import torch from torch import nn class DynamicTanh(nn.Module): def __init__(self, normalized_shape, alpha_init_value=0.5): super().__init__() self.normalized_shape = normalized_shape self.alpha_init_value = alpha_init_value self.alpha = nn.Parameter(torch.ones(1) * alpha_init_value) def forward(self, x): x = torch.tanh(self.alpha * x) return x class GlobalDynamicTanh(nn.Module): def __init__(self, normalized_shape,sequence_length, alpha_init_value=0.5): super().__init__() self.normalized_shape = normalized_shape self.alpha_init_value = alpha_init_value self.alpha = nn.Parameter(torch.ones(normalized_shape*sequence_length) * alpha_init_value) def forward(self, x): x = torch.tanh(self.alpha * x) return x class MappingUnit(nn.Module): def __init__(self,dim): super().__init__() self.dyt_token = DynamicTanh(dim) self.p = nn.Linear(dim,dim,bias = False) def forward(self, x): x = self.dyt_token(x) u, v = x, x u = self.p(u) g = u * v return g class InteractionUnit(nn.Module): def __init__(self,dim,num_tokens): super().__init__() self.dyt_token = DynamicTanh(dim) self.dyt_context = GlobalDynamicTanh(dim,num_tokens) def forward(self, x): x = self.dyt_token(x) dim0 = x.shape[0] dim1 = x.shape[1] dim2 = x.shape[2] x = x.reshape([dim0,dim1*dim2]) x = self.dyt_context(x) x = x.reshape([dim0,dim1,dim2]) return x class InteractorBlock(nn.Module): def __init__(self, d_model, num_tokens): super().__init__() self.mapping = MappingUnit(d_model) self.interaction = InteractionUnit(d_model,num_tokens) def forward(self, x): residual = x x = self.interaction(x) x = x + residual residual = x x = self.mapping(x) out = x + residual return out class Interactor(nn.Module): def __init__(self, d_model,num_tokens, num_layers): super().__init__() self.model = nn.Sequential( *[InteractorBlock(d_model,num_tokens) for _ in range(num_layers)] ) def forward(self, x): return self.model(x)