Improve widget example (#2)
Browse files- Improve widget example (225d71c0b1f807725ebb6f371e6218c1cc9be26e)
Co-authored-by: Omar Sanseviero <[email protected]>
README.md
CHANGED
|
@@ -4,41 +4,78 @@ tags:
|
|
| 4 |
- alignment-handbook
|
| 5 |
- generated_from_trainer
|
| 6 |
widget:
|
| 7 |
-
- example_title: Math problem
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
pipeline_tag: text-generation
|
| 43 |
model-index:
|
| 44 |
- name: NuminaMath-7B-TIR
|
|
|
|
| 4 |
- alignment-handbook
|
| 5 |
- generated_from_trainer
|
| 6 |
widget:
|
| 7 |
+
- example_title: Math problem
|
| 8 |
+
messages:
|
| 9 |
+
- role: user
|
| 10 |
+
content: >-
|
| 11 |
+
For how many values of the constant $k$ will the polynomial
|
| 12 |
+
$x^{2}+kx+36$ have two distinct integer roots?
|
| 13 |
+
output:
|
| 14 |
+
text: >-
|
| 15 |
+
### Solution:
|
| 16 |
+
|
| 17 |
+
1- For the polynomial \\( x^2 + kx + 36 \\) to have two
|
| 18 |
+
distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
|
| 19 |
+
r_2 \\).
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
2- According to Vieta's formulas, the sum of the roots \\( r_1 + r_2 \\)
|
| 24 |
+
is equal to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2
|
| 25 |
+
\\) is equal to 36.
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
3- To find the distinct integer pairs \\((r_1, r_2)\\) whose product is
|
| 30 |
+
36, we need to determine all pairs of integers \\((r_1, r_2)\\) such
|
| 31 |
+
that \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
4- From the equation \\( r_1 + r_2 = -k \\), for each valid pair
|
| 36 |
+
\\((r_1, r_2)\\), we can compute the corresponding value of \\( k \\).
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
5- Finally, since we need the polynomial to have two distinct integer
|
| 41 |
+
roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\) are distinct.
|
| 42 |
+
|
| 43 |
+
Let's start by finding all pairs \\((r_1, r_2)\\) such that \\( r_1
|
| 44 |
+
\\cdot r_2 = 36 \\). We'll then determine the values of \\( k \\) and
|
| 45 |
+
ensure the roots are distinct.
|
| 46 |
+
|
| 47 |
+
```python import itertools
|
| 48 |
+
|
| 49 |
+
# Find all pairs (r1, r2) such that r1 * r2 = 36 product_36 = 36
|
| 50 |
+
factor_pairs = []
|
| 51 |
+
|
| 52 |
+
for i in range(1, product_36 + 1):
|
| 53 |
+
if product_36 % i == 0:
|
| 54 |
+
pair = (i, product_36 // i)
|
| 55 |
+
if pair[0] != pair[1]: # Ensure distinct pairs
|
| 56 |
+
factor_pairs.append(pair)
|
| 57 |
+
|
| 58 |
+
# Calculate k for each pair and ensure distinct integer roots
|
| 59 |
+
valid_k_values = set()
|
| 60 |
+
for r1, r2 in factor_pairs:
|
| 61 |
+
if r1 != r2:
|
| 62 |
+
k = -(r1 + r2)
|
| 63 |
+
valid_k_values.add(k)
|
| 64 |
+
|
| 65 |
+
print((len(valid_k_values), sorted(valid_k_values)))
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
```output
|
| 69 |
+
(4, [-37, -20, -15,-13])
|
| 70 |
+
```
|
| 71 |
+
The distinct integer values of \\( k \\) that make the
|
| 72 |
+
polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
|
| 73 |
+
\\(-37, -20, -15, \\text{and} -13\\).
|
| 74 |
+
|
| 75 |
+
Therefore, the number of such values of \\( k \\) is:
|
| 76 |
+
|
| 77 |
+
[ \\boxed{4} \\]
|
| 78 |
+
|
| 79 |
pipeline_tag: text-generation
|
| 80 |
model-index:
|
| 81 |
- name: NuminaMath-7B-TIR
|