| import torch | |
| from torch import nn | |
| class MemoryUnit(nn.Module): | |
| def __init__(self,dim): | |
| super().__init__() | |
| self.norm_token = nn.LayerNorm(dim) | |
| self.proj_1 = nn.Linear(dim,dim) | |
| self.proj_2 = nn.Linear(dim,dim) | |
| self.proj_3 = nn.Linear(dim,dim) | |
| def forward(self, x): | |
| x = self.norm_token(x) | |
| u, v = x, x | |
| u = self.proj_1(u) | |
| u = self.norm_token(u) | |
| v = self.proj_2(v) | |
| g = u * v | |
| x = self.proj_3(g) | |
| x = self.norm_token(x) | |
| return x | |
| class InteractionUnit(nn.Module): | |
| def __init__(self,dim,score_dim): | |
| super().__init__() | |
| self.norm_token = nn.LayerNorm(dim) | |
| self.norm_score = nn.LayerNorm(score_dim) | |
| def forward(self, x): | |
| x = self.norm_token(x) | |
| q,k,v = x,x,x | |
| score = torch.matmul(q, k.transpose(-1, -2)) | |
| interaction = self.norm_score(score) | |
| x = torch.matmul(interaction,v) | |
| x = self.norm_token(x) | |
| return x | |
| class InteractorBlock(nn.Module): | |
| def __init__(self, d_model, num_tokens): | |
| super().__init__() | |
| self.memory = MemoryUnit(d_model) | |
| self.interaction = InteractionUnit(d_model,num_tokens) | |
| def forward(self, x): | |
| residual = x | |
| x = self.interaction(x) | |
| x = x + residual | |
| residual = x | |
| x = self.memory(x) | |
| out = x + residual | |
| return out | |
| class Interactor(nn.Module): | |
| def __init__(self, d_model,num_tokens, num_layers): | |
| super().__init__() | |
| self.model = nn.Sequential( | |
| *[InteractorBlock(d_model,num_tokens) for _ in range(num_layers)] | |
| ) | |
| def forward(self, x): | |
| return self.model(x) | |