--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - generated_from_trainer model-index: - name: tinyllama-lora-fast (Bangla Newspaper Model) results: [] datasets: - 25Iqbal/BanglaNewspaperDataset language: - bn - en pipeline_tag: sentence-similarity --- # tinyllama-lora-fast Trained primarily on Prothom Alo news data, this model naturally writes in that newspaper’s concise, reportorial Bangla style. This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) Bangla Newspaper Dataset. The single goal: enable fast training and low VRAM usage—even on small GPUs or TPUs.Use Dynamic Padding + Token Budget for low Gpu And Tpu It achieves the following results on the evaluation set: - Loss: 0.8744 ## Model description Base model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 Adapter: PEFT-LoRA (r=16, alpha=32, dropout=0.05, bias=none) Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj Context length (train max): MAX_LEN=768 Optimization: AdamW (lr≈3e-5, warmup≈0.03, weight_decay≈0.05) Batching: length-based bucketing + dynamic padding Precision: fp16 inference-ready (training setup Kaggle/Colab-friendly) Decoding (low hallucination preset): temperature=0.0, do_sample=False, no_repeat_ngram_size=4, repetition_penalty≈1.1–1.15 ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0752 | 0.1111 | 200 | 1.0674 | | 1.0248 | 0.2222 | 400 | 1.0167 | | 0.9839 | 0.3333 | 600 | 0.9843 | | 0.9479 | 0.4444 | 800 | 0.9620 | | 0.9478 | 0.5556 | 1000 | 0.9457 | | 0.914 | 0.6667 | 1200 | 0.9318 | | 0.9329 | 0.7778 | 1400 | 0.9182 | | 0.8929 | 0.8889 | 1600 | 0.9104 | | 0.911 | 1.0 | 1800 | 0.9005 | | 0.869 | 1.1111 | 2000 | 0.8949 | | 0.8873 | 1.2222 | 2200 | 0.8892 | | 0.8551 | 1.3333 | 2400 | 0.8848 | | 0.8543 | 1.4444 | 2600 | 0.8812 | | 0.8741 | 1.5556 | 2800 | 0.8779 | | 0.8652 | 1.6667 | 3000 | 0.8760 | | 0.8534 | 1.7778 | 3200 | 0.8751 | | 0.8378 | 1.8889 | 3400 | 0.8745 | | 0.8514 | 2.0 | 3600 | 0.8744 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.6.0+cu124 - Datasets 4.1.1 - Tokenizers 0.20.3