API update
Browse files
models.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor
|
| 4 |
+
|
| 5 |
+
class VisualToGPTMapping(nn.Module):
|
| 6 |
+
def __init__(self, visual_emb_dim, gpt_emb_dim, num_gpt_embs, num_heads):
|
| 7 |
+
super(VisualToGPTMapping, self).__init__()
|
| 8 |
+
self.transformer_layer = TransformerEncoderLayer(d_model=visual_emb_dim, nhead=num_heads, batch_first=True, norm_first=False)
|
| 9 |
+
self.linear = Linear(visual_emb_dim, gpt_emb_dim)
|
| 10 |
+
self.n_embeddings = num_gpt_embs
|
| 11 |
+
self.embedding_dim = gpt_emb_dim
|
| 12 |
+
def forward(self, visual_embs):
|
| 13 |
+
out = self.transformer_layer(visual_embs)
|
| 14 |
+
out = self.linear(out).view(-1, self.n_embeddings, self.embedding_dim)
|
| 15 |
+
return out
|
| 16 |
+
|
| 17 |
+
class CLIPVisionTower(nn.Module):
|
| 18 |
+
def __init__(self, vision_tower, delay_load=False):
|
| 19 |
+
super().__init__()
|
| 20 |
+
|
| 21 |
+
self.is_loaded = False
|
| 22 |
+
|
| 23 |
+
self.vision_tower_name = vision_tower
|
| 24 |
+
self.select_layer = -2
|
| 25 |
+
self.select_feature = 'patch'
|
| 26 |
+
|
| 27 |
+
if not delay_load:
|
| 28 |
+
self.load_model()
|
| 29 |
+
else:
|
| 30 |
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
| 31 |
+
|
| 32 |
+
def load_model(self):
|
| 33 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
| 34 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
|
| 35 |
+
self.vision_tower.requires_grad_(False)
|
| 36 |
+
|
| 37 |
+
self.is_loaded = True
|
| 38 |
+
|
| 39 |
+
def feature_select(self, image_forward_outs):
|
| 40 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
| 41 |
+
if self.select_feature == 'patch':
|
| 42 |
+
image_features = image_features[:, 1:]
|
| 43 |
+
elif self.select_feature == 'cls_patch':
|
| 44 |
+
image_features = image_features
|
| 45 |
+
else:
|
| 46 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
| 47 |
+
return image_features
|
| 48 |
+
|
| 49 |
+
@torch.no_grad()
|
| 50 |
+
def forward(self, images):
|
| 51 |
+
if type(images) is list:
|
| 52 |
+
image_features = []
|
| 53 |
+
for image in images:
|
| 54 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
| 55 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
| 56 |
+
image_features.append(image_feature)
|
| 57 |
+
else:
|
| 58 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
| 59 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
| 60 |
+
|
| 61 |
+
return image_features
|
| 62 |
+
|
| 63 |
+
@property
|
| 64 |
+
def dummy_feature(self):
|
| 65 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
| 66 |
+
|
| 67 |
+
@property
|
| 68 |
+
def dtype(self):
|
| 69 |
+
return self.vision_tower.dtype
|
| 70 |
+
|
| 71 |
+
@property
|
| 72 |
+
def device(self):
|
| 73 |
+
return self.vision_tower.device
|
| 74 |
+
|
| 75 |
+
@property
|
| 76 |
+
def config(self):
|
| 77 |
+
if self.is_loaded:
|
| 78 |
+
return self.vision_tower.config
|
| 79 |
+
else:
|
| 80 |
+
return self.cfg_only
|
| 81 |
+
|
| 82 |
+
@property
|
| 83 |
+
def hidden_size(self):
|
| 84 |
+
return self.config.hidden_size
|