
self.num_key_value_heads = num_key_value_heads
|
| 155 |
+
self.hidden_act = hidden_act
|
| 156 |
+
self.initializer_range = initializer_range
|
| 157 |
+
self.rms_norm_eps = rms_norm_eps
|
| 158 |
+
self.pretraining_tp = pretraining_tp
|
| 159 |
+
self.use_cache = use_cache
|
| 160 |
+
self.rope_theta = rope_theta
|
| 161 |
+
self.rope_scaling = rope_scaling
|
| 162 |
+
self._rope_scaling_validation()
|
| 163 |
+
self.attention_bias = attention_bias
|
| 164 |
+
self.attention_dropout = attention_dropout
|
| 165 |
+
self.weight_bits = weight_bits
|
| 166 |
+
self.input_bits = input_bits
|
| 167 |
+
|
| 168 |
+
super().__init__(
|
| 169 |
+
pad_token_id=pad_token_id,
|
| 170 |
+
bos_token_id=bos_token_id,
|
| 171 |
+
eos_token_id=eos_token_id,
|
| 172 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 173 |
+
**kwargs,
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
def _rope_scaling_validation(self):
|
| 177 |
+
"""
|
| 178 |
+
Validate the `rope_scaling` configuration.
|
| 179 |
+
"""
|
| 180 |
+
if self.rope_scaling is None:
|
| 181 |
+
return
|
| 182 |
+
|
| 183 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 184 |
+
raise ValueError(
|
| 185 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
| 186 |
+
f"got {self.rope_scaling}"
|
| 187 |
+
)
|
| 188 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 189 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
| 190 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
| 191 |
+
raise ValueError(
|
| 192 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 193 |
+
)
|
| 194 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
| 195 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
eval_ppl.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import argparse
|
| 3 |
+
import torch
|
| 4 |
+
import random
|
| 5 |
+
|
| 6 |
+
from eval_utils import get_test_dataset
|
| 7 |
+
from .modeling_bitnet import BitnetForCausalLM
|
| 8 |
+
from .tokenization_bitnet import BitnetTokenizer
|
| 9 |
+
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
torch.set_grad_enabled(False)
|
| 12 |
+
|
| 13 |
+
parser = argparse.ArgumentParser()
|
| 14 |
+
parser.add_argument('--seed', default=0, type=int)
|
| 15 |
+
parser.add_argument('--hf_path', default='1bitLLM/bitnet_b1_58-3B', type=str)
|
| 16 |
+
parser.add_argument('--seqlen', default=2048, type=int)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def calulate_loss(model, input, loss_fct):
|
| 20 |
+
output = model(input,
|
| 21 |
+
use_cache=False,
|
| 22 |
+
output_hidden_states=False,
|
| 23 |
+
output_attentions=False)[0]
|
| 24 |
+
shift_logits = output[:, :-1, :].contiguous()
|
| 25 |
+
shift_labels = input[:, 1:]
|
| 26 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 27 |
+
return loss
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def main(args):
|
| 31 |
+
datasets = ['c4', 'wikitext2']
|
| 32 |
+
model = BitnetForCausalLM.from_pretrained(
|
| 33 |
+
args.hf_path,
|
| 34 |
+
device_map='auto',
|
| 35 |
+
low_cpu_mem_usage=True,
|
| 36 |
+
use_flash_attention_2=True,
|
| 37 |
+
torch_dtype=torch.float16,
|
| 38 |
+
).half()
|
| 39 |
+
tokenizer = BitnetTokenizer.from_pretrained(args.hf_path, use_fast=False)
|
| 40 |
+
loss_fct = torch.nn.CrossEntropyLoss(reduction="sum").cuda()
|
| 41 |
+
|
| 42 |
+
ppl = []
|
| 43 |
+
for dataset in datasets:
|
| 44 |
+
testdata = get_test_dataset(dataset, tokenizer, seqlen=args.seqlen)
|
| 45 |
+
acc_loss, count = 0.0, 0
|
| 46 |
+
progress = tqdm(range(len(testdata)))
|
| 47 |
+
for ii in progress:
|
| 48 |
+
input = torch.Tensor(testdata[ii]).long().cuda().view(1, -1)
|
| 49 |
+
loss = calulate_loss(model, input, loss_fct)
|
| 50 |
+
count += (input.size(-1) - 1)
|
| 51 |
+
acc_loss += loss.item()
|
| 52 |
+
progress.set_description(f"avg_loss = {acc_loss/ count / math.log(2)}")
|
| 53 |
+
|
| 54 |
+
avg_loss = acc_loss / count / math.log(2)
|
| 55 |
+
ppl.append(2 ** avg_loss)
|
| 56 |
+
print("{} PPL: {}".format(dataset, ppl[-1]))
|
| 57 |
+
|
| 58 |
+
print(ppl)
|
| 59 |
+
print("Avg PPL:", sum(ppl) / len(ppl))
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
if __name__ == '__main__':
|
| 63 |
+
torch.set_grad_enabled(False)
|
| 64 |
+
args = parser.parse_args()
|
| 65 |
+
random.seed(args.seed)
|
| 66 |
+
torch.random.manual_seed(args.seed)
|
| 67 |
+
main(args)
|
eval_task.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import argparse
|
| 4 |
+
import torch
|
| 5 |
+
import random
|
| 6 |
+
import glog
|
| 7 |
+
|
| 8 |
+
from lm_eval import evaluator
|
| 9 |
+
from eval_utils import LMEvalAdaptor
|
| 10 |
+
from .tokenization_bitnet import BitnetTokenizer
|
| 11 |
+
from .modeling_bitnet import BitnetForCausalLM
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
parser = argparse.ArgumentParser()
|
| 15 |
+
parser.add_argument('--seed', default=0, type=int)
|
| 16 |
+
parser.add_argument('--hf_path', default='1bitLLM/bitnet_b1_58-3B', type=str)
|
| 17 |
+
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
|
| 18 |
+
parser.add_argument("--tasks", type=str)
|
| 19 |
+
parser.add_argument("--output_path", default=None, type=str)
|
| 20 |
+
parser.add_argument('--num_fewshot', type=int, default=0)
|
| 21 |
+
parser.add_argument('--ctx_size', default=2048, type=int)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def main(args):
|
| 25 |
+
model_str = args.hf_path
|
| 26 |
+
model = BitnetForCausalLM.from_pretrained(
|
| 27 |
+
args.hf_path,
|
| 28 |
+
device_map='auto',
|
| 29 |
+
low_cpu_mem_usage=True,
|
| 30 |
+
use_flash_attention_2=True,
|
| 31 |
+
torch_dtype=torch.float16,
|
| 32 |
+
).half()
|
| 33 |
+
|
| 34 |
+
tokenizer = BitnetTokenizer.from_pretrained(args.hf_path, use_fast=False)
|
| 35 |
+
glog.info('loaded model!')
|
| 36 |
+
|
| 37 |
+
task_names = args.tasks.split(",")
|
| 38 |
+
|
| 39 |
+
lm_eval_model = LMEvalAdaptor(model_str, model, tokenizer, args.batch_size, args.ctx_size)
|
| 40 |
+
results = evaluator.simple_evaluate(
|
| 41 |
+
model=lm_eval_model,
|
| 42 |
+
tasks=task_names,
|
| 43 |
+
batch_size=args.batch_size,
|
| 44 |
+
no_cache=True,
|
| 45 |
+
num_fewshot=args.num_fewshot,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
print(evaluator.make_table(results))
|
| 49 |
+
|
| 50 |
+
if args.output_path is not None:
|
| 51 |
+
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
|
| 52 |
+
# otherwise cannot save
|
| 53 |
+
results["config"]["model"] = args.hf_path
|
| 54 |
+
with open(args.output_path, "w") as f:
|
| 55 |
+
json.dump(results, f, indent=2)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
if __name__ == '__main__':
|
| 59 |
+
torch.set_grad_enabled(False)
|
| 60 |
+
args = parser.parse_args()
|
| 61 |
+
random.seed(args.seed)
|
| 62 |
+
torch.random.manual_seed(args.seed)
|
| 63 |
+
main(args)
|
eval_utils.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
from lm_eval.base import BaseLM
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def set_seed(seed):
|
| 11 |
+
np.random.seed(seed)
|
| 12 |
+
torch.random.manual_seed(seed)
|
| 13 |
+
|
| 14 |
+
def get_test_dataset(dataset_name, tokenizer, seqlen=2048):
|
| 15 |
+
if dataset_name == "wikitext2":
|
| 16 |
+
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
|
| 17 |
+
testdata = "".join(testdata['text']).split('\n')
|
| 18 |
+
elif dataset_name == "c4":
|
| 19 |
+
testdata = load_dataset('allenai/c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation')['text']
|
| 20 |
+
else:
|
| 21 |
+
raise NotImplementedError
|
| 22 |
+
|
| 23 |
+
testdata = [item for item in testdata if item != ""]
|
| 24 |
+
tokenized_text = [tokenizer(item, add_special_tokens=False)['input_ids'] + [tokenizer.eos_token_id] for item in testdata]
|
| 25 |
+
|
| 26 |
+
data, doc = [], [tokenizer.bos_token_id]
|
| 27 |
+
for sen in tokenized_text:
|
| 28 |
+
if len(sen) > seqlen:
|
| 29 |
+
continue
|
| 30 |
+
if len(doc) + len(sen) > seqlen:
|
| 31 |
+
data.append(doc)
|
| 32 |
+
doc = [tokenizer.bos_token_id]
|
| 33 |
+
doc.extend(sen)
|
| 34 |
+
if len(doc) > 1 and len(doc) <= seqlen:
|
| 35 |
+
data.append(doc)
|
| 36 |
+
return data
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class LMEvalAdaptor(BaseLM):
|
| 40 |
+
def __init__(self, model_name, model, tokenizer, batch_size=1, max_length=-1):
|
| 41 |
+
super().__init__()
|
| 42 |
+
|
| 43 |
+
assert isinstance(batch_size, int)
|
| 44 |
+
|
| 45 |
+
self.model_name = model_name
|
| 46 |
+
self.model = model
|
| 47 |
+
self.model.eval()
|
| 48 |
+
|
| 49 |
+
self.tokenizer = tokenizer
|
| 50 |
+
|
| 51 |
+
self.vocab_size = self.tokenizer.vocab_size
|
| 52 |
+
|
| 53 |
+
self._batch_size = batch_size
|
| 54 |
+
|
| 55 |
+
self._max_length = max_length
|
| 56 |
+
|
| 57 |
+
@property
|
| 58 |
+
def eot_token_id(self):
|
| 59 |
+
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
| 60 |
+
return self.tokenizer.eos_token_id
|
| 61 |
+
|
| 62 |
+
@property
|
| 63 |
+
def max_length(self):
|
| 64 |
+
if self._max_length != -1:
|
| 65 |
+
return self._max_length
|
| 66 |
+
if hasattr(self.model.config, "n_ctx"):
|
| 67 |
+
return self.model.config.n_ctx
|
| 68 |
+
elif hasattr(self.model.config, "max_position_embeddings"):
|
| 69 |
+
return self.model.config.max_position_embeddings
|
| 70 |
+
elif hasattr(self.model.config, "n_positions"):
|
| 71 |
+
return self.model.config.n_positions
|
| 72 |
+
elif "bloom" in self.model_name:
|
| 73 |
+
return 2048
|
| 74 |
+
elif "llama" in self.model_name:
|
| 75 |
+
return 2048 # TODO: did not check this
|
| 76 |
+
elif "mpt" in self.model_name:
|
| 77 |
+
return 2048
|
| 78 |
+
elif "falcon" in self.model_name:
|
| 79 |
+
return 2048
|
| 80 |
+
else:
|
| 81 |
+
print(self.model.config)
|
| 82 |
+
raise NotImplementedError
|
| 83 |
+
|
| 84 |
+
@property
|
| 85 |
+
def max_gen_toks(self):
|
| 86 |
+
return 256
|
| 87 |
+
|
| 88 |
+
@property
|
| 89 |
+
def batch_size(self):
|
| 90 |
+
return self._batch_size
|
| 91 |
+
|
| 92 |
+
@property
|
| 93 |
+
def device(self):
|
| 94 |
+
return "cuda"
|
| 95 |
+
|
| 96 |
+
def tok_encode(self, string: str, add_special_tokens=True):
|
| 97 |
+
return self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
|
| 98 |
+
|
| 99 |
+
def tok_decode(self, tokens):
|
| 100 |
+
return self.tokenizer.decode(tokens)
|
| 101 |
+
|
| 102 |
+
def loglikelihood(self, requests):
|
| 103 |
+
new_reqs = []
|
| 104 |
+
for context, continuation in requests:
|
| 105 |
+
context, continuation = context.strip(), continuation.strip()
|
| 106 |
+
if context == "":
|
| 107 |
+
# end of text as context
|
| 108 |
+
context_enc = [self.eot_token_id]
|
| 109 |
+
else:
|
| 110 |
+
context_enc = self.tok_encode(context, add_special_tokens=True)
|
| 111 |
+
|
| 112 |
+
continuation_enc = self.tok_encode(continuation, add_special_tokens=False)
|
| 113 |
+
|
| 114 |
+
new_reqs.append(((context, continuation), context_enc, continuation_enc))
|
| 115 |
+
|
| 116 |
+
return self._loglikelihood_tokens(new_reqs)
|
| 117 |
+
|
| 118 |
+
def _model_call(self, inps):
|
| 119 |
+
"""
|
| 120 |
+
inps: a torch tensor of shape [batch, sequence]
|
| 121 |
+
the size of sequence may vary from call to call
|
| 122 |
+
|
| 123 |
+
returns: a torch tensor of shape [batch, sequence, vocab] with the
|
| 124 |
+
logits returned from the model
|
| 125 |
+
"""
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
out = self.model(inps)[0]
|
| 128 |
+
return out
|
| 129 |
+
|
| 130 |
+
def _model_generate(self, context, max_length, eos_token_id):
|
| 131 |
+
return self.model.generate(
|
| 132 |
+
context, max_length=max_length, eos_token_id=eos_token_id, do_sample=False
|
| 133 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 1,
|
| 6 |
+
"transformers_version": "4.39.0"
|
| 7 |
+
}
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 13297556560
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.layers.0.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.layers.1.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 33 |
+
"model.layers.10.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 43 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"model.layers.11.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"model.layers.12.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.layers.13.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 79 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 81 |
+
"model.layers.14.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.layers.15.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.layers.16.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 117 |
+
"model.layers.17.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.layers.18.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 141 |
+
"model.layers.19.mlp.ffn_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 153 |
+
"model.layers.2.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 163 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 165 |
+
"model.layers.20.mlp.ffn_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.inner_attn_ln.weight": "model-00003-of-00003.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 175 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 177 |
+
"model.layers.21.mlp.ffn_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.inner_attn_ln.weight": "model-00003-of-00003.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 187 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 189 |
+
"model.layers.22.mlp.ffn_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.inner_attn_ln.weight": "model-00003-of-00003.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 199 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 201 |
+
"model.layers.23.mlp.ffn_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.inner_attn_ln.weight": "model-00003-of-00003.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 211 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 213 |
+
"model.layers.24.mlp.ffn_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.inner_attn_ln.weight": "model-00003-of-00003.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 223 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 225 |
+
"model.layers.25.mlp.ffn_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.inner_attn_ln.weight": "model-00003-of-00003.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 235 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 236 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 237 |
+
"model.layers.3.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 238 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 239 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 240 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 241 |
+
"model.layers.3.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 242 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.layers.4.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.layers.4.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.layers.5.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.layers.5.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.layers.6.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 277 |
+
"model.layers.6.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 278 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 279 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 280 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 282 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 283 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.layers.7.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 288 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 289 |
+
"model.layers.7.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 290 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 291 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 292 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 293 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 294 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 295 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 296 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 297 |
+
"model.layers.8.mlp.ffn_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 298 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 299 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 300 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 301 |
+
"model.layers.8.self_attn.inner_attn_ln.weight": "model-00001-of-00003.safetensors",
|
| 302 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 303 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 304 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 305 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
| 306 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 307 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 308 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 309 |
+
"model.layers.9.mlp.ffn_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 310 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 311 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 312 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 313 |
+
"model.layers.9.self_attn.inner_attn_ln.weight": "model-00002-of-00003.safetensors",
|
| 314 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 315 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 316 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 317 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
| 318 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 319 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
| 320 |
+
}
|
| 321 |
+
}
|
modeling_bitnet.py
ADDED
|
@@ -0,0 +1,1387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""PyTorch LLaMA model."""
|
| 21 |
+
|
| 22 |
+
import math
|
| 23 |
+
import warnings
|
| 24 |
+
from typing import List, Optional, Tuple, Union
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torch.nn.functional as F
|
| 28 |
+
import torch.utils.checkpoint
|
| 29 |
+
from torch import nn
|
| 30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 31 |
+
|
| 32 |
+
from transformers.activations import ACT2FN
|
| 33 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 34 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 35 |
+
from transformers.modeling_outputs import (
|
| 36 |
+
BaseModelOutputWithPast,
|
| 37 |
+
CausalLMOutputWithPast,
|
| 38 |
+
QuestionAnsweringModelOutput,
|
| 39 |
+
SequenceClassifierOutputWithPast,
|
| 40 |
+
)
|
| 41 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 42 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 43 |
+
from transformers.utils import (
|
| 44 |
+
add_start_docstrings,
|
| 45 |
+
add_start_docstrings_to_model_forward,
|
| 46 |
+
is_flash_attn_2_available,
|
| 47 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 48 |
+
logging,
|
| 49 |
+
replace_return_docstrings,
|
| 50 |
+
)
|
| 51 |
+
from .configuration_bitnet import BitnetConfig
|
| 52 |
+
from .utils_quant import BitLinear
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
if is_flash_attn_2_available():
|
| 56 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 57 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
logger = logging.get_logger(__name__)
|
| 61 |
+
|
| 62 |
+
_CONFIG_FOR_DOC = "BitnetConfig"
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def _get_unpad_data(attention_mask):
|
| 66 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 67 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 68 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 69 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 70 |
+
return (
|
| 71 |
+
indices,
|
| 72 |
+
cu_seqlens,
|
| 73 |
+
max_seqlen_in_batch,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class BitnetRMSNorm(nn.Module):
|
| 78 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 79 |
+
"""
|
| 80 |
+
BitnetRMSNorm is equivalent to T5LayerNorm
|
| 81 |
+
"""
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 84 |
+
self.variance_epsilon = eps
|
| 85 |
+
|
| 86 |
+
def forward(self, hidden_states):
|
| 87 |
+
input_dtype = hidden_states.dtype
|
| 88 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 89 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 90 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 91 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
ALL_LAYERNORM_LAYERS.append(BitnetRMSNorm)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class BitnetRotaryEmbedding(nn.Module):
|
| 98 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.scaling_factor = scaling_factor
|
| 101 |
+
self.dim = dim
|
| 102 |
+
self.max_position_embeddings = max_position_embeddings
|
| 103 |
+
self.base = base
|
| 104 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
| 105 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 106 |
+
# For BC we register cos and sin cached
|
| 107 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 108 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
| 109 |
+
t = t / self.scaling_factor
|
| 110 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 111 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 112 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 113 |
+
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
|
| 114 |
+
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
|
| 115 |
+
|
| 116 |
+
@property
|
| 117 |
+
def sin_cached(self):
|
| 118 |
+
logger.warning_once(
|
| 119 |
+
"The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
| 120 |
+
"the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
|
| 121 |
+
)
|
| 122 |
+
return self._sin_cached
|
| 123 |
+
|
| 124 |
+
@property
|
| 125 |
+
def cos_cached(self):
|
| 126 |
+
logger.warning_once(
|
| 127 |
+
"The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
|
| 128 |
+
"the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
|
| 129 |
+
)
|
| 130 |
+
return self._cos_cached
|
| 131 |
+
|
| 132 |
+
@torch.no_grad()
|
| 133 |
+
def forward(self, x, position_ids):
|
| 134 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 135 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 136 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 137 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 138 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 139 |
+
device_type = x.device.type
|
| 140 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 141 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 142 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 143 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 144 |
+
cos = emb.cos()
|
| 145 |
+
sin = emb.sin()
|
| 146 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def rotate_half(x):
|
| 150 |
+
"""Rotates half the hidden dims of the input."""
|
| 151 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 152 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 153 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 157 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
q (`torch.Tensor`): The query tensor.
|
| 161 |
+
k (`torch.Tensor`): The key tensor.
|
| 162 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 163 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 164 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 165 |
+
Deprecated and unused.
|
| 166 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 167 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 168 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 169 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 170 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 171 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 172 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 173 |
+
Returns:
|
| 174 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 175 |
+
"""
|
| 176 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 177 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 178 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 179 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 180 |
+
return q_embed, k_embed
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class BitnetMLP(nn.Module):
|
| 184 |
+
def __init__(self, config):
|
| 185 |
+
super().__init__()
|
| 186 |
+
self.config = config
|
| 187 |
+
self.hidden_size = config.hidden_size
|
| 188 |
+
self.intermediate_size = config.intermediate_size
|
| 189 |
+
self.gate_proj = BitLinear(
|
| 190 |
+
self.hidden_size, self.intermediate_size, bias=False,
|
| 191 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
| 192 |
+
)
|
| 193 |
+
self.up_proj = BitLinear(
|
| 194 |
+
self.hidden_size, self.intermediate_size, bias=False,
|
| 195 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
| 196 |
+
)
|
| 197 |
+
self.down_proj = BitLinear(
|
| 198 |
+
self.intermediate_size, self.hidden_size, bias=False,
|
| 199 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
| 200 |
+
)
|
| 201 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 202 |
+
self.ffn_layernorm = BitnetRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)
|
| 203 |
+
|
| 204 |
+
def forward(self, x):
|
| 205 |
+
x = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
|
| 206 |
+
x = self.ffn_layernorm(x)
|
| 207 |
+
x = self.down_proj(x)
|
| 208 |
+
return x
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 212 |
+
"""
|
| 213 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 214 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 215 |
+
"""
|
| 216 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 217 |
+
if n_rep == 1:
|
| 218 |
+
return hidden_states
|
| 219 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 220 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class BitnetAttention(nn.Module):
|
| 224 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 225 |
+
|
| 226 |
+
def __init__(self, config: BitnetConfig, layer_idx: Optional[int] = None):
|
| 227 |
+
super().__init__()
|
| 228 |
+
self.config = config
|
| 229 |
+
self.layer_idx = layer_idx
|
| 230 |
+
if layer_idx is None:
|
| 231 |
+
logger.warning_once(
|
| 232 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 233 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 234 |
+
"when creating this class."
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
self.attention_dropout = config.attention_dropout
|
| 238 |
+
self.hidden_size = config.hidden_size
|
| 239 |
+
self.num_heads = config.num_attention_heads
|
| 240 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 241 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 242 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 243 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 244 |
+
self.rope_theta = config.rope_theta
|
| 245 |
+
self.is_causal = True
|
| 246 |
+
|
| 247 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 248 |
+
raise ValueError(
|
| 249 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 250 |
+
f" and `num_heads`: {self.num_heads})."
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
self.q_proj = BitLinear(
|
| 254 |
+
self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias,
|
| 255 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
| 256 |
+
)
|
| 257 |
+
self.k_proj = BitLinear(
|
| 258 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
|
| 259 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
| 260 |
+
)
|
| 261 |
+
self.v_proj = BitLinear(
|
| 262 |
+
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias,
|
| 263 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
| 264 |
+
)
|
| 265 |
+
self.o_proj = BitLinear(
|
| 266 |
+
self.hidden_size, self.hidden_size, bias=config.attention_bias,
|
| 267 |
+
weight_bits=config.weight_bits, input_bits=config.input_bits,
|
| 268 |
+
)
|
| 269 |
+
self._init_rope()
|
| 270 |
+
self.inner_attn_ln = BitnetRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
|
| 271 |
+
|
| 272 |
+
def _init_rope(self):
|
| 273 |
+
if self.config.rope_scaling is None:
|
| 274 |
+
self.rotary_emb = BitnetRotaryEmbedding(
|
| 275 |
+
self.head_dim,
|
| 276 |
+
max_position_embeddings=self.max_position_embeddings,
|
| 277 |
+
base=self.rope_theta,
|
| 278 |
+
)
|
| 279 |
+
else:
|
| 280 |
+
raise NotImplementedError
|
| 281 |
+
|
| 282 |
+
def forward(
|
| 283 |
+
self,
|
| 284 |
+
hidden_states: torch.Tensor,
|
| 285 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 286 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 287 |
+
past_key_value: Optional[Cache] = None,
|
| 288 |
+
output_attentions: bool = False,
|
| 289 |
+
use_cache: bool = False,
|
| 290 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 291 |
+
**kwargs,
|
| 292 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 293 |
+
bsz, q_len, _ = hidden_states.size()
|
| 294 |
+
|
| 295 |
+
query_states = self.q_proj(hidden_states)
|
| 296 |
+
key_states = self.k_proj(hidden_states)
|
| 297 |
+
value_states = self.v_proj(hidden_states)
|
| 298 |
+
|
| 299 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 300 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 301 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 302 |
+
|
| 303 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
| 304 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 305 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 306 |
+
|
| 307 |
+
if past_key_value is not None:
|
| 308 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 309 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 310 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 311 |
+
|
| 312 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 313 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 314 |
+
|
| 315 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 316 |
+
|
| 317 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 318 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 319 |
+
attn_weights = attn_weights + causal_mask
|
| 320 |
+
|
| 321 |
+
# upcast attention to fp32
|
| 322 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 323 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 324 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 325 |
+
|
| 326 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 327 |
+
raise ValueError(
|
| 328 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 329 |
+
f" {attn_output.size()}"
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 333 |
+
|
| 334 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 335 |
+
|
| 336 |
+
attn_output = self.inner_attn_ln(attn_output)
|
| 337 |
+
attn_output = self.o_proj(attn_output)
|
| 338 |
+
|
| 339 |
+
if not output_attentions:
|
| 340 |
+
attn_weights = None
|
| 341 |
+
|
| 342 |
+
return attn_output, attn_weights, past_key_value
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class BitnetFlashAttention2(BitnetAttention):
|
| 346 |
+
"""
|
| 347 |
+
Bitnet flash attention module. This module inherits from `BitnetAttention` as the weights of the module stays
|
| 348 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 349 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 350 |
+
"""
|
| 351 |
+
|
| 352 |
+
def __init__(self, *args, **kwargs):
|
| 353 |
+
super().__init__(*args, **kwargs)
|
| 354 |
+
|
| 355 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 356 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 357 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 358 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 359 |
+
|
| 360 |
+
def forward(
|
| 361 |
+
self,
|
| 362 |
+
hidden_states: torch.Tensor,
|
| 363 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 365 |
+
past_key_value: Optional[Cache] = None,
|
| 366 |
+
output_attentions: bool = False,
|
| 367 |
+
use_cache: bool = False,
|
| 368 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 369 |
+
**kwargs,
|
| 370 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 371 |
+
output_attentions = False
|
| 372 |
+
|
| 373 |
+
bsz, q_len, _ = hidden_states.size()
|
| 374 |
+
|
| 375 |
+
query_states = self.q_proj(hidden_states)
|
| 376 |
+
key_states = self.k_proj(hidden_states)
|
| 377 |
+
value_states = self.v_proj(hidden_states)
|
| 378 |
+
|
| 379 |
+
# Flash attention requires the input to have the shape
|
| 380 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 381 |
+
# therefore we just need to keep the original shape
|
| 382 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 383 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 384 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 385 |
+
|
| 386 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 387 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 388 |
+
|
| 389 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
| 390 |
+
|
| 391 |
+
if past_key_value is not None:
|
| 392 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 393 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 394 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 395 |
+
|
| 396 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 397 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 398 |
+
query_states = query_states.transpose(1, 2)
|
| 399 |
+
key_states = key_states.transpose(1, 2)
|
| 400 |
+
value_states = value_states.transpose(1, 2)
|
| 401 |
+
|
| 402 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 403 |
+
|
| 404 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 405 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 406 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 407 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 408 |
+
# in fp32. (BitnetRMSNorm handles it correctly)
|
| 409 |
+
|
| 410 |
+
input_dtype = query_states.dtype
|
| 411 |
+
if input_dtype == torch.float32:
|
| 412 |
+
if torch.is_autocast_enabled():
|
| 413 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 414 |
+
# Handle the case where the model is quantized
|
| 415 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 416 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 417 |
+
else:
|
| 418 |
+
target_dtype = self.q_proj.weight.dtype
|
| 419 |
+
|
| 420 |
+
logger.warning_once(
|
| 421 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 422 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 423 |
+
f" {target_dtype}."
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
query_states = query_states.to(target_dtype)
|
| 427 |
+
key_states = key_states.to(target_dtype)
|
| 428 |
+
value_states = value_states.to(target_dtype)
|
| 429 |
+
|
| 430 |
+
attn_output = self._flash_attention_forward(
|
| 431 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 435 |
+
attn_output = self.inner_attn_ln(attn_output)
|
| 436 |
+
attn_output = self.o_proj(attn_output)
|
| 437 |
+
|
| 438 |
+
if not output_attentions:
|
| 439 |
+
attn_weights = None
|
| 440 |
+
|
| 441 |
+
return attn_output, attn_weights, past_key_value
|
| 442 |
+
|
| 443 |
+
def _flash_attention_forward(
|
| 444 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 445 |
+
):
|
| 446 |
+
"""
|
| 447 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 448 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 449 |
+
|
| 450 |
+
Args:
|
| 451 |
+
query_states (`torch.Tensor`):
|
| 452 |
+
Input query states to be passed to Flash Attention API
|
| 453 |
+
key_states (`torch.Tensor`):
|
| 454 |
+
Input key states to be passed to Flash Attention API
|
| 455 |
+
value_states (`torch.Tensor`):
|
| 456 |
+
Input value states to be passed to Flash Attention API
|
| 457 |
+
attention_mask (`torch.Tensor`):
|
| 458 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 459 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 460 |
+
dropout (`float`):
|
| 461 |
+
Attention dropout
|
| 462 |
+
softmax_scale (`float`, *optional*):
|
| 463 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 464 |
+
"""
|
| 465 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 466 |
+
causal = self.is_causal
|
| 467 |
+
else:
|
| 468 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BitnetFlashAttention2 __init__.
|
| 469 |
+
causal = self.is_causal and query_length != 1
|
| 470 |
+
|
| 471 |
+
# Contains at least one padding token in the sequence
|
| 472 |
+
if attention_mask is not None:
|
| 473 |
+
batch_size = query_states.shape[0]
|
| 474 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 475 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 479 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 480 |
+
|
| 481 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 482 |
+
query_states,
|
| 483 |
+
key_states,
|
| 484 |
+
value_states,
|
| 485 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 486 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 487 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 488 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 489 |
+
dropout_p=dropout,
|
| 490 |
+
softmax_scale=softmax_scale,
|
| 491 |
+
causal=causal,
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 495 |
+
else:
|
| 496 |
+
attn_output = flash_attn_func(
|
| 497 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
return attn_output
|
| 501 |
+
|
| 502 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 503 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 504 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 505 |
+
|
| 506 |
+
key_layer = index_first_axis(
|
| 507 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 508 |
+
)
|
| 509 |
+
value_layer = index_first_axis(
|
| 510 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 511 |
+
)
|
| 512 |
+
if query_length == kv_seq_len:
|
| 513 |
+
query_layer = index_first_axis(
|
| 514 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 515 |
+
)
|
| 516 |
+
cu_seqlens_q = cu_seqlens_k
|
| 517 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 518 |
+
indices_q = indices_k
|
| 519 |
+
elif query_length == 1:
|
| 520 |
+
max_seqlen_in_batch_q = 1
|
| 521 |
+
cu_seqlens_q = torch.arange(
|
| 522 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 523 |
+
) # There is a memcpy here, that is very bad.
|
| 524 |
+
indices_q = cu_seqlens_q[:-1]
|
| 525 |
+
query_layer = query_layer.squeeze(1)
|
| 526 |
+
else:
|
| 527 |
+
# The -q_len: slice assumes left padding.
|
| 528 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 529 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 530 |
+
|
| 531 |
+
return (
|
| 532 |
+
query_layer,
|
| 533 |
+
key_layer,
|
| 534 |
+
value_layer,
|
| 535 |
+
indices_q,
|
| 536 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 537 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
LLAMA_ATTENTION_CLASSES = {
|
| 543 |
+
"eager": BitnetAttention,
|
| 544 |
+
"flash_attention_2": BitnetFlashAttention2,
|
| 545 |
+
}
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
class BitnetDecoderLayer(nn.Module):
|
| 549 |
+
def __init__(self, config: BitnetConfig, layer_idx: int):
|
| 550 |
+
super().__init__()
|
| 551 |
+
self.hidden_size = config.hidden_size
|
| 552 |
+
|
| 553 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 554 |
+
|
| 555 |
+
self.mlp = BitnetMLP(config)
|
| 556 |
+
self.input_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 557 |
+
self.post_attention_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 558 |
+
|
| 559 |
+
def forward(
|
| 560 |
+
self,
|
| 561 |
+
hidden_states: torch.Tensor,
|
| 562 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 563 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 564 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 565 |
+
output_attentions: Optional[bool] = False,
|
| 566 |
+
use_cache: Optional[bool] = False,
|
| 567 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 568 |
+
**kwargs,
|
| 569 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 570 |
+
"""
|
| 571 |
+
Args:
|
| 572 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 573 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 574 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
| 575 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
| 576 |
+
output_attentions (`bool`, *optional*):
|
| 577 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 578 |
+
returned tensors for more detail.
|
| 579 |
+
use_cache (`bool`, *optional*):
|
| 580 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 581 |
+
(see `past_key_values`).
|
| 582 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 583 |
+
"""
|
| 584 |
+
if "padding_mask" in kwargs:
|
| 585 |
+
warnings.warn(
|
| 586 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
+
residual = hidden_states
|
| 590 |
+
|
| 591 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 592 |
+
|
| 593 |
+
# Self Attention
|
| 594 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 595 |
+
hidden_states=hidden_states,
|
| 596 |
+
attention_mask=attention_mask,
|
| 597 |
+
position_ids=position_ids,
|
| 598 |
+
past_key_value=past_key_value,
|
| 599 |
+
output_attentions=output_attentions,
|
| 600 |
+
use_cache=use_cache,
|
| 601 |
+
cache_position=cache_position,
|
| 602 |
+
**kwargs,
|
| 603 |
+
)
|
| 604 |
+
hidden_states = residual + hidden_states
|
| 605 |
+
|
| 606 |
+
# Fully Connected
|
| 607 |
+
residual = hidden_states
|
| 608 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 609 |
+
hidden_states = self.mlp(hidden_states)
|
| 610 |
+
hidden_states = residual + hidden_states
|
| 611 |
+
|
| 612 |
+
outputs = (hidden_states,)
|
| 613 |
+
|
| 614 |
+
if output_attentions:
|
| 615 |
+
outputs += (self_attn_weights,)
|
| 616 |
+
|
| 617 |
+
if use_cache:
|
| 618 |
+
outputs += (present_key_value,)
|
| 619 |
+
|
| 620 |
+
return outputs
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
LLAMA_START_DOCSTRING = r"""
|
| 624 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 625 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 626 |
+
etc.)
|
| 627 |
+
|
| 628 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 629 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 630 |
+
and behavior.
|
| 631 |
+
|
| 632 |
+
Parameters:
|
| 633 |
+
config ([`BitnetConfig`]):
|
| 634 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 635 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 636 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 637 |
+
"""
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
@add_start_docstrings(
|
| 641 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 642 |
+
LLAMA_START_DOCSTRING,
|
| 643 |
+
)
|
| 644 |
+
class BitnetPreTrainedModel(PreTrainedModel):
|
| 645 |
+
config_class = BitnetConfig
|
| 646 |
+
base_model_prefix = "model"
|
| 647 |
+
supports_gradient_checkpointing = True
|
| 648 |
+
_no_split_modules = ["BitnetDecoderLayer"]
|
| 649 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 650 |
+
_supports_flash_attn_2 = True
|
| 651 |
+
_supports_sdpa = False
|
| 652 |
+
_supports_cache_class = True
|
| 653 |
+
|
| 654 |
+
def _init_weights(self, module):
|
| 655 |
+
std = self.config.initializer_range
|
| 656 |
+
if isinstance(module, nn.Linear):
|
| 657 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 658 |
+
if module.bias is not None:
|
| 659 |
+
module.bias.data.zero_()
|
| 660 |
+
elif isinstance(module, nn.Embedding):
|
| 661 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 662 |
+
if module.padding_idx is not None:
|
| 663 |
+
module.weight.data[module.padding_idx].zero_()
|
| 664 |
+
|
| 665 |
+
def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
|
| 666 |
+
if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
|
| 667 |
+
raise ValueError(
|
| 668 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 669 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 670 |
+
)
|
| 671 |
+
|
| 672 |
+
for layer in self.model.layers:
|
| 673 |
+
device = layer.input_layernorm.weight.device
|
| 674 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
| 675 |
+
dtype = self.config._pre_quantization_dtype
|
| 676 |
+
else:
|
| 677 |
+
dtype = layer.self_attn.o_proj.weight.dtype
|
| 678 |
+
layer.self_attn.past_key_value = cache_cls(
|
| 679 |
+
self.config, max_batch_size, max_cache_len, device=device, dtype=dtype
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
def _reset_cache(self):
|
| 683 |
+
for layer in self.model.layers:
|
| 684 |
+
layer.self_attn.past_key_value = None
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
| 688 |
+
Args:
|
| 689 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 690 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 691 |
+
it.
|
| 692 |
+
|
| 693 |
+
Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 694 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 695 |
+
|
| 696 |
+
[What are input IDs?](../glossary#input-ids)
|
| 697 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 698 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 699 |
+
|
| 700 |
+
- 1 for tokens that are **not masked**,
|
| 701 |
+
- 0 for tokens that are **masked**.
|
| 702 |
+
|
| 703 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 704 |
+
|
| 705 |
+
Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 706 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 707 |
+
|
| 708 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 709 |
+
`past_key_values`).
|
| 710 |
+
|
| 711 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 712 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 713 |
+
information on the default strategy.
|
| 714 |
+
|
| 715 |
+
- 1 indicates the head is **not masked**,
|
| 716 |
+
- 0 indicates the head is **masked**.
|
| 717 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 718 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 719 |
+
config.n_positions - 1]`.
|
| 720 |
+
|
| 721 |
+
[What are position IDs?](../glossary#position-ids)
|
| 722 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 723 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 724 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 725 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 726 |
+
|
| 727 |
+
Two formats are allowed:
|
| 728 |
+
- a [`~cache_utils.Cache`] instance;
|
| 729 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 730 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 731 |
+
cache format.
|
| 732 |
+
|
| 733 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 734 |
+
legacy cache format will be returned.
|
| 735 |
+
|
| 736 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 737 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 738 |
+
of shape `(batch_size, sequence_length)`.
|
| 739 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 740 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 741 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 742 |
+
model's internal embedding lookup matrix.
|
| 743 |
+
use_cache (`bool`, *optional*):
|
| 744 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 745 |
+
`past_key_values`).
|
| 746 |
+
output_attentions (`bool`, *optional*):
|
| 747 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 748 |
+
tensors for more detail.
|
| 749 |
+
output_hidden_states (`bool`, *optional*):
|
| 750 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 751 |
+
more detail.
|
| 752 |
+
return_dict (`bool`, *optional*):
|
| 753 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 754 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 755 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 756 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 757 |
+
the complete sequence length.
|
| 758 |
+
"""
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
@add_start_docstrings(
|
| 762 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
| 763 |
+
LLAMA_START_DOCSTRING,
|
| 764 |
+
)
|
| 765 |
+
class BitnetModel(BitnetPreTrainedModel):
|
| 766 |
+
"""
|
| 767 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BitnetDecoderLayer`]
|
| 768 |
+
|
| 769 |
+
Args:
|
| 770 |
+
config: BitnetConfig
|
| 771 |
+
"""
|
| 772 |
+
|
| 773 |
+
def __init__(self, config: BitnetConfig):
|
| 774 |
+
super().__init__(config)
|
| 775 |
+
self.padding_idx = config.pad_token_id
|
| 776 |
+
self.vocab_size = config.vocab_size
|
| 777 |
+
|
| 778 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 779 |
+
self.layers = nn.ModuleList(
|
| 780 |
+
[BitnetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 781 |
+
)
|
| 782 |
+
self.norm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 783 |
+
self.gradient_checkpointing = False
|
| 784 |
+
|
| 785 |
+
# Initialize weights and apply final processing
|
| 786 |
+
self.post_init()
|
| 787 |
+
|
| 788 |
+
def get_input_embeddings(self):
|
| 789 |
+
return self.embed_tokens
|
| 790 |
+
|
| 791 |
+
def set_input_embeddings(self, value):
|
| 792 |
+
self.embed_tokens = value
|
| 793 |
+
|
| 794 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 795 |
+
def forward(
|
| 796 |
+
self,
|
| 797 |
+
input_ids: torch.LongTensor = None,
|
| 798 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 799 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 800 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 801 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 802 |
+
use_cache: Optional[bool] = None,
|
| 803 |
+
output_attentions: Optional[bool] = None,
|
| 804 |
+
output_hidden_states: Optional[bool] = None,
|
| 805 |
+
return_dict: Optional[bool] = None,
|
| 806 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 807 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 808 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 809 |
+
output_hidden_states = (
|
| 810 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 811 |
+
)
|
| 812 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 813 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 814 |
+
|
| 815 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 816 |
+
raise ValueError(
|
| 817 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 818 |
+
)
|
| 819 |
+
|
| 820 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 821 |
+
logger.warning_once(
|
| 822 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 823 |
+
)
|
| 824 |
+
use_cache = False
|
| 825 |
+
|
| 826 |
+
if inputs_embeds is None:
|
| 827 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 828 |
+
|
| 829 |
+
past_seen_tokens = 0
|
| 830 |
+
if use_cache: # kept for BC (cache positions)
|
| 831 |
+
if not isinstance(past_key_values, StaticCache):
|
| 832 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 833 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
| 834 |
+
|
| 835 |
+
if cache_position is None:
|
| 836 |
+
if isinstance(past_key_values, StaticCache):
|
| 837 |
+
raise ValueError("cache_position is a required argument when using StaticCache.")
|
| 838 |
+
cache_position = torch.arange(
|
| 839 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
if position_ids is None:
|
| 843 |
+
position_ids = cache_position.unsqueeze(0)
|
| 844 |
+
|
| 845 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
|
| 846 |
+
|
| 847 |
+
# embed positions
|
| 848 |
+
hidden_states = inputs_embeds
|
| 849 |
+
|
| 850 |
+
# decoder layers
|
| 851 |
+
all_hidden_states = () if output_hidden_states else None
|
| 852 |
+
all_self_attns = () if output_attentions else None
|
| 853 |
+
next_decoder_cache = None
|
| 854 |
+
|
| 855 |
+
for decoder_layer in self.layers:
|
| 856 |
+
if output_hidden_states:
|
| 857 |
+
all_hidden_states += (hidden_states,)
|
| 858 |
+
|
| 859 |
+
if self.gradient_checkpointing and self.training:
|
| 860 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 861 |
+
decoder_layer.__call__,
|
| 862 |
+
hidden_states,
|
| 863 |
+
causal_mask,
|
| 864 |
+
position_ids,
|
| 865 |
+
past_key_values,
|
| 866 |
+
output_attentions,
|
| 867 |
+
use_cache,
|
| 868 |
+
cache_position,
|
| 869 |
+
)
|
| 870 |
+
else:
|
| 871 |
+
layer_outputs = decoder_layer(
|
| 872 |
+
hidden_states,
|
| 873 |
+
attention_mask=causal_mask,
|
| 874 |
+
position_ids=position_ids,
|
| 875 |
+
past_key_value=past_key_values,
|
| 876 |
+
output_attentions=output_attentions,
|
| 877 |
+
use_cache=use_cache,
|
| 878 |
+
cache_position=cache_position,
|
| 879 |
+
)
|
| 880 |
+
|
| 881 |
+
hidden_states = layer_outputs[0]
|
| 882 |
+
|
| 883 |
+
if use_cache:
|
| 884 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 885 |
+
|
| 886 |
+
if output_attentions:
|
| 887 |
+
all_self_attns += (layer_outputs[1],)
|
| 888 |
+
|
| 889 |
+
hidden_states = self.norm(hidden_states)
|
| 890 |
+
|
| 891 |
+
# add hidden states from the last decoder layer
|
| 892 |
+
if output_hidden_states:
|
| 893 |
+
all_hidden_states += (hidden_states,)
|
| 894 |
+
|
| 895 |
+
next_cache = None
|
| 896 |
+
if use_cache:
|
| 897 |
+
next_cache = (
|
| 898 |
+
next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
|
| 899 |
+
)
|
| 900 |
+
if not return_dict:
|
| 901 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 902 |
+
return BaseModelOutputWithPast(
|
| 903 |
+
last_hidden_state=hidden_states,
|
| 904 |
+
past_key_values=next_cache,
|
| 905 |
+
hidden_states=all_hidden_states,
|
| 906 |
+
attentions=all_self_attns,
|
| 907 |
+
)
|
| 908 |
+
|
| 909 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
| 910 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
| 911 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
| 912 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
| 913 |
+
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
|
| 914 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 915 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 916 |
+
return attention_mask
|
| 917 |
+
return None
|
| 918 |
+
|
| 919 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 920 |
+
min_dtype = torch.finfo(dtype).min
|
| 921 |
+
sequence_length = input_tensor.shape[1]
|
| 922 |
+
if hasattr(self.layers[0].self_attn, "past_key_value"): # static cache
|
| 923 |
+
target_length = self.config.max_position_embeddings
|
| 924 |
+
else: # dynamic cache
|
| 925 |
+
target_length = (
|
| 926 |
+
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
| 930 |
+
if sequence_length != 1:
|
| 931 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 932 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 933 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
| 934 |
+
if attention_mask is not None:
|
| 935 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 936 |
+
if attention_mask.dim() == 2:
|
| 937 |
+
mask_length = attention_mask.shape[-1]
|
| 938 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
|
| 939 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
|
| 940 |
+
elif attention_mask.dim() == 4:
|
| 941 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
| 942 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
| 943 |
+
if attention_mask.shape[-2] < cache_position[0] + sequence_length:
|
| 944 |
+
offset = cache_position[0]
|
| 945 |
+
else:
|
| 946 |
+
offset = 0
|
| 947 |
+
mask_shape = attention_mask.shape
|
| 948 |
+
mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
|
| 949 |
+
causal_mask[
|
| 950 |
+
: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]
|
| 951 |
+
] = mask_slice
|
| 952 |
+
|
| 953 |
+
return causal_mask
|
| 954 |
+
|
| 955 |
+
|
| 956 |
+
class BitnetForCausalLM(BitnetPreTrainedModel):
|
| 957 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 958 |
+
|
| 959 |
+
def __init__(self, config):
|
| 960 |
+
super().__init__(config)
|
| 961 |
+
self.model = BitnetModel(config)
|
| 962 |
+
self.vocab_size = config.vocab_size
|
| 963 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 964 |
+
|
| 965 |
+
# Initialize weights and apply final processing
|
| 966 |
+
self.post_init()
|
| 967 |
+
|
| 968 |
+
def get_input_embeddings(self):
|
| 969 |
+
return self.model.embed_tokens
|
| 970 |
+
|
| 971 |
+
def set_input_embeddings(self, value):
|
| 972 |
+
self.model.embed_tokens = value
|
| 973 |
+
|
| 974 |
+
def get_output_embeddings(self):
|
| 975 |
+
return self.lm_head
|
| 976 |
+
|
| 977 |
+
def set_output_embeddings(self, new_embeddings):
|
| 978 |
+
self.lm_head = new_embeddings
|
| 979 |
+
|
| 980 |
+
def set_decoder(self, decoder):
|
| 981 |
+
self.model = decoder
|
| 982 |
+
|
| 983 |
+
def get_decoder(self):
|
| 984 |
+
return self.model
|
| 985 |
+
|
| 986 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 987 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 988 |
+
def forward(
|
| 989 |
+
self,
|
| 990 |
+
input_ids: torch.LongTensor = None,
|
| 991 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 992 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 993 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 994 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 995 |
+
labels: Optional[torch.LongTensor] = None,
|
| 996 |
+
use_cache: Optional[bool] = None,
|
| 997 |
+
output_attentions: Optional[bool] = None,
|
| 998 |
+
output_hidden_states: Optional[bool] = None,
|
| 999 |
+
return_dict: Optional[bool] = None,
|
| 1000 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1001 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1002 |
+
r"""
|
| 1003 |
+
Args:
|
| 1004 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1005 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1006 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1007 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1008 |
+
|
| 1009 |
+
Returns:
|
| 1010 |
+
|
| 1011 |
+
Example:
|
| 1012 |
+
|
| 1013 |
+
```python
|
| 1014 |
+
>>> from transformers import LlamaTokenizer, LlamaForCausalLM
|
| 1015 |
+
|
| 1016 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Bitnet-2-7b-hf")
|
| 1017 |
+
>>> tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Bitnet-2-7b-hf")
|
| 1018 |
+
|
| 1019 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1020 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1021 |
+
|
| 1022 |
+
>>> # Generate
|
| 1023 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1024 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1025 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 1026 |
+
```"""
|
| 1027 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1028 |
+
output_hidden_states = (
|
| 1029 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1030 |
+
)
|
| 1031 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1032 |
+
|
| 1033 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1034 |
+
outputs = self.model(
|
| 1035 |
+
input_ids=input_ids,
|
| 1036 |
+
attention_mask=attention_mask,
|
| 1037 |
+
position_ids=position_ids,
|
| 1038 |
+
past_key_values=past_key_values,
|
| 1039 |
+
inputs_embeds=inputs_embeds,
|
| 1040 |
+
use_cache=use_cache,
|
| 1041 |
+
output_attentions=output_attentions,
|
| 1042 |
+
output_hidden_states=output_hidden_states,
|
| 1043 |
+
return_dict=return_dict,
|
| 1044 |
+
cache_position=cache_position,
|
| 1045 |
+
)
|
| 1046 |
+
|
| 1047 |
+
hidden_states = outputs[0]
|
| 1048 |
+
logits = self.lm_head(hidden_states)
|
| 1049 |
+
logits = logits.float()
|
| 1050 |
+
|
| 1051 |
+
loss = None
|
| 1052 |
+
if labels is not None:
|
| 1053 |
+
# Shift so that tokens < n predict n
|
| 1054 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 1055 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1056 |
+
# Flatten the tokens
|
| 1057 |
+
loss_fct = CrossEntropyLoss()
|
| 1058 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 1059 |
+
shift_labels = shift_labels.view(-1)
|
| 1060 |
+
# Enable model parallelism
|
| 1061 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 1062 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 1063 |
+
|
| 1064 |
+
if not return_dict:
|
| 1065 |
+
output = (logits,) + outputs[1:]
|
| 1066 |
+
return (loss,) + output if loss is not None else output
|
| 1067 |
+
|
| 1068 |
+
return CausalLMOutputWithPast(
|
| 1069 |
+
loss=loss,
|
| 1070 |
+
logits=logits,
|
| 1071 |
+
past_key_values=outputs.past_key_values,
|
| 1072 |
+
hidden_states=outputs.hidden_states,
|
| 1073 |
+
attentions=outputs.attentions,
|
| 1074 |
+
)
|
| 1075 |
+
|
| 1076 |
+
def prepare_inputs_for_generation(
|
| 1077 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
|
| 1078 |
+
):
|
| 1079 |
+
# With static cache, the `past_key_values` is None
|
| 1080 |
+
# TODO joao: standardize interface for the different Cache classes and remove of this if
|
| 1081 |
+
has_static_cache = False
|
| 1082 |
+
if past_key_values is None:
|
| 1083 |
+
past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None)
|
| 1084 |
+
has_static_cache = past_key_values is not None
|
| 1085 |
+
|
| 1086 |
+
past_length = 0
|
| 1087 |
+
if past_key_values is not None:
|
| 1088 |
+
if isinstance(past_key_values, Cache):
|
| 1089 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
| 1090 |
+
max_cache_length = (
|
| 1091 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
| 1092 |
+
if past_key_values.get_max_length() is not None
|
| 1093 |
+
else None
|
| 1094 |
+
)
|
| 1095 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
| 1096 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
| 1097 |
+
else:
|
| 1098 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 1099 |
+
max_cache_length = None
|
| 1100 |
+
|
| 1101 |
+
# Keep only the unprocessed tokens:
|
| 1102 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 1103 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 1104 |
+
# input)
|
| 1105 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1106 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 1107 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1108 |
+
# input_ids based on the past_length.
|
| 1109 |
+
elif past_length < input_ids.shape[1]:
|
| 1110 |
+
input_ids = input_ids[:, past_length:]
|
| 1111 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 1112 |
+
|
| 1113 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1114 |
+
if (
|
| 1115 |
+
max_cache_length is not None
|
| 1116 |
+
and attention_mask is not None
|
| 1117 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1118 |
+
):
|
| 1119 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 1120 |
+
|
| 1121 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1122 |
+
if attention_mask is not None and position_ids is None:
|
| 1123 |
+
# create position_ids on the fly for batch generation
|
| 1124 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1125 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1126 |
+
if past_key_values:
|
| 1127 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1128 |
+
|
| 1129 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1130 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1131 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1132 |
+
else:
|
| 1133 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 1134 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
| 1135 |
+
# TODO: use `next_tokens` directly instead.
|
| 1136 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
| 1137 |
+
|
| 1138 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
| 1139 |
+
if cache_position is None:
|
| 1140 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
| 1141 |
+
else:
|
| 1142 |
+
cache_position = cache_position[-input_length:]
|
| 1143 |
+
|
| 1144 |
+
if has_static_cache:
|
| 1145 |
+
past_key_values = None
|
| 1146 |
+
|
| 1147 |
+
model_inputs.update(
|
| 1148 |
+
{
|
| 1149 |
+
"position_ids": position_ids,
|
| 1150 |
+
"cache_position": cache_position,
|
| 1151 |
+
"past_key_values": past_key_values,
|
| 1152 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1153 |
+
"attention_mask": attention_mask,
|
| 1154 |
+
}
|
| 1155 |
+
)
|
| 1156 |
+
return model_inputs
|
| 1157 |
+
|
| 1158 |
+
@staticmethod
|
| 1159 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 1160 |
+
reordered_past = ()
|
| 1161 |
+
for layer_past in past_key_values:
|
| 1162 |
+
reordered_past += (
|
| 1163 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 1164 |
+
)
|
| 1165 |
+
return reordered_past
|
| 1166 |
+
|
| 1167 |
+
|
| 1168 |
+
@add_start_docstrings(
|
| 1169 |
+
"""
|
| 1170 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
| 1171 |
+
|
| 1172 |
+
[`BitnetForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1173 |
+
(e.g. GPT-2) do.
|
| 1174 |
+
|
| 1175 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1176 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1177 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1178 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1179 |
+
each row of the batch).
|
| 1180 |
+
""",
|
| 1181 |
+
LLAMA_START_DOCSTRING,
|
| 1182 |
+
)
|
| 1183 |
+
class BitnetForSequenceClassification(BitnetPreTrainedModel):
|
| 1184 |
+
def __init__(self, config):
|
| 1185 |
+
super().__init__(config)
|
| 1186 |
+
self.num_labels = config.num_labels
|
| 1187 |
+
self.model = BitnetModel(config)
|
| 1188 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1189 |
+
|
| 1190 |
+
# Initialize weights and apply final processing
|
| 1191 |
+
self.post_init()
|
| 1192 |
+
|
| 1193 |
+
def get_input_embeddings(self):
|
| 1194 |
+
return self.model.embed_tokens
|
| 1195 |
+
|
| 1196 |
+
def set_input_embeddings(self, value):
|
| 1197 |
+
self.model.embed_tokens = value
|
| 1198 |
+
|
| 1199 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1200 |
+
def forward(
|
| 1201 |
+
self,
|
| 1202 |
+
input_ids: torch.LongTensor = None,
|
| 1203 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1204 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1205 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1206 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1207 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1208 |
+
use_cache: Optional[bool] = None,
|
| 1209 |
+
output_attentions: Optional[bool] = None,
|
| 1210 |
+
output_hidden_states: Optional[bool] = None,
|
| 1211 |
+
return_dict: Optional[bool] = None,
|
| 1212 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1213 |
+
r"""
|
| 1214 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1215 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1216 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1217 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1218 |
+
"""
|
| 1219 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1220 |
+
|
| 1221 |
+
transformer_outputs = self.model(
|
| 1222 |
+
input_ids,
|
| 1223 |
+
attention_mask=attention_mask,
|
| 1224 |
+
position_ids=position_ids,
|
| 1225 |
+
past_key_values=past_key_values,
|
| 1226 |
+
inputs_embeds=inputs_embeds,
|
| 1227 |
+
use_cache=use_cache,
|
| 1228 |
+
output_attentions=output_attentions,
|
| 1229 |
+
output_hidden_states=output_hidden_states,
|
| 1230 |
+
return_dict=return_dict,
|
| 1231 |
+
)
|
| 1232 |
+
hidden_states = transformer_outputs[0]
|
| 1233 |
+
logits = self.score(hidden_states)
|
| 1234 |
+
|
| 1235 |
+
if input_ids is not None:
|
| 1236 |
+
batch_size = input_ids.shape[0]
|
| 1237 |
+
else:
|
| 1238 |
+
batch_size = inputs_embeds.shape[0]
|
| 1239 |
+
|
| 1240 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1241 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1242 |
+
if self.config.pad_token_id is None:
|
| 1243 |
+
sequence_lengths = -1
|
| 1244 |
+
else:
|
| 1245 |
+
if input_ids is not None:
|
| 1246 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1247 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1248 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1249 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1250 |
+
else:
|
| 1251 |
+
sequence_lengths = -1
|
| 1252 |
+
|
| 1253 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1254 |
+
|
| 1255 |
+
loss = None
|
| 1256 |
+
if labels is not None:
|
| 1257 |
+
labels = labels.to(logits.device)
|
| 1258 |
+
if self.config.problem_type is None:
|
| 1259 |
+
if self.num_labels == 1:
|
| 1260 |
+
self.config.problem_type = "regression"
|
| 1261 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1262 |
+
self.config.problem_type = "single_label_classification"
|
| 1263 |
+
else:
|
| 1264 |
+
self.config.problem_type = "multi_label_classification"
|
| 1265 |
+
|
| 1266 |
+
if self.config.problem_type == "regression":
|
| 1267 |
+
loss_fct = MSELoss()
|
| 1268 |
+
if self.num_labels == 1:
|
| 1269 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1270 |
+
else:
|
| 1271 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1272 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1273 |
+
loss_fct = CrossEntropyLoss()
|
| 1274 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1275 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1276 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1277 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1278 |
+
if not return_dict:
|
| 1279 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1280 |
+
return ((loss,) + output) if loss is not None else output
|
| 1281 |
+
|
| 1282 |
+
return SequenceClassifierOutputWithPast(
|
| 1283 |
+
loss=loss,
|
| 1284 |
+
logits=pooled_logits,
|
| 1285 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1286 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1287 |
+
attentions=transformer_outputs.attentions,
|
| 1288 |
+
)
|
| 1289 |
+
|
| 1290 |
+
|
| 1291 |
+
@add_start_docstrings(
|
| 1292 |
+
"""
|
| 1293 |
+
The Bitnet Model transformer with a span classification head on top for extractive question-answering tasks like
|
| 1294 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1295 |
+
""",
|
| 1296 |
+
LLAMA_START_DOCSTRING,
|
| 1297 |
+
)
|
| 1298 |
+
class BitnetForQuestionAnswering(BitnetPreTrainedModel):
|
| 1299 |
+
base_model_prefix = "transformer"
|
| 1300 |
+
|
| 1301 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Bitnet
|
| 1302 |
+
def __init__(self, config):
|
| 1303 |
+
super().__init__(config)
|
| 1304 |
+
self.transformer = BitnetModel(config)
|
| 1305 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1306 |
+
|
| 1307 |
+
# Initialize weights and apply final processing
|
| 1308 |
+
self.post_init()
|
| 1309 |
+
|
| 1310 |
+
def get_input_embeddings(self):
|
| 1311 |
+
return self.transformer.embed_tokens
|
| 1312 |
+
|
| 1313 |
+
def set_input_embeddings(self, value):
|
| 1314 |
+
self.transformer.embed_tokens = value
|
| 1315 |
+
|
| 1316 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 1317 |
+
def forward(
|
| 1318 |
+
self,
|
| 1319 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1320 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1321 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1322 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1323 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1324 |
+
start_positions: Optional[torch.LongTensor] = None,
|
| 1325 |
+
end_positions: Optional[torch.LongTensor] = None,
|
| 1326 |
+
output_attentions: Optional[bool] = None,
|
| 1327 |
+
output_hidden_states: Optional[bool] = None,
|
| 1328 |
+
return_dict: Optional[bool] = None,
|
| 1329 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1330 |
+
r"""
|
| 1331 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1332 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1333 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1334 |
+
are not taken into account for computing the loss.
|
| 1335 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1336 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1337 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1338 |
+
are not taken into account for computing the loss.
|
| 1339 |
+
"""
|
| 1340 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1341 |
+
|
| 1342 |
+
outputs = self.transformer(
|
| 1343 |
+
input_ids,
|
| 1344 |
+
attention_mask=attention_mask,
|
| 1345 |
+
position_ids=position_ids,
|
| 1346 |
+
past_key_values=past_key_values,
|
| 1347 |
+
inputs_embeds=inputs_embeds,
|
| 1348 |
+
output_attentions=output_attentions,
|
| 1349 |
+
output_hidden_states=output_hidden_states,
|
| 1350 |
+
return_dict=return_dict,
|
| 1351 |
+
)
|
| 1352 |
+
|
| 1353 |
+
sequence_output = outputs[0]
|
| 1354 |
+
|
| 1355 |
+
logits = self.qa_outputs(sequence_output)
|
| 1356 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1357 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1358 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1359 |
+
|
| 1360 |
+
total_loss = None
|
| 1361 |
+
if start_positions is not None and end_positions is not None:
|
| 1362 |
+
# If we are on multi-GPU, split add a dimension
|
| 1363 |
+
if len(start_positions.size()) > 1:
|
| 1364 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
| 1365 |
+
if len(end_positions.size()) > 1:
|
| 1366 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
| 1367 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1368 |
+
ignored_index = start_logits.size(1)
|
| 1369 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1370 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1371 |
+
|
| 1372 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1373 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1374 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1375 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1376 |
+
|
| 1377 |
+
if not return_dict:
|
| 1378 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1379 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1380 |
+
|
| 1381 |
+
return QuestionAnsweringModelOutput(
|
| 1382 |
+
loss=total_loss,
|
| 1383 |
+
start_logits=start_logits,
|
| 1384 |
+
end_logits=end_logits,
|
| 1385 |
+
hidden_states=outputs.hidden_states,
|
| 1386 |
+
attentions=outputs.attentions,
|
| 1387 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"</line>"
|
| 4 |
+
],
|
| 5 |
+
"bos_token": {
|
| 6 |
+
"content": "<s>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"eos_token": {
|
| 13 |
+
"content": "</s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"pad_token": {
|
| 20 |
+
"content": "<pad>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false
|
| 25 |
+
},
|
| 26 |
+
"unk_token": {
|
| 27 |
+
"content": "<unk>",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": false,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
}
|
| 33 |
+
}
|
tokenization_bitnet.py
ADDED
|
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
|
| 21 |
+
"""Tokenization classes for LLaMA."""
|
| 22 |
+
import os
|
| 23 |
+
from shutil import copyfile
|
| 24 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
| 25 |
+
|
| 26 |
+
import sentencepiece as spm
|
| 27 |
+
|
| 28 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
| 29 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 30 |
+
from transformers.utils import logging
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
if TYPE_CHECKING:
|
| 34 |
+
from transformers.tokenization_utils_base import TextInput
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__)
|
| 37 |
+
|
| 38 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
| 39 |
+
|
| 40 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 41 |
+
"vocab_file": {
|
| 42 |
+
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
|
| 43 |
+
},
|
| 44 |
+
"tokenizer_file": {
|
| 45 |
+
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
|
| 46 |
+
},
|
| 47 |
+
}
|
| 48 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
| 49 |
+
"hf-internal-testing/llama-tokenizer": 2048,
|
| 50 |
+
}
|
| 51 |
+
SPIECE_UNDERLINE = "▁"
|
| 52 |
+
|
| 53 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
| 54 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
| 55 |
+
|
| 56 |
+
# fmt: off
|
| 57 |
+
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
|
| 58 |
+
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
| 59 |
+
that your responses are socially unbiased and positive in nature.
|
| 60 |
+
|
| 61 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
|
| 62 |
+
correct. If you don't know the answer to a question, please don't share false information."""
|
| 63 |
+
# fmt: on
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class BitnetTokenizer(PreTrainedTokenizer):
|
| 67 |
+
"""
|
| 68 |
+
Construct a Bitnet tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
| 69 |
+
no padding token in the original model.
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
vocab_file (`str`):
|
| 73 |
+
Path to the vocabulary file.
|
| 74 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
| 75 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 76 |
+
token instead.
|
| 77 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
| 78 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
| 79 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
| 80 |
+
The end of sequence token.
|
| 81 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
| 82 |
+
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
| 83 |
+
attention mechanisms or loss computation.
|
| 84 |
+
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
| 85 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
| 86 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
| 87 |
+
to set:
|
| 88 |
+
|
| 89 |
+
- `enable_sampling`: Enable subword regularization.
|
| 90 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
| 91 |
+
|
| 92 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
| 93 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
| 94 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
| 95 |
+
using forward-filtering-and-backward-sampling algorithm.
|
| 96 |
+
|
| 97 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
| 98 |
+
BPE-dropout.
|
| 99 |
+
|
| 100 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
| 101 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
| 102 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
| 103 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
| 104 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
| 105 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
| 106 |
+
extra spaces.
|
| 107 |
+
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
| 108 |
+
Whether or not the default system prompt for Bitnet should be used.
|
| 109 |
+
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 110 |
+
Whether or not to add spaces between special tokens.
|
| 111 |
+
legacy (`bool`, *optional*):
|
| 112 |
+
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
|
| 113 |
+
and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple
|
| 114 |
+
example:
|
| 115 |
+
|
| 116 |
+
- `legacy=True`:
|
| 117 |
+
```python
|
| 118 |
+
>>> from transformers import T5Tokenizer
|
| 119 |
+
|
| 120 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=True)
|
| 121 |
+
>>> tokenizer.encode("Hello <extra_id_0>.")
|
| 122 |
+
[8774, 32099, 3, 5, 1]
|
| 123 |
+
```
|
| 124 |
+
- `legacy=False`:
|
| 125 |
+
```python
|
| 126 |
+
>>> from transformers import T5Tokenizer
|
| 127 |
+
|
| 128 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=False)
|
| 129 |
+
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
|
| 130 |
+
[8774, 32099, 5, 1]
|
| 131 |
+
```
|
| 132 |
+
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
|
| 133 |
+
add_prefix_space (`bool`, *optional*, defaults to `True`):
|
| 134 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
| 135 |
+
other word.
|
| 136 |
+
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 140 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 141 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 142 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 143 |
+
|
| 144 |
+
def __init__(
|
| 145 |
+
self,
|
| 146 |
+
vocab_file,
|
| 147 |
+
unk_token="<unk>",
|
| 148 |
+
bos_token="<s>",
|
| 149 |
+
eos_token="</s>",
|
| 150 |
+
pad_token=None,
|
| 151 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 152 |
+
add_bos_token=True,
|
| 153 |
+
add_eos_token=False,
|
| 154 |
+
clean_up_tokenization_spaces=False,
|
| 155 |
+
use_default_system_prompt=False,
|
| 156 |
+
spaces_between_special_tokens=False,
|
| 157 |
+
legacy=None,
|
| 158 |
+
add_prefix_space=True,
|
| 159 |
+
**kwargs,
|
| 160 |
+
):
|
| 161 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 162 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
| 163 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
| 164 |
+
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
| 165 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
| 166 |
+
|
| 167 |
+
if legacy is None:
|
| 168 |
+
logger.warning_once(
|
| 169 |
+
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
| 170 |
+
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
| 171 |
+
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
| 172 |
+
" means, and thoroughly read the reason why this was added as explained in"
|
| 173 |
+
" https://github.com/huggingface/transformers/pull/24565"
|
| 174 |
+
)
|
| 175 |
+
legacy = True
|
| 176 |
+
|
| 177 |
+
self.legacy = legacy
|
| 178 |
+
self.vocab_file = vocab_file
|
| 179 |
+
self.add_bos_token = add_bos_token
|
| 180 |
+
self.add_eos_token = add_eos_token
|
| 181 |
+
self.use_default_system_prompt = use_default_system_prompt
|
| 182 |
+
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
| 183 |
+
self.add_prefix_space = add_prefix_space
|
| 184 |
+
|
| 185 |
+
super().__init__(
|
| 186 |
+
bos_token=bos_token,
|
| 187 |
+
eos_token=eos_token,
|
| 188 |
+
unk_token=unk_token,
|
| 189 |
+
pad_token=pad_token,
|
| 190 |
+
add_bos_token=add_bos_token,
|
| 191 |
+
add_eos_token=add_eos_token,
|
| 192 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
| 193 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 194 |
+
use_default_system_prompt=use_default_system_prompt,
|
| 195 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
| 196 |
+
legacy=legacy,
|
| 197 |
+
add_prefix_space=add_prefix_space,
|
| 198 |
+
**kwargs,
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
@property
|
| 202 |
+
def unk_token_length(self):
|
| 203 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
| 204 |
+
|
| 205 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
|
| 206 |
+
def get_spm_processor(self, from_slow=False):
|
| 207 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 208 |
+
if self.legacy or from_slow: # no dependency on protobuf
|
| 209 |
+
tokenizer.Load(self.vocab_file)
|
| 210 |
+
return tokenizer
|
| 211 |
+
|
| 212 |
+
with open(self.vocab_file, "rb") as f:
|
| 213 |
+
sp_model = f.read()
|
| 214 |
+
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
| 215 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
| 216 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
| 217 |
+
normalizer_spec.add_dummy_prefix = False
|
| 218 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
| 219 |
+
sp_model = model.SerializeToString()
|
| 220 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
| 221 |
+
return tokenizer
|
| 222 |
+
|
| 223 |
+
def __getstate__(self):
|
| 224 |
+
state = self.__dict__.copy()
|
| 225 |
+
state["sp_model"] = None
|
| 226 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
| 227 |
+
return state
|
| 228 |
+
|
| 229 |
+
def __setstate__(self, d):
|
| 230 |
+
self.__dict__ = d
|
| 231 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 232 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
| 233 |
+
|
| 234 |
+
@property
|
| 235 |
+
def vocab_size(self):
|
| 236 |
+
"""Returns vocab size"""
|
| 237 |
+
return self.sp_model.get_piece_size()
|
| 238 |
+
|
| 239 |
+
def get_vocab(self):
|
| 240 |
+
"""Returns vocab as a dict"""
|
| 241 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 242 |
+
vocab.update(self.added_tokens_encoder)
|
| 243 |
+
return vocab
|
| 244 |
+
|
| 245 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
|
| 246 |
+
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
|
| 247 |
+
"""
|
| 248 |
+
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
|
| 249 |
+
first token is special.
|
| 250 |
+
"""
|
| 251 |
+
if self.legacy or len(text) == 0:
|
| 252 |
+
return super().tokenize(text, **kwargs)
|
| 253 |
+
|
| 254 |
+
text = text.replace(SPIECE_UNDERLINE, " ")
|
| 255 |
+
if self.add_prefix_space:
|
| 256 |
+
text = SPIECE_UNDERLINE + text
|
| 257 |
+
|
| 258 |
+
tokens = super().tokenize(text, **kwargs)
|
| 259 |
+
|
| 260 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
| 261 |
+
tokens = tokens[1:]
|
| 262 |
+
return tokens
|
| 263 |
+
|
| 264 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
|
| 265 |
+
def _tokenize(self, text, **kwargs):
|
| 266 |
+
"""
|
| 267 |
+
Returns a tokenized string.
|
| 268 |
+
|
| 269 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
| 270 |
+
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
|
| 271 |
+
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
|
| 272 |
+
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
| 273 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
| 274 |
+
"""
|
| 275 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
| 276 |
+
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
|
| 277 |
+
return tokens
|
| 278 |
+
|
| 279 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
| 280 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
| 281 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
| 282 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
| 283 |
+
|
| 284 |
+
def _convert_token_to_id(self, token):
|
| 285 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 286 |
+
return self.sp_model.piece_to_id(token)
|
| 287 |
+
|
| 288 |
+
def _convert_id_to_token(self, index):
|
| 289 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 290 |
+
token = self.sp_model.IdToPiece(index)
|
| 291 |
+
return token
|
| 292 |
+
|
| 293 |
+
def convert_tokens_to_string(self, tokens):
|
| 294 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 295 |
+
# since we manually add the prefix space, we have to remove it when decoding
|
| 296 |
+
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
|
| 297 |
+
tokens[0] = tokens[0][1:]
|
| 298 |
+
|
| 299 |
+
current_sub_tokens = []
|
| 300 |
+
out_string = ""
|
| 301 |
+
prev_is_special = False
|
| 302 |
+
for i, token in enumerate(tokens):
|
| 303 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 304 |
+
if token in self.all_special_tokens:
|
| 305 |
+
if not prev_is_special and i != 0 and self.legacy:
|
| 306 |
+
out_string += " "
|
| 307 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 308 |
+
prev_is_special = True
|
| 309 |
+
current_sub_tokens = []
|
| 310 |
+
else:
|
| 311 |
+
current_sub_tokens.append(token)
|
| 312 |
+
prev_is_special = False
|
| 313 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 314 |
+
return out_string
|
| 315 |
+
|
| 316 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 317 |
+
"""
|
| 318 |
+
Save the vocabulary and special tokens file to a directory.
|
| 319 |
+
|
| 320 |
+
Args:
|
| 321 |
+
save_directory (`str`):
|
| 322 |
+
The directory in which to save the vocabulary.
|
| 323 |
+
|
| 324 |
+
Returns:
|
| 325 |
+
`Tuple(str)`: Paths to the files saved.
|
| 326 |
+
"""
|
| 327 |
+
if not os.path.isdir(save_directory):
|
| 328 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 329 |
+
return
|
| 330 |
+
out_vocab_file = os.path.join(
|
| 331 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 335 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 336 |
+
elif not os.path.isfile(self.vocab_file):
|
| 337 |
+
with open(out_vocab_file, "wb") as fi:
|
| 338 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 339 |
+
fi.write(content_spiece_model)
|
| 340 |
+
|
| 341 |
+
return (out_vocab_file,)
|
| 342 |
+
|
| 343 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 344 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 345 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 346 |
+
|
| 347 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
| 348 |
+
|
| 349 |
+
if token_ids_1 is not None:
|
| 350 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
| 351 |
+
|
| 352 |
+
return output
|
| 353 |
+
|
| 354 |
+
def get_special_tokens_mask(
|
| 355 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 356 |
+
) -> List[int]:
|
| 357 |
+
"""
|
| 358 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 359 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
| 360 |
+
|
| 361 |
+
Args:
|
| 362 |
+
token_ids_0 (`List[int]`):
|
| 363 |
+
List of IDs.
|
| 364 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 365 |
+
Optional second list of IDs for sequence pairs.
|
| 366 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 367 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 368 |
+
|
| 369 |
+
Returns:
|
| 370 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 371 |
+
"""
|
| 372 |
+
if already_has_special_tokens:
|
| 373 |
+
return super().get_special_tokens_mask(
|
| 374 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
bos_token_id = [1] if self.add_bos_token else []
|
| 378 |
+
eos_token_id = [1] if self.add_eos_token else []
|
| 379 |
+
|
| 380 |
+
if token_ids_1 is None:
|
| 381 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
| 382 |
+
return (
|
| 383 |
+
bos_token_id
|
| 384 |
+
+ ([0] * len(token_ids_0))
|
| 385 |
+
+ eos_token_id
|
| 386 |
+
+ bos_token_id
|
| 387 |
+
+ ([0] * len(token_ids_1))
|
| 388 |
+
+ eos_token_id
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
def create_token_type_ids_from_sequences(
|
| 392 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 393 |
+
) -> List[int]:
|
| 394 |
+
"""
|
| 395 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
| 396 |
+
sequence pair mask has the following format:
|
| 397 |
+
|
| 398 |
+
```
|
| 399 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
| 400 |
+
| first sequence | second sequence |
|
| 401 |
+
```
|
| 402 |
+
|
| 403 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
| 404 |
+
|
| 405 |
+
Args:
|
| 406 |
+
token_ids_0 (`List[int]`):
|
| 407 |
+
List of ids.
|
| 408 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 409 |
+
Optional second list of IDs for sequence pairs.
|
| 410 |
+
|
| 411 |
+
Returns:
|
| 412 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
| 413 |
+
"""
|
| 414 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
| 415 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
| 416 |
+
|
| 417 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
| 418 |
+
|
| 419 |
+
if token_ids_1 is not None:
|
| 420 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
| 421 |
+
|
| 422 |
+
return output
|
| 423 |
+
|
| 424 |
+
@property
|
| 425 |
+
def default_chat_template(self):
|
| 426 |
+
"""
|
| 427 |
+
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
|
| 428 |
+
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
|
| 429 |
+
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
|
| 430 |
+
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
|
| 431 |
+
results in an unusual token ordering when it is present. This template should definitely be changed if you wish
|
| 432 |
+
to fine-tune a model with more flexible role ordering!
|
| 433 |
+
|
| 434 |
+
The output should look something like:
|
| 435 |
+
|
| 436 |
+
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
|
| 437 |
+
<bos>[INST] Prompt [/INST]
|
| 438 |
+
|
| 439 |
+
The reference for this chat template is [this code
|
| 440 |
+
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
|
| 441 |
+
in the original repository.
|
| 442 |
+
"""
|
| 443 |
+
logger.warning_once(
|
| 444 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
| 445 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
| 446 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
| 447 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
| 448 |
+
)
|
| 449 |
+
template = (
|
| 450 |
+
"{% if messages[0]['role'] == 'system' %}"
|
| 451 |
+
"{% set loop_messages = messages[1:] %}" # Extract system message if it's present
|
| 452 |
+
"{% set system_message = messages[0]['content'] %}"
|
| 453 |
+
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
|
| 454 |
+
"{% set loop_messages = messages %}" # Or use the default system message if the flag is set
|
| 455 |
+
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
|
| 456 |
+
"{% else %}"
|
| 457 |
+
"{% set loop_messages = messages %}"
|
| 458 |
+
"{% set system_message = false %}"
|
| 459 |
+
"{% endif %}"
|
| 460 |
+
"{% for message in loop_messages %}" # Loop over all non-system messages
|
| 461 |
+
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
|
| 462 |
+
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
|
| 463 |
+
"{% endif %}"
|
| 464 |
+
"{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
|
| 465 |
+
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
|
| 466 |
+
"{% else %}"
|
| 467 |
+
"{% set content = message['content'] %}"
|
| 468 |
+
"{% endif %}"
|
| 469 |
+
"{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
|
| 470 |
+
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
|
| 471 |
+
"{% elif message['role'] == 'system' %}"
|
| 472 |
+
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
|
| 473 |
+
"{% elif message['role'] == 'assistant' %}"
|
| 474 |
+
"{{ ' ' + content.strip() + ' ' + eos_token }}"
|
| 475 |
+
"{% endif %}"
|
| 476 |
+
"{% endfor %}"
|
| 477 |
+
)
|
| 478 |
+
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
|
| 479 |
+
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
|
| 480 |
+
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
|
| 481 |
+
|
| 482 |
+
return template
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": true,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"32000": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"32001": {
|
| 39 |
+
"content": "</line>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
}
|
| 46 |
+
},
|
| 47 |
+
"additional_special_tokens": [
|
| 48 |
+
"</line>"
|
| 49 |
+
],
|
| 50 |
+
"bos_token": "<s>",
|
| 51 |
+
"clean_up_tokenization_spaces": false,
|
| 52 |
+
"eos_token": "</s>",
|
| 53 |
+
"legacy": false,
|
| 54 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 55 |
+
"pad_token": "<pad>",
|
| 56 |
+
"padding_side": "right",
|
| 57 |
+
"sp_model_kwargs": {},
|
| 58 |
+
"spaces_between_special_tokens": false,
|
| 59 |
+
"tokenizer_class": "BitnetTokenizer",
|
| 60 |
+
"unk_token": "<unk>",
|
| 61 |
+
"use_default_system_prompt": false
|
| 62 |
+
}
|
utils_quant.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def weight_quant(weight, num_bits=1):
|
| 7 |
+
dtype = weight.dtype
|
| 8 |
+
weight = weight.float()
|
| 9 |
+
s = 1 / weight.abs().mean().clamp(min=1e-5)
|
| 10 |
+
result = (weight * s).round().clamp(-1, 1) / s
|
| 11 |
+
return result.type(dtype)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def activation_quant(x, num_bits=8):
|
| 15 |
+
dtype = x.dtype
|
| 16 |
+
x = x.float()
|
| 17 |
+
Qn = -2 ** (num_bits - 1)
|
| 18 |
+
Qp = 2 ** (num_bits - 1) - 1
|
| 19 |
+
s = Qp / x.abs().max(dim=-1, keepdim=True).values.clamp(min=1e-5)
|
| 20 |
+
result = (x * s).round().clamp(Qn, Qp) / s
|
| 21 |
+
return result.type(dtype)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class BitLinear(nn.Linear):
|
| 25 |
+
|
| 26 |
+
def __init__(self,
|
| 27 |
+
*kargs,
|
| 28 |
+
weight_bits=1,
|
| 29 |
+
input_bits=8,
|
| 30 |
+
**kwargs
|
| 31 |
+
):
|
| 32 |
+
super(BitLinear, self).__init__(*kargs, **kwargs)
|
| 33 |
+
"""
|
| 34 |
+
RMSNorm is placed outside BitLinear
|
| 35 |
+
"""
|
| 36 |
+
self.weight_bits = weight_bits
|
| 37 |
+
self.input_bits = input_bits
|
| 38 |
+
|
| 39 |
+
def forward(self, input):
|
| 40 |
+
|
| 41 |
+
quant_input = input + (activation_quant(input, self.input_bits) - input).detach()
|
| 42 |
+
quant_weight = self.weight + (weight_quant(self.weight, self.weight_bits) - self.weight).detach()
|
| 43 |
+
|
| 44 |
+
out = nn.functional.linear(quant_input, quant_weight)
|
| 45 |
+
if not self.bias is None:
|
| 46 |
+
out += self.bias.view(1, -1).expand_as(out)
|
| 47 |
+
|
| 48 |
+
return out
|