Create model_trainer.py
Browse files- model_trainer.py +1897 -0
model_trainer.py
ADDED
|
@@ -0,0 +1,1897 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
David Training Pipeline
|
| 3 |
+
========================
|
| 4 |
+
Training pipeline for David multi-scale crystal classifier.
|
| 5 |
+
|
| 6 |
+
Should be placed at: geovocab2/train/model/core/david_trainer.py
|
| 7 |
+
Or run from: scripts/train_david.py
|
| 8 |
+
|
| 9 |
+
Features:
|
| 10 |
+
- Pure fp32 training (no mixed precision for geometric stability)
|
| 11 |
+
- Adaptive training controller (freeze/unfreeze scales)
|
| 12 |
+
- Gradient analysis and scaling
|
| 13 |
+
- SafeTensors checkpoint support
|
| 14 |
+
- Enhanced loss component tracking
|
| 15 |
+
- Proper weight organization: weights/model_name/timestamp/
|
| 16 |
+
- Accuracy in filenames and comprehensive tracking
|
| 17 |
+
- Master models index (MODELS_INDEX.json)
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
from torch.utils.data import Dataset, DataLoader
|
| 23 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 24 |
+
from datasets import load_dataset
|
| 25 |
+
from huggingface_hub import HfApi, create_repo, upload_folder, upload_file
|
| 26 |
+
import numpy as np
|
| 27 |
+
import os
|
| 28 |
+
import json
|
| 29 |
+
import time
|
| 30 |
+
import tempfile
|
| 31 |
+
from datetime import datetime
|
| 32 |
+
from tqdm.auto import tqdm
|
| 33 |
+
from pathlib import Path
|
| 34 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 35 |
+
from dataclasses import dataclass, field, asdict
|
| 36 |
+
|
| 37 |
+
# Import David components
|
| 38 |
+
from geovocab2.train.config.david_config import (
|
| 39 |
+
DavidArchitectureConfig,
|
| 40 |
+
DavidPresets,
|
| 41 |
+
SharingMode,
|
| 42 |
+
FusionMode
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
from geovocab2.train.model.core.david import (
|
| 46 |
+
David,
|
| 47 |
+
MultiScaleCrystalLoss,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Import SimplexFactory
|
| 51 |
+
from geovocab2.shapes.factory import SimplexFactory
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# ============================================================================
|
| 55 |
+
# TRAINING CONFIGURATION
|
| 56 |
+
# ============================================================================
|
| 57 |
+
|
| 58 |
+
@dataclass
|
| 59 |
+
class DavidTrainingConfig:
|
| 60 |
+
"""
|
| 61 |
+
Complete training configuration for David.
|
| 62 |
+
Separate from model architecture config.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
# Metadata
|
| 66 |
+
name: str = "david_training"
|
| 67 |
+
run_id: str = "" # Auto-generated timestamp
|
| 68 |
+
|
| 69 |
+
# Dataset
|
| 70 |
+
dataset_name: str = "AbstractPhil/imagenet-clip-features-orderly"
|
| 71 |
+
model_variant: Union[str, List[str]] = "clip_vit_b16" # Single or list for multi-encoder
|
| 72 |
+
num_classes: int = 1000
|
| 73 |
+
|
| 74 |
+
# Model architecture (references to david_config)
|
| 75 |
+
preset: Optional[str] = "balanced" # Or None to use custom config
|
| 76 |
+
custom_config_path: Optional[str] = None # Path to custom david_config.json
|
| 77 |
+
|
| 78 |
+
# Architecture overrides (applied to preset or custom config)
|
| 79 |
+
num_classes_override: Optional[int] = None
|
| 80 |
+
use_belly_override: Optional[bool] = None
|
| 81 |
+
belly_expand_override: Optional[float] = None
|
| 82 |
+
progressive_training_override: Optional[bool] = True # Override progressive training
|
| 83 |
+
scale_warmup_epochs_override: Optional[Dict[int, int]] = None # Custom warmup schedule
|
| 84 |
+
|
| 85 |
+
# Training hyperparameters
|
| 86 |
+
num_epochs: int = 50
|
| 87 |
+
batch_size: int = 512
|
| 88 |
+
learning_rate: float = 5e-3
|
| 89 |
+
weight_decay: float = 1e-5
|
| 90 |
+
warmup_epochs: int = 3
|
| 91 |
+
|
| 92 |
+
# Loss weights
|
| 93 |
+
use_rose_loss: bool = True
|
| 94 |
+
rose_initial_weight: float = 0.01
|
| 95 |
+
rose_max_weight: float = 0.1
|
| 96 |
+
rose_weight_schedule: str = "adaptive"
|
| 97 |
+
use_cayley_loss: bool = False
|
| 98 |
+
cayley_weight: float = 0.001
|
| 99 |
+
scale_loss_balance: Optional[Dict[int, float]] = None
|
| 100 |
+
|
| 101 |
+
# Optimization
|
| 102 |
+
use_mixed_precision: bool = False # Keep False for stability
|
| 103 |
+
gradient_clip: float = 5.0
|
| 104 |
+
scheduler_type: str = "cosine_restarts"
|
| 105 |
+
min_lr: float = 1e-6
|
| 106 |
+
|
| 107 |
+
# Adaptive training (safer defaults)
|
| 108 |
+
freeze_strategy: str = "never" # "performance" or "never"
|
| 109 |
+
freeze_threshold: float = 90.0 # Only freeze when scale hits 90% accuracy
|
| 110 |
+
unfreeze_on_plateau: bool = True
|
| 111 |
+
patience: int = 10
|
| 112 |
+
|
| 113 |
+
# Gradient monitoring
|
| 114 |
+
track_gradients: bool = True
|
| 115 |
+
gradient_scale_threshold: float = 1e-5
|
| 116 |
+
gradient_scale_multiplier: float = 10.0
|
| 117 |
+
|
| 118 |
+
# Logging
|
| 119 |
+
log_interval: int = 50
|
| 120 |
+
val_interval: int = 1
|
| 121 |
+
save_interval: int = 5
|
| 122 |
+
log_fusion_weights: bool = True
|
| 123 |
+
log_loss_components: bool = True
|
| 124 |
+
|
| 125 |
+
# Checkpointing
|
| 126 |
+
save_format: str = "both" # "pytorch", "safetensors", or "both"
|
| 127 |
+
|
| 128 |
+
# HuggingFace Hub (optional)
|
| 129 |
+
hf_repo: Optional[str] = "" #"AbstractPhil/gated-david" # Your HF repo
|
| 130 |
+
upload_to_hub: bool = False
|
| 131 |
+
|
| 132 |
+
# Local paths
|
| 133 |
+
base_dir: str = "./david_training"
|
| 134 |
+
|
| 135 |
+
# Hardware
|
| 136 |
+
num_workers: int = 10
|
| 137 |
+
pin_memory: bool = True
|
| 138 |
+
prefetch_factor: int = 4
|
| 139 |
+
persistent_workers: bool = True
|
| 140 |
+
|
| 141 |
+
def __post_init__(self):
|
| 142 |
+
"""Generate run_id if not provided."""
|
| 143 |
+
if not self.run_id:
|
| 144 |
+
self.run_id = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 145 |
+
|
| 146 |
+
def to_dict(self) -> dict:
|
| 147 |
+
"""Convert to dictionary."""
|
| 148 |
+
return asdict(self)
|
| 149 |
+
|
| 150 |
+
@classmethod
|
| 151 |
+
def from_dict(cls, data: dict) -> 'DavidTrainingConfig':
|
| 152 |
+
"""Create from dictionary."""
|
| 153 |
+
return cls(**data)
|
| 154 |
+
|
| 155 |
+
def to_json(self, path: str):
|
| 156 |
+
"""Save to JSON."""
|
| 157 |
+
data = self.to_dict()
|
| 158 |
+
# Convert any nested dicts with int keys to str keys
|
| 159 |
+
if data.get('scale_loss_balance'):
|
| 160 |
+
data['scale_loss_balance'] = {
|
| 161 |
+
str(k): v for k, v in data['scale_loss_balance'].items()
|
| 162 |
+
}
|
| 163 |
+
if data.get('scale_warmup_epochs_override'):
|
| 164 |
+
data['scale_warmup_epochs_override'] = {
|
| 165 |
+
str(k): v for k, v in data['scale_warmup_epochs_override'].items()
|
| 166 |
+
}
|
| 167 |
+
with open(path, 'w') as f:
|
| 168 |
+
json.dump(data, f, indent=2)
|
| 169 |
+
|
| 170 |
+
@classmethod
|
| 171 |
+
def from_json(cls, path: str) -> 'DavidTrainingConfig':
|
| 172 |
+
"""Load from JSON."""
|
| 173 |
+
with open(path, 'r') as f:
|
| 174 |
+
data = json.load(f)
|
| 175 |
+
# Convert str keys back to int for scale_loss_balance
|
| 176 |
+
if 'scale_loss_balance' in data and data['scale_loss_balance']:
|
| 177 |
+
data['scale_loss_balance'] = {
|
| 178 |
+
int(k): v for k, v in data['scale_loss_balance'].items()
|
| 179 |
+
}
|
| 180 |
+
# Convert str keys back to int for scale_warmup_epochs_override
|
| 181 |
+
if 'scale_warmup_epochs_override' in data and data['scale_warmup_epochs_override']:
|
| 182 |
+
data['scale_warmup_epochs_override'] = {
|
| 183 |
+
int(k): v for k, v in data['scale_warmup_epochs_override'].items()
|
| 184 |
+
}
|
| 185 |
+
return cls(**data)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
# ============================================================================
|
| 189 |
+
# ADAPTIVE TRAINING CONTROLLER
|
| 190 |
+
# ============================================================================
|
| 191 |
+
|
| 192 |
+
class AdaptiveTrainingController:
|
| 193 |
+
"""Manages adaptive training strategies for multi-scale model."""
|
| 194 |
+
|
| 195 |
+
def __init__(self, model: David, config: DavidTrainingConfig):
|
| 196 |
+
self.model = model
|
| 197 |
+
self.config = config
|
| 198 |
+
|
| 199 |
+
scales = model.scales
|
| 200 |
+
self.scale_history = {scale: [] for scale in scales}
|
| 201 |
+
self.best_scale_acc = {scale: 0.0 for scale in scales}
|
| 202 |
+
self.scales_frozen = {scale: False for scale in scales}
|
| 203 |
+
|
| 204 |
+
self.overall_history = []
|
| 205 |
+
self.plateau_counter = 0
|
| 206 |
+
self.best_overall = 0.0
|
| 207 |
+
|
| 208 |
+
def update_metrics(self, scale_accuracies: Dict[int, float], overall_accuracy: float):
|
| 209 |
+
"""Update metrics and best scores."""
|
| 210 |
+
for scale, acc in scale_accuracies.items():
|
| 211 |
+
self.scale_history[scale].append(acc)
|
| 212 |
+
if acc > self.best_scale_acc[scale]:
|
| 213 |
+
self.best_scale_acc[scale] = acc
|
| 214 |
+
|
| 215 |
+
self.overall_history.append(overall_accuracy)
|
| 216 |
+
|
| 217 |
+
if overall_accuracy > self.best_overall:
|
| 218 |
+
self.best_overall = overall_accuracy
|
| 219 |
+
self.plateau_counter = 0
|
| 220 |
+
else:
|
| 221 |
+
self.plateau_counter += 1
|
| 222 |
+
|
| 223 |
+
def should_freeze_scale(self, scale: int, current_acc: float) -> bool:
|
| 224 |
+
"""Determine if a scale should be frozen."""
|
| 225 |
+
if self.config.freeze_strategy == "never":
|
| 226 |
+
return False
|
| 227 |
+
|
| 228 |
+
if self.scales_frozen[scale]:
|
| 229 |
+
return False
|
| 230 |
+
|
| 231 |
+
if self.config.freeze_strategy == "performance":
|
| 232 |
+
return current_acc >= self.config.freeze_threshold
|
| 233 |
+
|
| 234 |
+
return False
|
| 235 |
+
|
| 236 |
+
def should_unfreeze_scales(self) -> bool:
|
| 237 |
+
"""Check if scales should be unfrozen due to plateau."""
|
| 238 |
+
if not self.config.unfreeze_on_plateau:
|
| 239 |
+
return False
|
| 240 |
+
return self.plateau_counter >= 5
|
| 241 |
+
|
| 242 |
+
def apply_adaptive_strategies(self, scale_accuracies: Dict[int, float], epoch: int):
|
| 243 |
+
"""Apply freeze/unfreeze based on performance."""
|
| 244 |
+
active_scales = self.model.get_active_scales()
|
| 245 |
+
|
| 246 |
+
# Don't freeze scales if it would leave no trainable parameters
|
| 247 |
+
for scale, acc in scale_accuracies.items():
|
| 248 |
+
if self.should_freeze_scale(scale, acc):
|
| 249 |
+
# Count how many active scales would remain unfrozen
|
| 250 |
+
active_unfrozen = [s for s in active_scales if not self.scales_frozen.get(s, False)]
|
| 251 |
+
|
| 252 |
+
if len(active_unfrozen) <= 1:
|
| 253 |
+
print(f"[⚠️] Skipping freeze of scale {scale} (would leave no active trainable scales)")
|
| 254 |
+
continue
|
| 255 |
+
|
| 256 |
+
self.model.freeze_scale(scale)
|
| 257 |
+
self.scales_frozen[scale] = True
|
| 258 |
+
print(f"[❄️] Froze scale {scale} (acc={acc:.2f}%)")
|
| 259 |
+
|
| 260 |
+
if self.should_unfreeze_scales() and any(self.scales_frozen.values()):
|
| 261 |
+
for scale in self.model.scales:
|
| 262 |
+
if self.scales_frozen[scale]:
|
| 263 |
+
self.model.unfreeze_scale(scale)
|
| 264 |
+
self.scales_frozen[scale] = False
|
| 265 |
+
self.plateau_counter = 0
|
| 266 |
+
print(f"[🔥] Unfroze all scales due to plateau")
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
# ============================================================================
|
| 270 |
+
# OPTIMIZER & SCHEDULER CREATION
|
| 271 |
+
# ============================================================================
|
| 272 |
+
|
| 273 |
+
def create_optimizer(david: David, config: DavidTrainingConfig) -> torch.optim.Optimizer:
|
| 274 |
+
"""Create optimizer with parameter groups."""
|
| 275 |
+
|
| 276 |
+
param_groups = []
|
| 277 |
+
|
| 278 |
+
# Shared parameters (if exists)
|
| 279 |
+
if hasattr(david, 'shared_extractor'):
|
| 280 |
+
param_groups.append({
|
| 281 |
+
'params': david.shared_extractor.parameters(),
|
| 282 |
+
'lr': config.learning_rate,
|
| 283 |
+
'name': 'shared'
|
| 284 |
+
})
|
| 285 |
+
elif hasattr(david, 'shared_base'):
|
| 286 |
+
param_groups.append({
|
| 287 |
+
'params': david.shared_base.parameters(),
|
| 288 |
+
'lr': config.learning_rate,
|
| 289 |
+
'name': 'shared'
|
| 290 |
+
})
|
| 291 |
+
|
| 292 |
+
# Scale-specific parameters
|
| 293 |
+
for scale in david.scales:
|
| 294 |
+
scale_params = []
|
| 295 |
+
if david.sharing_mode == SharingMode.HIERARCHICAL:
|
| 296 |
+
head = getattr(david, f'head_{scale}', None)
|
| 297 |
+
if head:
|
| 298 |
+
scale_params.extend(head.parameters())
|
| 299 |
+
refine = getattr(david, f'refine_{scale}', None)
|
| 300 |
+
if refine:
|
| 301 |
+
scale_params.extend(refine.parameters())
|
| 302 |
+
else:
|
| 303 |
+
scale_params.extend(david.heads[str(scale)].parameters())
|
| 304 |
+
|
| 305 |
+
if scale_params:
|
| 306 |
+
param_groups.append({
|
| 307 |
+
'params': scale_params,
|
| 308 |
+
'lr': config.learning_rate,
|
| 309 |
+
'name': f'scale_{scale}'
|
| 310 |
+
})
|
| 311 |
+
|
| 312 |
+
# Fusion parameters
|
| 313 |
+
if hasattr(david, 'fusion'):
|
| 314 |
+
param_groups.append({
|
| 315 |
+
'params': david.fusion.parameters(),
|
| 316 |
+
'lr': config.learning_rate * 0.5,
|
| 317 |
+
'name': 'fusion'
|
| 318 |
+
})
|
| 319 |
+
elif hasattr(david, 'fusion_weights'):
|
| 320 |
+
param_groups.append({
|
| 321 |
+
'params': [david.fusion_weights],
|
| 322 |
+
'lr': config.learning_rate * 0.5,
|
| 323 |
+
'name': 'fusion'
|
| 324 |
+
})
|
| 325 |
+
|
| 326 |
+
return torch.optim.AdamW(param_groups, weight_decay=config.weight_decay)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def create_scheduler(optimizer: torch.optim.Optimizer,
|
| 330 |
+
config: DavidTrainingConfig) -> torch.optim.lr_scheduler._LRScheduler:
|
| 331 |
+
"""Create learning rate scheduler."""
|
| 332 |
+
|
| 333 |
+
if config.scheduler_type == "cosine_restarts":
|
| 334 |
+
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
|
| 335 |
+
optimizer, T_0=10, T_mult=2, eta_min=config.min_lr
|
| 336 |
+
)
|
| 337 |
+
elif config.scheduler_type == "cosine":
|
| 338 |
+
return torch.optim.lr_scheduler.CosineAnnealingLR(
|
| 339 |
+
optimizer, T_max=config.num_epochs, eta_min=config.min_lr
|
| 340 |
+
)
|
| 341 |
+
else:
|
| 342 |
+
return None
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
# ============================================================================
|
| 346 |
+
# GRADIENT ANALYSIS
|
| 347 |
+
# ============================================================================
|
| 348 |
+
|
| 349 |
+
def analyze_gradients(model: David, config: DavidTrainingConfig) -> Dict[str, float]:
|
| 350 |
+
"""Analyze gradient magnitudes for debugging."""
|
| 351 |
+
grad_stats = {
|
| 352 |
+
'mean': 0.0,
|
| 353 |
+
'max': 0.0,
|
| 354 |
+
'min': float('inf'),
|
| 355 |
+
'num_zero': 0,
|
| 356 |
+
'num_small': 0,
|
| 357 |
+
'total': 0
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
for name, param in model.named_parameters():
|
| 361 |
+
if param.grad is not None:
|
| 362 |
+
grad_norm = param.grad.norm().item()
|
| 363 |
+
grad_stats['mean'] += grad_norm
|
| 364 |
+
grad_stats['max'] = max(grad_stats['max'], grad_norm)
|
| 365 |
+
grad_stats['min'] = min(grad_stats['min'], grad_norm)
|
| 366 |
+
grad_stats['total'] += 1
|
| 367 |
+
|
| 368 |
+
if grad_norm < 1e-10:
|
| 369 |
+
grad_stats['num_zero'] += 1
|
| 370 |
+
elif grad_norm < config.gradient_scale_threshold:
|
| 371 |
+
grad_stats['num_small'] += 1
|
| 372 |
+
|
| 373 |
+
if grad_stats['total'] > 0:
|
| 374 |
+
grad_stats['mean'] /= grad_stats['total']
|
| 375 |
+
|
| 376 |
+
return grad_stats
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
def scale_small_gradients(model: David, config: DavidTrainingConfig):
|
| 380 |
+
"""Scale up very small gradients to prevent vanishing."""
|
| 381 |
+
if not config.track_gradients:
|
| 382 |
+
return
|
| 383 |
+
|
| 384 |
+
for param in model.parameters():
|
| 385 |
+
if param.grad is not None:
|
| 386 |
+
grad_norm = param.grad.norm()
|
| 387 |
+
if grad_norm < config.gradient_scale_threshold and grad_norm > 0:
|
| 388 |
+
param.grad.mul_(config.gradient_scale_multiplier)
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
# ============================================================================
|
| 392 |
+
# HUGGINGFACE HUB UTILITIES
|
| 393 |
+
# ============================================================================
|
| 394 |
+
|
| 395 |
+
def generate_model_readme(
|
| 396 |
+
config: DavidTrainingConfig,
|
| 397 |
+
david_config: DavidArchitectureConfig,
|
| 398 |
+
best_metrics: Dict,
|
| 399 |
+
run_id: str
|
| 400 |
+
) -> str:
|
| 401 |
+
"""Generate README.md for model card."""
|
| 402 |
+
|
| 403 |
+
readme = f"""---
|
| 404 |
+
language: en
|
| 405 |
+
license: mit
|
| 406 |
+
tags:
|
| 407 |
+
- image-classification
|
| 408 |
+
- imagenet
|
| 409 |
+
- multi-scale
|
| 410 |
+
- feature-geometry
|
| 411 |
+
- david
|
| 412 |
+
datasets:
|
| 413 |
+
- imagenet-1k
|
| 414 |
+
metrics:
|
| 415 |
+
- accuracy
|
| 416 |
+
model-index:
|
| 417 |
+
- name: David-{david_config.sharing_mode}-{david_config.fusion_mode}
|
| 418 |
+
results:
|
| 419 |
+
- task:
|
| 420 |
+
type: image-classification
|
| 421 |
+
dataset:
|
| 422 |
+
name: ImageNet-1K
|
| 423 |
+
type: imagenet-1k
|
| 424 |
+
metrics:
|
| 425 |
+
- type: accuracy
|
| 426 |
+
value: {best_metrics.get('best_val_acc', 0.0):.2f}
|
| 427 |
+
---
|
| 428 |
+
|
| 429 |
+
# David: Multi-Scale Feature Classifier
|
| 430 |
+
|
| 431 |
+
**David** is a multi-scale deep learning classifier that uses feature geometry (pentachora/4-simplexes)
|
| 432 |
+
as class prototypes with role-weighted similarity computation (Rose Loss).
|
| 433 |
+
|
| 434 |
+
This version is using multiple variations of clip-vit inputs simultaneously into shared space.
|
| 435 |
+
The experiment will determine if entirely deviant variations such as clip-vit-b-patch32 and patch16 can
|
| 436 |
+
exist simultaneously in the same shared space with the correct checks and spacings applied.
|
| 437 |
+
|
| 438 |
+
## Model Details
|
| 439 |
+
|
| 440 |
+
### Architecture
|
| 441 |
+
- **Preset**: {config.preset}
|
| 442 |
+
- **Sharing Mode**: {david_config.sharing_mode}
|
| 443 |
+
- **Fusion Mode**: {david_config.fusion_mode}
|
| 444 |
+
- **Scales**: {david_config.scales}
|
| 445 |
+
- **Feature Dim**: {david_config.feature_dim}
|
| 446 |
+
- **Parameters**: {best_metrics.get('parameters', 0):,}
|
| 447 |
+
|
| 448 |
+
### Training Configuration
|
| 449 |
+
- **Dataset**: {config.dataset_name}
|
| 450 |
+
- **Model Variant**: {config.model_variant}
|
| 451 |
+
- **Epochs**: {config.num_epochs}
|
| 452 |
+
- **Batch Size**: {config.batch_size}
|
| 453 |
+
- **Learning Rate**: {config.learning_rate}
|
| 454 |
+
- **Rose Loss Weight**: {config.rose_initial_weight} → {config.rose_max_weight}
|
| 455 |
+
- **Cayley Loss**: {config.use_cayley_loss}
|
| 456 |
+
|
| 457 |
+
## Performance
|
| 458 |
+
|
| 459 |
+
### Best Results
|
| 460 |
+
- **Validation Accuracy**: {best_metrics.get('best_val_acc', 0.0):.2f}%
|
| 461 |
+
- **Best Epoch**: {best_metrics.get('best_epoch', 0)}
|
| 462 |
+
- **Final Train Accuracy**: {best_metrics.get('final_train_acc', 0.0):.2f}%
|
| 463 |
+
|
| 464 |
+
### Per-Scale Performance
|
| 465 |
+
"""
|
| 466 |
+
|
| 467 |
+
if 'scale_accuracies' in best_metrics:
|
| 468 |
+
for scale, acc in best_metrics['scale_accuracies'].items():
|
| 469 |
+
readme += f"- **Scale {scale}**: {acc:.2f}%\n"
|
| 470 |
+
|
| 471 |
+
readme += f"""
|
| 472 |
+
|
| 473 |
+
## Usage
|
| 474 |
+
|
| 475 |
+
### Quick Model Lookup
|
| 476 |
+
|
| 477 |
+
**Check `MODELS_INDEX.json` in the repo root** - it lists all trained models sorted by accuracy with links to weights and configs.
|
| 478 |
+
|
| 479 |
+
### Repository Structure
|
| 480 |
+
|
| 481 |
+
```
|
| 482 |
+
{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}/
|
| 483 |
+
├── MODELS_INDEX.json # 📊 Master index of all models (sorted by accuracy)
|
| 484 |
+
├── README.md # This file
|
| 485 |
+
├── best_model.json # Latest best model info
|
| 486 |
+
├── weights/
|
| 487 |
+
│ └── {david_config.name}/
|
| 488 |
+
│ └── {run_id}/
|
| 489 |
+
│ ├── MODEL_SUMMARY.txt # 🎯 Human-readable performance summary
|
| 490 |
+
│ ├── training_history.json # 📈 Epoch-by-epoch training curve
|
| 491 |
+
│ ├── best_model_acc{best_metrics.get('best_val_acc', 0.0):.2f}.safetensors # ⭐ Accuracy in filename!
|
| 492 |
+
│ ├── best_model_acc{best_metrics.get('best_val_acc', 0.0):.2f}_metadata.json
|
| 493 |
+
│ ├── final_model.safetensors
|
| 494 |
+
│ ├── checkpoint_epoch_X_accYY.YY.safetensors
|
| 495 |
+
│ ├── david_config.json
|
| 496 |
+
│ └── train_config.json
|
| 497 |
+
└── runs/
|
| 498 |
+
└── {david_config.name}/
|
| 499 |
+
└── {run_id}/
|
| 500 |
+
└── events.out.tfevents.* # TensorBoard logs
|
| 501 |
+
```
|
| 502 |
+
|
| 503 |
+
### Loading the Model
|
| 504 |
+
|
| 505 |
+
```python
|
| 506 |
+
from geovocab2.train.model.core.david import David, DavidArchitectureConfig
|
| 507 |
+
from huggingface_hub import hf_hub_download
|
| 508 |
+
|
| 509 |
+
# Browse available models in MODELS_INDEX.json first!
|
| 510 |
+
|
| 511 |
+
# Specify model variant and run
|
| 512 |
+
model_name = "{david_config.name}"
|
| 513 |
+
run_id = "{run_id}"
|
| 514 |
+
accuracy = "{best_metrics.get('best_val_acc', 0.0):.2f}" # From MODELS_INDEX.json
|
| 515 |
+
|
| 516 |
+
# Download config
|
| 517 |
+
config_path = hf_hub_download(
|
| 518 |
+
repo_id="{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}",
|
| 519 |
+
filename=f"weights/{{model_name}}/{{run_id}}/david_config.json"
|
| 520 |
+
)
|
| 521 |
+
config = DavidArchitectureConfig.from_json(config_path)
|
| 522 |
+
|
| 523 |
+
# Download weights (accuracy in filename!)
|
| 524 |
+
weights_path = hf_hub_download(
|
| 525 |
+
repo_id="{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}",
|
| 526 |
+
filename=f"weights/{{model_name}}/{{run_id}}/best_model_acc{{accuracy}}.safetensors"
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
# Download training history (optional - see full training curve)
|
| 530 |
+
history_path = hf_hub_download(
|
| 531 |
+
repo_id="{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}",
|
| 532 |
+
filename=f"weights/{{model_name}}/{{run_id}}/training_history.json"
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
# Load model
|
| 536 |
+
from safetensors.torch import load_file
|
| 537 |
+
david = David.from_config(config)
|
| 538 |
+
david.load_state_dict(load_file(weights_path))
|
| 539 |
+
david.eval()
|
| 540 |
+
```
|
| 541 |
+
|
| 542 |
+
### Inference
|
| 543 |
+
|
| 544 |
+
```python
|
| 545 |
+
import torch
|
| 546 |
+
import torch.nn.functional as F
|
| 547 |
+
|
| 548 |
+
# Assuming you have CLIP features (512-dim for ViT-B/16)
|
| 549 |
+
features = get_clip_features(image) # [1, 512]
|
| 550 |
+
|
| 551 |
+
# Load anchors
|
| 552 |
+
anchors_dict = torch.load("anchors.pth")
|
| 553 |
+
|
| 554 |
+
# Forward pass
|
| 555 |
+
with torch.no_grad():
|
| 556 |
+
logits, _ = david(features, anchors_dict)
|
| 557 |
+
predictions = logits.argmax(dim=-1)
|
| 558 |
+
```
|
| 559 |
+
|
| 560 |
+
## Architecture Overview
|
| 561 |
+
|
| 562 |
+
### Multi-Scale Processing
|
| 563 |
+
David processes inputs at multiple scales ({', '.join(map(str, david_config.scales))}),
|
| 564 |
+
allowing it to capture both coarse and fine-grained features.
|
| 565 |
+
|
| 566 |
+
### Shared Representation Space
|
| 567 |
+
This variation shares multiple versions of clip-vit models in the same representation space.
|
| 568 |
+
|
| 569 |
+
### Feature Geometry
|
| 570 |
+
Each class is represented by a pentachoron (4-simplex) in embedding space with 5 vertices:
|
| 571 |
+
- **Anchor**: Primary class representative
|
| 572 |
+
- **Need**: Complementary direction
|
| 573 |
+
- **Relation**: Contextual alignment
|
| 574 |
+
- **Purpose**: Functional direction
|
| 575 |
+
- **Observer**: Meta-perspective
|
| 576 |
+
|
| 577 |
+
### Rose Loss
|
| 578 |
+
Similarity computation uses role-weighted cosine similarities:
|
| 579 |
+
```
|
| 580 |
+
score = w_anchor * sim(z, anchor) + w_need * sim(z, need) + ...
|
| 581 |
+
```
|
| 582 |
+
|
| 583 |
+
### Fusion Strategy
|
| 584 |
+
**{david_config.fusion_mode}**: Intelligently combines predictions from multiple scales.
|
| 585 |
+
|
| 586 |
+
## Training Details
|
| 587 |
+
|
| 588 |
+
### Loss Components
|
| 589 |
+
- **Cross-Entropy**: Standard classification loss
|
| 590 |
+
- **Rose Loss**: Pentachora role-weighted margin loss (weight: {config.rose_initial_weight}→{config.rose_max_weight})
|
| 591 |
+
- **Cayley Loss**: Geometric regularization ({'enabled' if config.use_cayley_loss else 'disabled'})
|
| 592 |
+
|
| 593 |
+
### Optimization
|
| 594 |
+
- **Optimizer**: AdamW
|
| 595 |
+
- **Weight Decay**: {config.weight_decay}
|
| 596 |
+
- **Scheduler**: {config.scheduler_type}
|
| 597 |
+
- **Gradient Clip**: {config.gradient_clip}
|
| 598 |
+
- **Mixed Precision**: {config.use_mixed_precision}
|
| 599 |
+
|
| 600 |
+
## Citation
|
| 601 |
+
|
| 602 |
+
```bibtex
|
| 603 |
+
@software{{david_classifier_2025,
|
| 604 |
+
title = {{David: Multi-Scale Feature Classifier}},
|
| 605 |
+
author = {{AbstractPhil}},
|
| 606 |
+
year = {{2025}},
|
| 607 |
+
url = {{https://huggingface.co/{config.hf_repo if config.hf_repo else 'AbstractPhil/david'}}},
|
| 608 |
+
note = {{Run ID: {run_id}}}
|
| 609 |
+
}}
|
| 610 |
+
```
|
| 611 |
+
|
| 612 |
+
## License
|
| 613 |
+
|
| 614 |
+
MIT License
|
| 615 |
+
|
| 616 |
+
## Acknowledgments
|
| 617 |
+
|
| 618 |
+
Built with feature lattice geometry and multi-scale deep learning.
|
| 619 |
+
Special thanks to Claude (Anthropic) for debugging assistance.
|
| 620 |
+
|
| 621 |
+
---
|
| 622 |
+
|
| 623 |
+
*Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*
|
| 624 |
+
"""
|
| 625 |
+
|
| 626 |
+
return readme
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
def save_best_model_json(
|
| 630 |
+
filepath: str,
|
| 631 |
+
metrics: Dict,
|
| 632 |
+
config: DavidTrainingConfig,
|
| 633 |
+
david_config: DavidArchitectureConfig
|
| 634 |
+
):
|
| 635 |
+
"""Save best_model.json with comprehensive metrics."""
|
| 636 |
+
|
| 637 |
+
model_name = f"David-{david_config.sharing_mode}-{david_config.fusion_mode}"
|
| 638 |
+
|
| 639 |
+
best_model_info = {
|
| 640 |
+
"model_name": model_name,
|
| 641 |
+
"run_id": config.run_id,
|
| 642 |
+
"timestamp": datetime.now().isoformat(),
|
| 643 |
+
|
| 644 |
+
# Best metrics
|
| 645 |
+
"best_val_acc": metrics.get('best_val_acc', 0.0),
|
| 646 |
+
"best_epoch": metrics.get('best_epoch', 0),
|
| 647 |
+
"final_train_acc": metrics.get('final_train_acc', 0.0),
|
| 648 |
+
"final_train_loss": metrics.get('final_train_loss', 0.0),
|
| 649 |
+
|
| 650 |
+
# Per-scale performance
|
| 651 |
+
"scale_accuracies": metrics.get('scale_accuracies', {}),
|
| 652 |
+
|
| 653 |
+
# Architecture
|
| 654 |
+
"architecture": {
|
| 655 |
+
"preset": config.preset,
|
| 656 |
+
"sharing_mode": david_config.sharing_mode,
|
| 657 |
+
"fusion_mode": david_config.fusion_mode,
|
| 658 |
+
"scales": david_config.scales,
|
| 659 |
+
"feature_dim": david_config.feature_dim,
|
| 660 |
+
"num_classes": david_config.num_classes,
|
| 661 |
+
"use_belly": david_config.use_belly,
|
| 662 |
+
"belly_expand": david_config.belly_expand,
|
| 663 |
+
},
|
| 664 |
+
|
| 665 |
+
# Training config
|
| 666 |
+
"training": {
|
| 667 |
+
"dataset": config.dataset_name,
|
| 668 |
+
"model_variant": config.model_variant,
|
| 669 |
+
"num_epochs": config.num_epochs,
|
| 670 |
+
"batch_size": config.batch_size,
|
| 671 |
+
"learning_rate": config.learning_rate,
|
| 672 |
+
"rose_weight": f"{config.rose_initial_weight}→{config.rose_max_weight}",
|
| 673 |
+
"cayley_loss": config.use_cayley_loss,
|
| 674 |
+
"optimizer": "AdamW",
|
| 675 |
+
"scheduler": config.scheduler_type,
|
| 676 |
+
},
|
| 677 |
+
|
| 678 |
+
# Files (organized by model/run)
|
| 679 |
+
"files": {
|
| 680 |
+
"weights_safetensors": f"weights/{model_name}/{config.run_id}/best_model_acc{metrics.get('best_val_acc', 0.0):.2f}.safetensors",
|
| 681 |
+
"weights_pytorch": f"weights/{model_name}/{config.run_id}/best_model.pth",
|
| 682 |
+
"config": f"weights/{model_name}/{config.run_id}/david_config.json",
|
| 683 |
+
"training_config": f"weights/{model_name}/{config.run_id}/train_config.json",
|
| 684 |
+
"tensorboard": f"runs/{model_name}/{config.run_id}/"
|
| 685 |
+
}
|
| 686 |
+
}
|
| 687 |
+
|
| 688 |
+
with open(filepath, 'w') as f:
|
| 689 |
+
json.dump(best_model_info, f, indent=2)
|
| 690 |
+
|
| 691 |
+
print(f"[📄] Saved best_model.json: {filepath}")
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
def create_model_summary(
|
| 695 |
+
weights_dir: str,
|
| 696 |
+
config: DavidTrainingConfig,
|
| 697 |
+
david_config: DavidArchitectureConfig,
|
| 698 |
+
best_metrics: Dict,
|
| 699 |
+
model_name: str
|
| 700 |
+
):
|
| 701 |
+
"""Create prominent model summary with accuracy front and center."""
|
| 702 |
+
|
| 703 |
+
summary_path = os.path.join(weights_dir, 'MODEL_SUMMARY.txt')
|
| 704 |
+
|
| 705 |
+
best_acc = best_metrics.get('best_val_acc', 0.0)
|
| 706 |
+
training_history = best_metrics.get('training_history', {})
|
| 707 |
+
|
| 708 |
+
summary = f"""
|
| 709 |
+
╔══════════════════════════════════════════════════════════════╗
|
| 710 |
+
║ DAVID MODEL SUMMARY ║
|
| 711 |
+
╠══════════════════════════════════════════════════════════════╣
|
| 712 |
+
║ ║
|
| 713 |
+
║ 🎯 VALIDATION ACCURACY: {best_acc:.2f}% ║
|
| 714 |
+
║ ║
|
| 715 |
+
╚════════���═════════════════════════════════════════════════════╝
|
| 716 |
+
|
| 717 |
+
MODEL: {model_name}
|
| 718 |
+
RUN ID: {config.run_id}
|
| 719 |
+
BEST EPOCH: {best_metrics.get('best_epoch', 0) + 1}/{config.num_epochs}
|
| 720 |
+
|
| 721 |
+
═══════════════════════════════════════════════════════════════
|
| 722 |
+
|
| 723 |
+
📊 PERFORMANCE BREAKDOWN
|
| 724 |
+
|
| 725 |
+
Final Training Accuracy: {best_metrics.get('final_train_acc', 0.0):.2f}%
|
| 726 |
+
Best Validation Accuracy: {best_acc:.2f}%
|
| 727 |
+
|
| 728 |
+
Per-Scale Accuracies:
|
| 729 |
+
"""
|
| 730 |
+
|
| 731 |
+
scale_accs = best_metrics.get('scale_accuracies', {})
|
| 732 |
+
for scale in sorted(scale_accs.keys()):
|
| 733 |
+
acc = scale_accs[scale]
|
| 734 |
+
summary += f" • Scale {scale:4d}: {acc:.2f}%\n"
|
| 735 |
+
|
| 736 |
+
summary += f"""
|
| 737 |
+
═══════════════════════════════════════════════════════════════
|
| 738 |
+
|
| 739 |
+
🏗️ ARCHITECTURE
|
| 740 |
+
|
| 741 |
+
Preset: {config.preset}
|
| 742 |
+
Sharing Mode: {david_config.sharing_mode}
|
| 743 |
+
Fusion Mode: {david_config.fusion_mode}
|
| 744 |
+
Scales: {len(david_config.scales)} scales - {david_config.scales}
|
| 745 |
+
Feature Dim: {david_config.feature_dim}
|
| 746 |
+
Parameters: {best_metrics.get('parameters', 0):,}
|
| 747 |
+
|
| 748 |
+
═══════════════════════════════════════════════════════════════
|
| 749 |
+
|
| 750 |
+
📈 TRAINING CURVE
|
| 751 |
+
|
| 752 |
+
"""
|
| 753 |
+
|
| 754 |
+
if training_history and 'val_acc' in training_history:
|
| 755 |
+
summary += "Epoch | Train Acc | Val Acc | Learning Rate\n"
|
| 756 |
+
summary += "------|-----------|----------|--------------\n"
|
| 757 |
+
|
| 758 |
+
for i, epoch in enumerate(training_history.get('epochs', [])):
|
| 759 |
+
train_acc = training_history['train_acc'][i] if i < len(training_history['train_acc']) else 0
|
| 760 |
+
val_acc = training_history['val_acc'][i] if i < len(training_history['val_acc']) else 0
|
| 761 |
+
lr = training_history['lr'][i] if i < len(training_history['lr']) else 0
|
| 762 |
+
|
| 763 |
+
marker = " 👑" if val_acc == best_acc else ""
|
| 764 |
+
summary += f"{epoch:5d} | {train_acc:8.2f}% | {val_acc:7.2f}%{marker} | {lr:.2e}\n"
|
| 765 |
+
|
| 766 |
+
summary += f"""
|
| 767 |
+
═══════════════════════════════════════════════════════════════
|
| 768 |
+
|
| 769 |
+
📁 FILES
|
| 770 |
+
|
| 771 |
+
Best Model: best_model_acc{best_acc:.2f}.safetensors
|
| 772 |
+
Config: david_config.json
|
| 773 |
+
Training Cfg: train_config.json
|
| 774 |
+
History: training_history.json
|
| 775 |
+
|
| 776 |
+
═══════════════════════════════════════════════════════════════
|
| 777 |
+
|
| 778 |
+
Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
|
| 779 |
+
"""
|
| 780 |
+
|
| 781 |
+
with open(summary_path, 'w') as f:
|
| 782 |
+
f.write(summary)
|
| 783 |
+
|
| 784 |
+
print(f"[📄] Created MODEL_SUMMARY.txt")
|
| 785 |
+
return summary_path
|
| 786 |
+
|
| 787 |
+
|
| 788 |
+
def update_models_index(
|
| 789 |
+
config: DavidTrainingConfig,
|
| 790 |
+
david_config: DavidArchitectureConfig,
|
| 791 |
+
best_metrics: Dict,
|
| 792 |
+
model_name: str
|
| 793 |
+
):
|
| 794 |
+
"""Update master models index file tracking all trained models."""
|
| 795 |
+
|
| 796 |
+
if not config.upload_to_hub or not config.hf_repo:
|
| 797 |
+
return
|
| 798 |
+
|
| 799 |
+
try:
|
| 800 |
+
from huggingface_hub import hf_hub_download
|
| 801 |
+
api = HfApi()
|
| 802 |
+
|
| 803 |
+
# Try to download existing index
|
| 804 |
+
try:
|
| 805 |
+
index_path = hf_hub_download(
|
| 806 |
+
repo_id=config.hf_repo,
|
| 807 |
+
filename="MODELS_INDEX.json",
|
| 808 |
+
repo_type="model"
|
| 809 |
+
)
|
| 810 |
+
with open(index_path, 'r') as f:
|
| 811 |
+
models_index = json.load(f)
|
| 812 |
+
except:
|
| 813 |
+
# Create new index if doesn't exist
|
| 814 |
+
models_index = {
|
| 815 |
+
"repository": config.hf_repo,
|
| 816 |
+
"updated": datetime.now().isoformat(),
|
| 817 |
+
"models": []
|
| 818 |
+
}
|
| 819 |
+
|
| 820 |
+
# Add current model entry
|
| 821 |
+
model_entry = {
|
| 822 |
+
"model_name": model_name,
|
| 823 |
+
"run_id": config.run_id,
|
| 824 |
+
"timestamp": datetime.now().isoformat(),
|
| 825 |
+
"best_val_acc": best_metrics.get('best_val_acc', 0.0),
|
| 826 |
+
"best_epoch": best_metrics.get('best_epoch', 0),
|
| 827 |
+
"num_scales": len(david_config.scales),
|
| 828 |
+
"scales": david_config.scales,
|
| 829 |
+
"parameters": best_metrics.get('parameters', 0),
|
| 830 |
+
"sharing_mode": david_config.sharing_mode,
|
| 831 |
+
"fusion_mode": david_config.fusion_mode,
|
| 832 |
+
"preset": config.preset,
|
| 833 |
+
"weights_path": f"weights/{model_name}/{config.run_id}/best_model_acc{best_metrics.get('best_val_acc', 0.0):.2f}.safetensors",
|
| 834 |
+
"config_path": f"weights/{model_name}/{config.run_id}/david_config.json",
|
| 835 |
+
"history_path": f"weights/{model_name}/{config.run_id}/training_history.json"
|
| 836 |
+
}
|
| 837 |
+
|
| 838 |
+
# Remove old entry for same run_id if exists (update)
|
| 839 |
+
models_index["models"] = [m for m in models_index["models"] if m.get("run_id") != config.run_id]
|
| 840 |
+
models_index["models"].append(model_entry)
|
| 841 |
+
|
| 842 |
+
# Sort by accuracy (descending)
|
| 843 |
+
models_index["models"].sort(key=lambda x: x.get("best_val_acc", 0), reverse=True)
|
| 844 |
+
models_index["updated"] = datetime.now().isoformat()
|
| 845 |
+
models_index["total_models"] = len(models_index["models"])
|
| 846 |
+
|
| 847 |
+
# Save locally
|
| 848 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as f:
|
| 849 |
+
json.dump(models_index, f, indent=2)
|
| 850 |
+
temp_path = f.name
|
| 851 |
+
|
| 852 |
+
# Upload to hub root
|
| 853 |
+
api.upload_file(
|
| 854 |
+
path_or_fileobj=temp_path,
|
| 855 |
+
path_in_repo="MODELS_INDEX.json",
|
| 856 |
+
repo_id=config.hf_repo,
|
| 857 |
+
commit_message=f"Update models index - {model_name} @ {best_metrics.get('best_val_acc', 0.0):.2f}%"
|
| 858 |
+
)
|
| 859 |
+
|
| 860 |
+
os.unlink(temp_path)
|
| 861 |
+
print(f"[📊] Updated MODELS_INDEX.json - {len(models_index['models'])} models tracked")
|
| 862 |
+
|
| 863 |
+
except Exception as e:
|
| 864 |
+
print(f"[⚠️] Failed to update models index: {e}")
|
| 865 |
+
|
| 866 |
+
|
| 867 |
+
def upload_to_huggingface(
|
| 868 |
+
local_dir: str,
|
| 869 |
+
repo_id: str,
|
| 870 |
+
commit_message: str,
|
| 871 |
+
path_in_repo: Optional[str] = None,
|
| 872 |
+
patterns: Optional[List[str]] = None
|
| 873 |
+
):
|
| 874 |
+
"""Upload directory to HuggingFace Hub."""
|
| 875 |
+
|
| 876 |
+
try:
|
| 877 |
+
api = HfApi()
|
| 878 |
+
|
| 879 |
+
# Create repo if it doesn't exist
|
| 880 |
+
try:
|
| 881 |
+
create_repo(repo_id, exist_ok=True, repo_type="model")
|
| 882 |
+
print(f"[🤗] Repo ready: {repo_id}")
|
| 883 |
+
except Exception as e:
|
| 884 |
+
print(f"[⚠️] Repo exists or creation failed: {e}")
|
| 885 |
+
|
| 886 |
+
# Upload folder
|
| 887 |
+
if patterns:
|
| 888 |
+
# Upload specific patterns
|
| 889 |
+
for pattern in patterns:
|
| 890 |
+
matching_files = list(Path(local_dir).rglob(pattern))
|
| 891 |
+
for file_path in matching_files:
|
| 892 |
+
rel_path = file_path.relative_to(local_dir)
|
| 893 |
+
if path_in_repo:
|
| 894 |
+
repo_path = f"{path_in_repo}/{rel_path}"
|
| 895 |
+
else:
|
| 896 |
+
repo_path = str(rel_path)
|
| 897 |
+
|
| 898 |
+
api.upload_file(
|
| 899 |
+
path_or_fileobj=str(file_path),
|
| 900 |
+
path_in_repo=repo_path,
|
| 901 |
+
repo_id=repo_id,
|
| 902 |
+
commit_message=commit_message
|
| 903 |
+
)
|
| 904 |
+
else:
|
| 905 |
+
# Upload entire folder
|
| 906 |
+
api.upload_folder(
|
| 907 |
+
folder_path=local_dir,
|
| 908 |
+
repo_id=repo_id,
|
| 909 |
+
path_in_repo=path_in_repo,
|
| 910 |
+
commit_message=commit_message
|
| 911 |
+
)
|
| 912 |
+
|
| 913 |
+
print(f"[✅] Uploaded to Hub: https://huggingface.co/{repo_id}")
|
| 914 |
+
|
| 915 |
+
except Exception as e:
|
| 916 |
+
print(f"[❌] Hub upload failed: {e}")
|
| 917 |
+
print(f" Continuing training (files saved locally)")
|
| 918 |
+
|
| 919 |
+
|
| 920 |
+
def prepare_hub_upload(
|
| 921 |
+
weights_dir: str,
|
| 922 |
+
runs_dir: str,
|
| 923 |
+
config: DavidTrainingConfig,
|
| 924 |
+
david_config: DavidArchitectureConfig,
|
| 925 |
+
best_metrics: Dict,
|
| 926 |
+
model_name: str
|
| 927 |
+
):
|
| 928 |
+
"""Prepare and upload all artifacts to HuggingFace Hub."""
|
| 929 |
+
|
| 930 |
+
if not config.upload_to_hub or not config.hf_repo:
|
| 931 |
+
return
|
| 932 |
+
|
| 933 |
+
print("\n[🤗] Preparing HuggingFace Hub upload...")
|
| 934 |
+
|
| 935 |
+
# Create model summary file
|
| 936 |
+
summary_path = create_model_summary(weights_dir, config, david_config, best_metrics, model_name)
|
| 937 |
+
|
| 938 |
+
# Update master models index
|
| 939 |
+
update_models_index(config, david_config, best_metrics, model_name)
|
| 940 |
+
|
| 941 |
+
api = HfApi()
|
| 942 |
+
try:
|
| 943 |
+
create_repo(config.hf_repo, exist_ok=True, repo_type="model")
|
| 944 |
+
except:
|
| 945 |
+
pass
|
| 946 |
+
|
| 947 |
+
# Create temporary directory for root files
|
| 948 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 949 |
+
# Generate README at root
|
| 950 |
+
readme_path = os.path.join(temp_dir, "README.md")
|
| 951 |
+
readme_content = generate_model_readme(config, david_config, best_metrics, config.run_id)
|
| 952 |
+
with open(readme_path, 'w') as f:
|
| 953 |
+
f.write(readme_content)
|
| 954 |
+
print(f"[📝] Generated README.md")
|
| 955 |
+
|
| 956 |
+
# Save best_model.json at root
|
| 957 |
+
best_json_path = os.path.join(temp_dir, "best_model.json")
|
| 958 |
+
save_best_model_json(best_json_path, best_metrics, config, david_config)
|
| 959 |
+
|
| 960 |
+
# Upload root files (README.md, best_model.json)
|
| 961 |
+
print(f"[📤] Uploading root files...")
|
| 962 |
+
|
| 963 |
+
api.upload_file(
|
| 964 |
+
path_or_fileobj=readme_path,
|
| 965 |
+
path_in_repo="README.md",
|
| 966 |
+
repo_id=config.hf_repo,
|
| 967 |
+
commit_message=f"Update README - Run {config.run_id}"
|
| 968 |
+
)
|
| 969 |
+
|
| 970 |
+
api.upload_file(
|
| 971 |
+
path_or_fileobj=best_json_path,
|
| 972 |
+
path_in_repo="best_model.json",
|
| 973 |
+
repo_id=config.hf_repo,
|
| 974 |
+
commit_message=f"Update metrics - Run {config.run_id}"
|
| 975 |
+
)
|
| 976 |
+
|
| 977 |
+
# Upload ONLY essential weight files (not entire directory!)
|
| 978 |
+
weights_repo_path = f"weights/{model_name}/{config.run_id}"
|
| 979 |
+
best_acc = best_metrics.get('best_val_acc', 0.0)
|
| 980 |
+
|
| 981 |
+
print(f"[📤] Uploading essential files to {weights_repo_path}...")
|
| 982 |
+
|
| 983 |
+
# List of specific files to upload (not entire directory)
|
| 984 |
+
files_to_upload = [
|
| 985 |
+
('MODEL_SUMMARY.txt', 'MODEL_SUMMARY.txt'),
|
| 986 |
+
('training_history.json', 'training_history.json'),
|
| 987 |
+
('david_config.json', 'david_config.json'),
|
| 988 |
+
('train_config.json', 'train_config.json'),
|
| 989 |
+
(f'best_model_acc{best_acc:.2f}.safetensors', f'best_model_acc{best_acc:.2f}.safetensors'),
|
| 990 |
+
(f'best_model_acc{best_acc:.2f}_metadata.json', f'best_model_acc{best_acc:.2f}_metadata.json'),
|
| 991 |
+
]
|
| 992 |
+
|
| 993 |
+
for local_filename, repo_filename in files_to_upload:
|
| 994 |
+
local_path = os.path.join(weights_dir, local_filename)
|
| 995 |
+
if os.path.exists(local_path):
|
| 996 |
+
try:
|
| 997 |
+
api.upload_file(
|
| 998 |
+
path_or_fileobj=local_path,
|
| 999 |
+
path_in_repo=f"{weights_repo_path}/{repo_filename}",
|
| 1000 |
+
repo_id=config.hf_repo,
|
| 1001 |
+
commit_message=f"Update {repo_filename} - Run {config.run_id}"
|
| 1002 |
+
)
|
| 1003 |
+
except Exception as e:
|
| 1004 |
+
print(f"[⚠️] Failed to upload {repo_filename}: {e}")
|
| 1005 |
+
|
| 1006 |
+
print(f"[✅] Uploaded to Hub: https://huggingface.co/{config.hf_repo}")
|
| 1007 |
+
|
| 1008 |
+
# Upload tensorboard logs (only if they exist and it's final upload)
|
| 1009 |
+
# Skip TensorBoard during training to avoid huge uploads every epoch
|
| 1010 |
+
# if os.path.exists(runs_dir):
|
| 1011 |
+
# runs_repo_path = f"runs/{model_name}/{config.run_id}"
|
| 1012 |
+
# print(f"[📤] Uploading TensorBoard logs to {runs_repo_path}...")
|
| 1013 |
+
# upload_to_huggingface(
|
| 1014 |
+
# local_dir=runs_dir,
|
| 1015 |
+
# repo_id=config.hf_repo,
|
| 1016 |
+
# commit_message=f"Upload TensorBoard logs - {model_name} - Run {config.run_id}",
|
| 1017 |
+
# path_in_repo=runs_repo_path
|
| 1018 |
+
# )
|
| 1019 |
+
|
| 1020 |
+
|
| 1021 |
+
# ============================================================================
|
| 1022 |
+
# CHECKPOINT UTILITIES
|
| 1023 |
+
# ============================================================================
|
| 1024 |
+
|
| 1025 |
+
def save_checkpoint(
|
| 1026 |
+
filepath: str,
|
| 1027 |
+
david: David,
|
| 1028 |
+
optimizer: torch.optim.Optimizer,
|
| 1029 |
+
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler],
|
| 1030 |
+
epoch: int,
|
| 1031 |
+
metrics: Dict,
|
| 1032 |
+
train_config: DavidTrainingConfig
|
| 1033 |
+
):
|
| 1034 |
+
"""Save checkpoint in PyTorch and/or SafeTensors format."""
|
| 1035 |
+
|
| 1036 |
+
checkpoint = {
|
| 1037 |
+
'epoch': epoch,
|
| 1038 |
+
'model_state_dict': david.state_dict(),
|
| 1039 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
| 1040 |
+
'scheduler_state_dict': scheduler.state_dict() if scheduler else None,
|
| 1041 |
+
'metrics': metrics,
|
| 1042 |
+
'train_config': train_config.to_dict(),
|
| 1043 |
+
}
|
| 1044 |
+
|
| 1045 |
+
# Add accuracy to filename if available
|
| 1046 |
+
val_acc = metrics.get('best_val_acc') or metrics.get('val_acc')
|
| 1047 |
+
if val_acc:
|
| 1048 |
+
acc_suffix = f"_acc{val_acc:.2f}"
|
| 1049 |
+
filepath = filepath + acc_suffix
|
| 1050 |
+
|
| 1051 |
+
if train_config.save_format in ['pytorch', 'both']:
|
| 1052 |
+
torch.save(checkpoint, filepath + '.pth')
|
| 1053 |
+
print(f"[💾] Saved PyTorch: {filepath}.pth")
|
| 1054 |
+
|
| 1055 |
+
if train_config.save_format in ['safetensors', 'both']:
|
| 1056 |
+
try:
|
| 1057 |
+
from safetensors.torch import save_file
|
| 1058 |
+
|
| 1059 |
+
# Save model state
|
| 1060 |
+
model_state = {k: v.contiguous() for k, v in david.state_dict().items()}
|
| 1061 |
+
save_file(model_state, filepath + '.safetensors')
|
| 1062 |
+
|
| 1063 |
+
# Save metadata separately (now includes full training history)
|
| 1064 |
+
metadata = {k: v for k, v in checkpoint.items()
|
| 1065 |
+
if k not in ['model_state_dict']}
|
| 1066 |
+
with open(filepath + '_metadata.json', 'w') as f:
|
| 1067 |
+
json.dump(metadata, f, indent=2, default=str)
|
| 1068 |
+
|
| 1069 |
+
print(f"[💾] Saved SafeTensors: {filepath}.safetensors")
|
| 1070 |
+
except ImportError:
|
| 1071 |
+
print(f"[⚠️] SafeTensors not available, skipping")
|
| 1072 |
+
|
| 1073 |
+
|
| 1074 |
+
def load_checkpoint(
|
| 1075 |
+
checkpoint_path: str,
|
| 1076 |
+
david: David,
|
| 1077 |
+
optimizer: Optional[torch.optim.Optimizer] = None,
|
| 1078 |
+
scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = None,
|
| 1079 |
+
device: str = "cuda"
|
| 1080 |
+
) -> Tuple[int, Dict]:
|
| 1081 |
+
"""Load checkpoint and return epoch and metrics."""
|
| 1082 |
+
|
| 1083 |
+
if checkpoint_path.endswith('.safetensors'):
|
| 1084 |
+
# Load SafeTensors format
|
| 1085 |
+
try:
|
| 1086 |
+
from safetensors.torch import load_file
|
| 1087 |
+
|
| 1088 |
+
model_state = load_file(checkpoint_path, device=device)
|
| 1089 |
+
david.load_state_dict(model_state)
|
| 1090 |
+
|
| 1091 |
+
# Load metadata
|
| 1092 |
+
metadata_path = checkpoint_path.replace('.safetensors', '_metadata.json')
|
| 1093 |
+
with open(metadata_path, 'r') as f:
|
| 1094 |
+
metadata = json.load(f)
|
| 1095 |
+
|
| 1096 |
+
epoch = metadata.get('epoch', 0)
|
| 1097 |
+
metrics = metadata.get('metrics', {})
|
| 1098 |
+
|
| 1099 |
+
if optimizer and 'optimizer_state_dict' in metadata:
|
| 1100 |
+
optimizer.load_state_dict(metadata['optimizer_state_dict'])
|
| 1101 |
+
|
| 1102 |
+
if scheduler and 'scheduler_state_dict' in metadata and metadata['scheduler_state_dict']:
|
| 1103 |
+
scheduler.load_state_dict(metadata['scheduler_state_dict'])
|
| 1104 |
+
|
| 1105 |
+
print(f"[✅] Loaded from SafeTensors: {checkpoint_path}")
|
| 1106 |
+
return epoch, metrics
|
| 1107 |
+
|
| 1108 |
+
except ImportError:
|
| 1109 |
+
raise ImportError("safetensors not installed")
|
| 1110 |
+
|
| 1111 |
+
else:
|
| 1112 |
+
# Load PyTorch format
|
| 1113 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 1114 |
+
|
| 1115 |
+
david.load_state_dict(checkpoint['model_state_dict'])
|
| 1116 |
+
|
| 1117 |
+
if optimizer and 'optimizer_state_dict' in checkpoint:
|
| 1118 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
| 1119 |
+
|
| 1120 |
+
if scheduler and 'scheduler_state_dict' in checkpoint and checkpoint['scheduler_state_dict']:
|
| 1121 |
+
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
|
| 1122 |
+
|
| 1123 |
+
print(f"[✅] Loaded from PyTorch: {checkpoint_path}")
|
| 1124 |
+
return checkpoint['epoch'], checkpoint.get('metrics', {})
|
| 1125 |
+
|
| 1126 |
+
|
| 1127 |
+
# ============================================================================
|
| 1128 |
+
# DATASET
|
| 1129 |
+
# ============================================================================
|
| 1130 |
+
|
| 1131 |
+
class ImageNetHFDataset(Dataset):
|
| 1132 |
+
"""PyTorch Dataset wrapper for HuggingFace ImageNet features."""
|
| 1133 |
+
|
| 1134 |
+
def __init__(self, dataset_name: str, model_variant: str, split: str = "train"):
|
| 1135 |
+
# Load only the specific split to avoid downloading all data
|
| 1136 |
+
print(f"[📥] Loading {split} split for {model_variant}...")
|
| 1137 |
+
self.dataset = load_dataset(
|
| 1138 |
+
dataset_name,
|
| 1139 |
+
name=model_variant, # Dataset configuration/variant name
|
| 1140 |
+
split=split # Only load this specific split
|
| 1141 |
+
)
|
| 1142 |
+
self.length = len(self.dataset)
|
| 1143 |
+
print(f"[✅] Loaded {self.length:,} samples from {split} split")
|
| 1144 |
+
|
| 1145 |
+
def __len__(self):
|
| 1146 |
+
return self.length
|
| 1147 |
+
|
| 1148 |
+
def __getitem__(self, idx):
|
| 1149 |
+
item = self.dataset[idx]
|
| 1150 |
+
features = torch.tensor(item['clip_features'], dtype=torch.float32)
|
| 1151 |
+
label = torch.tensor(item['label'], dtype=torch.long)
|
| 1152 |
+
return features, label
|
| 1153 |
+
|
| 1154 |
+
|
| 1155 |
+
class MergedImageNetDataset(Dataset):
|
| 1156 |
+
"""
|
| 1157 |
+
Merge multiple CLIP variants into a single dataset.
|
| 1158 |
+
Perfect for testing if David can unify different encoder spaces!
|
| 1159 |
+
"""
|
| 1160 |
+
|
| 1161 |
+
def __init__(
|
| 1162 |
+
self,
|
| 1163 |
+
dataset_name: str,
|
| 1164 |
+
model_variants: List[str], # e.g., ['clip_vit_b16', 'clip_vit_laion_b16']
|
| 1165 |
+
split: str = "train",
|
| 1166 |
+
shuffle_seed: int = 42
|
| 1167 |
+
):
|
| 1168 |
+
print(f"[🔀] Creating merged dataset from {len(model_variants)} variants...")
|
| 1169 |
+
|
| 1170 |
+
self.datasets = []
|
| 1171 |
+
self.cumulative_lengths = [0]
|
| 1172 |
+
|
| 1173 |
+
# Load each variant
|
| 1174 |
+
for variant in model_variants:
|
| 1175 |
+
print(f"[📥] Loading {split} split for {variant}...")
|
| 1176 |
+
ds = load_dataset(
|
| 1177 |
+
dataset_name,
|
| 1178 |
+
name=variant,
|
| 1179 |
+
split=split
|
| 1180 |
+
)
|
| 1181 |
+
self.datasets.append(ds)
|
| 1182 |
+
self.cumulative_lengths.append(self.cumulative_lengths[-1] + len(ds))
|
| 1183 |
+
print(f"[✅] Loaded {len(ds):,} samples from {variant}")
|
| 1184 |
+
|
| 1185 |
+
self.total_length = self.cumulative_lengths[-1]
|
| 1186 |
+
|
| 1187 |
+
# Create shuffled indices for fair mixing
|
| 1188 |
+
print(f"[🎲] Shuffling {self.total_length:,} samples (seed={shuffle_seed})...")
|
| 1189 |
+
rng = np.random.RandomState(shuffle_seed)
|
| 1190 |
+
self.shuffle_indices = rng.permutation(self.total_length)
|
| 1191 |
+
|
| 1192 |
+
print(f"[✅] Merged dataset ready: {self.total_length:,} samples from {len(model_variants)} encoders")
|
| 1193 |
+
|
| 1194 |
+
def __len__(self):
|
| 1195 |
+
return self.total_length
|
| 1196 |
+
|
| 1197 |
+
def __getitem__(self, idx):
|
| 1198 |
+
# Map shuffled index to original dataset
|
| 1199 |
+
actual_idx = int(self.shuffle_indices[idx])
|
| 1200 |
+
|
| 1201 |
+
# Find which dataset this index belongs to
|
| 1202 |
+
dataset_idx = 0
|
| 1203 |
+
for i, cumsum in enumerate(self.cumulative_lengths[1:]):
|
| 1204 |
+
if actual_idx < cumsum:
|
| 1205 |
+
dataset_idx = i
|
| 1206 |
+
break
|
| 1207 |
+
|
| 1208 |
+
# Get item from the correct dataset
|
| 1209 |
+
local_idx = actual_idx - self.cumulative_lengths[dataset_idx]
|
| 1210 |
+
item = self.datasets[dataset_idx][local_idx]
|
| 1211 |
+
|
| 1212 |
+
features = torch.tensor(item['clip_features'], dtype=torch.float32)
|
| 1213 |
+
label = torch.tensor(item['label'], dtype=torch.long)
|
| 1214 |
+
|
| 1215 |
+
return features, label
|
| 1216 |
+
|
| 1217 |
+
|
| 1218 |
+
def create_dataloaders(config: DavidTrainingConfig):
|
| 1219 |
+
"""Create train and validation dataloaders."""
|
| 1220 |
+
|
| 1221 |
+
# Check if model_variant is a list (multi-encoder experiment)
|
| 1222 |
+
if isinstance(config.model_variant, list):
|
| 1223 |
+
print(f"[🧪] MULTI-ENCODER EXPERIMENT: Merging {len(config.model_variant)} variants")
|
| 1224 |
+
train_dataset = MergedImageNetDataset(
|
| 1225 |
+
config.dataset_name,
|
| 1226 |
+
config.model_variant, # List of variants
|
| 1227 |
+
"train"
|
| 1228 |
+
)
|
| 1229 |
+
val_dataset = MergedImageNetDataset(
|
| 1230 |
+
config.dataset_name,
|
| 1231 |
+
config.model_variant,
|
| 1232 |
+
"validation"
|
| 1233 |
+
)
|
| 1234 |
+
else:
|
| 1235 |
+
# Single encoder (normal mode)
|
| 1236 |
+
train_dataset = ImageNetHFDataset(
|
| 1237 |
+
config.dataset_name, config.model_variant, "train"
|
| 1238 |
+
)
|
| 1239 |
+
val_dataset = ImageNetHFDataset(
|
| 1240 |
+
config.dataset_name, config.model_variant, "validation"
|
| 1241 |
+
)
|
| 1242 |
+
|
| 1243 |
+
train_loader = DataLoader(
|
| 1244 |
+
train_dataset,
|
| 1245 |
+
batch_size=config.batch_size,
|
| 1246 |
+
shuffle=True,
|
| 1247 |
+
num_workers=config.num_workers,
|
| 1248 |
+
pin_memory=config.pin_memory,
|
| 1249 |
+
prefetch_factor=config.prefetch_factor,
|
| 1250 |
+
persistent_workers=config.persistent_workers
|
| 1251 |
+
)
|
| 1252 |
+
|
| 1253 |
+
val_loader = DataLoader(
|
| 1254 |
+
val_dataset,
|
| 1255 |
+
batch_size=config.batch_size * 2,
|
| 1256 |
+
shuffle=False,
|
| 1257 |
+
num_workers=config.num_workers,
|
| 1258 |
+
pin_memory=config.pin_memory,
|
| 1259 |
+
prefetch_factor=config.prefetch_factor,
|
| 1260 |
+
persistent_workers=config.persistent_workers
|
| 1261 |
+
)
|
| 1262 |
+
|
| 1263 |
+
return train_loader, val_loader
|
| 1264 |
+
|
| 1265 |
+
|
| 1266 |
+
# ============================================================================
|
| 1267 |
+
# CRYSTAL GENERATOR
|
| 1268 |
+
# ============================================================================
|
| 1269 |
+
|
| 1270 |
+
class CrystalGenerator:
|
| 1271 |
+
"""Generate crystals for all scales."""
|
| 1272 |
+
|
| 1273 |
+
def __init__(self, num_classes: int, scales: List[int], device: str = "cuda"):
|
| 1274 |
+
self.num_classes = num_classes
|
| 1275 |
+
self.scales = scales
|
| 1276 |
+
self.device = device
|
| 1277 |
+
self.factories = {
|
| 1278 |
+
scale: SimplexFactory(k=4, embed_dim=scale, method="random")
|
| 1279 |
+
for scale in scales
|
| 1280 |
+
}
|
| 1281 |
+
|
| 1282 |
+
def generate(self, seed: int = 42) -> Tuple[Dict[int, torch.Tensor], Dict[int, torch.Tensor]]:
|
| 1283 |
+
"""Generate anchors and crystals for all scales."""
|
| 1284 |
+
|
| 1285 |
+
anchors_dict = {}
|
| 1286 |
+
crystals_dict = {}
|
| 1287 |
+
|
| 1288 |
+
for scale in tqdm(self.scales, desc="Generating crystals"):
|
| 1289 |
+
factory = self.factories[scale]
|
| 1290 |
+
batch_crystals = []
|
| 1291 |
+
|
| 1292 |
+
for class_idx in range(self.num_classes):
|
| 1293 |
+
crystal = factory.build(
|
| 1294 |
+
backend="torch",
|
| 1295 |
+
device=self.device,
|
| 1296 |
+
dtype=torch.float32,
|
| 1297 |
+
seed=seed + class_idx,
|
| 1298 |
+
validate=True
|
| 1299 |
+
)
|
| 1300 |
+
batch_crystals.append(crystal)
|
| 1301 |
+
|
| 1302 |
+
crystals = torch.stack(batch_crystals)
|
| 1303 |
+
anchors = F.normalize(crystals[:, 0, :], dim=-1)
|
| 1304 |
+
|
| 1305 |
+
# Verify anchor diversity
|
| 1306 |
+
anchor_sims = anchors @ anchors.T
|
| 1307 |
+
off_diag = anchor_sims[~torch.eye(self.num_classes, dtype=bool, device=anchors.device)]
|
| 1308 |
+
max_sim = off_diag.max().item()
|
| 1309 |
+
mean_sim = off_diag.mean().item()
|
| 1310 |
+
|
| 1311 |
+
print(f" Scale {scale}: max_sim={max_sim:.4f}, mean_sim={mean_sim:.4f}")
|
| 1312 |
+
|
| 1313 |
+
if max_sim > 0.99:
|
| 1314 |
+
print(f" ⚠️ WARNING: Anchors too similar at scale {scale}!")
|
| 1315 |
+
|
| 1316 |
+
anchors_dict[scale] = anchors
|
| 1317 |
+
crystals_dict[scale] = crystals
|
| 1318 |
+
|
| 1319 |
+
return anchors_dict, crystals_dict
|
| 1320 |
+
|
| 1321 |
+
|
| 1322 |
+
# ============================================================================
|
| 1323 |
+
# TRAINING LOOP
|
| 1324 |
+
# ============================================================================
|
| 1325 |
+
|
| 1326 |
+
def train_epoch(
|
| 1327 |
+
david: David,
|
| 1328 |
+
train_loader: DataLoader,
|
| 1329 |
+
optimizer: torch.optim.Optimizer,
|
| 1330 |
+
criterion: MultiScaleCrystalLoss,
|
| 1331 |
+
anchors_dict: Dict[int, torch.Tensor],
|
| 1332 |
+
crystals_dict: Dict[int, torch.Tensor],
|
| 1333 |
+
epoch: int,
|
| 1334 |
+
config: DavidTrainingConfig,
|
| 1335 |
+
writer: Optional[SummaryWriter],
|
| 1336 |
+
global_step: int
|
| 1337 |
+
) -> Tuple[float, float, int, Dict]:
|
| 1338 |
+
"""Train for one epoch - Pure FP32."""
|
| 1339 |
+
|
| 1340 |
+
david.train()
|
| 1341 |
+
david.update_epoch(epoch)
|
| 1342 |
+
|
| 1343 |
+
total_loss = 0
|
| 1344 |
+
correct = 0
|
| 1345 |
+
total = 0
|
| 1346 |
+
loss_components_sum = {}
|
| 1347 |
+
|
| 1348 |
+
active_scales = david.get_active_scales()
|
| 1349 |
+
|
| 1350 |
+
pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{config.num_epochs}")
|
| 1351 |
+
|
| 1352 |
+
for batch_idx, (features, labels) in enumerate(pbar):
|
| 1353 |
+
features = features.cuda(non_blocking=True)
|
| 1354 |
+
labels = labels.cuda(non_blocking=True)
|
| 1355 |
+
|
| 1356 |
+
# Zero gradients
|
| 1357 |
+
optimizer.zero_grad()
|
| 1358 |
+
|
| 1359 |
+
# Forward pass - Pure FP32, no autocast
|
| 1360 |
+
combined, logits_list, features_list, fusion_weights = david(
|
| 1361 |
+
features, anchors_dict, return_all_scales=True
|
| 1362 |
+
)
|
| 1363 |
+
|
| 1364 |
+
# Compute loss
|
| 1365 |
+
losses = criterion(
|
| 1366 |
+
combined, logits_list, features_list,
|
| 1367 |
+
labels, crystals_dict, epoch
|
| 1368 |
+
)
|
| 1369 |
+
|
| 1370 |
+
# Backward
|
| 1371 |
+
losses['total'].backward()
|
| 1372 |
+
|
| 1373 |
+
# Gradient analysis
|
| 1374 |
+
if config.track_gradients and batch_idx % config.log_interval == 0:
|
| 1375 |
+
grad_stats = analyze_gradients(david, config)
|
| 1376 |
+
if writer:
|
| 1377 |
+
step = global_step + batch_idx
|
| 1378 |
+
writer.add_scalar('train/grad_mean', grad_stats['mean'], step)
|
| 1379 |
+
writer.add_scalar('train/grad_max', grad_stats['max'], step)
|
| 1380 |
+
writer.add_scalar('train/grad_num_small', grad_stats['num_small'], step)
|
| 1381 |
+
|
| 1382 |
+
# Scale small gradients
|
| 1383 |
+
scale_small_gradients(david, config)
|
| 1384 |
+
|
| 1385 |
+
# Gradient clipping
|
| 1386 |
+
torch.nn.utils.clip_grad_norm_(david.parameters(), config.gradient_clip)
|
| 1387 |
+
|
| 1388 |
+
# Optimizer step
|
| 1389 |
+
optimizer.step()
|
| 1390 |
+
|
| 1391 |
+
# Metrics
|
| 1392 |
+
total_loss += losses['total'].item()
|
| 1393 |
+
_, predicted = torch.max(combined, 1)
|
| 1394 |
+
total += labels.size(0)
|
| 1395 |
+
correct += (predicted == labels).sum().item()
|
| 1396 |
+
|
| 1397 |
+
# Accumulate loss components
|
| 1398 |
+
for key, value in losses.items():
|
| 1399 |
+
if key not in loss_components_sum:
|
| 1400 |
+
loss_components_sum[key] = 0.0
|
| 1401 |
+
loss_components_sum[key] += value.item()
|
| 1402 |
+
|
| 1403 |
+
# Logging
|
| 1404 |
+
if writer and batch_idx % config.log_interval == 0:
|
| 1405 |
+
step = global_step + batch_idx
|
| 1406 |
+
writer.add_scalar('train/loss_batch', losses['total'].item(), step)
|
| 1407 |
+
writer.add_scalar('train/acc_batch', 100 * correct / total, step)
|
| 1408 |
+
|
| 1409 |
+
if config.log_loss_components:
|
| 1410 |
+
for key, value in losses.items():
|
| 1411 |
+
if key != 'total':
|
| 1412 |
+
writer.add_scalar(f'train/loss_{key}', value.item(), step)
|
| 1413 |
+
|
| 1414 |
+
if config.log_fusion_weights and fusion_weights is not None:
|
| 1415 |
+
if fusion_weights.dim() == 2:
|
| 1416 |
+
mean_weights = fusion_weights.mean(dim=0)
|
| 1417 |
+
for i, w in enumerate(mean_weights):
|
| 1418 |
+
if i < len(active_scales):
|
| 1419 |
+
writer.add_scalar(
|
| 1420 |
+
f'train/fusion_weight_{active_scales[i]}',
|
| 1421 |
+
w.item(), step
|
| 1422 |
+
)
|
| 1423 |
+
|
| 1424 |
+
writer.add_scalar('train/lr', optimizer.param_groups[0]['lr'], step)
|
| 1425 |
+
|
| 1426 |
+
pbar.set_postfix({
|
| 1427 |
+
'loss': f'{total_loss / (batch_idx + 1):.4f}',
|
| 1428 |
+
'acc': f'{100 * correct / total:.2f}%'
|
| 1429 |
+
})
|
| 1430 |
+
|
| 1431 |
+
global_step += 1
|
| 1432 |
+
|
| 1433 |
+
# Average loss components
|
| 1434 |
+
avg_components = {k: v / len(train_loader) for k, v in loss_components_sum.items()}
|
| 1435 |
+
|
| 1436 |
+
return (
|
| 1437 |
+
total_loss / len(train_loader),
|
| 1438 |
+
100 * correct / total,
|
| 1439 |
+
global_step,
|
| 1440 |
+
avg_components
|
| 1441 |
+
)
|
| 1442 |
+
|
| 1443 |
+
|
| 1444 |
+
@torch.no_grad()
|
| 1445 |
+
def validate(
|
| 1446 |
+
david: David,
|
| 1447 |
+
val_loader: DataLoader,
|
| 1448 |
+
anchors_dict: Dict[int, torch.Tensor],
|
| 1449 |
+
config: DavidTrainingConfig
|
| 1450 |
+
) -> Tuple[float, Dict[int, float]]:
|
| 1451 |
+
"""Validate model - Pure FP32."""
|
| 1452 |
+
|
| 1453 |
+
david.eval()
|
| 1454 |
+
|
| 1455 |
+
correct = 0
|
| 1456 |
+
total = 0
|
| 1457 |
+
active_scales = david.get_active_scales()
|
| 1458 |
+
scale_correct = {scale: 0 for scale in active_scales}
|
| 1459 |
+
|
| 1460 |
+
for features, labels in tqdm(val_loader, desc="Validation", leave=False):
|
| 1461 |
+
features = features.cuda(non_blocking=True)
|
| 1462 |
+
labels = labels.cuda(non_blocking=True)
|
| 1463 |
+
|
| 1464 |
+
# Forward pass - no autocast
|
| 1465 |
+
combined, logits_list, _, _ = david(
|
| 1466 |
+
features, anchors_dict, return_all_scales=True
|
| 1467 |
+
)
|
| 1468 |
+
|
| 1469 |
+
_, predicted = torch.max(combined, 1)
|
| 1470 |
+
total += labels.size(0)
|
| 1471 |
+
correct += (predicted == labels).sum().item()
|
| 1472 |
+
|
| 1473 |
+
for i, scale in enumerate(active_scales):
|
| 1474 |
+
if i < len(logits_list):
|
| 1475 |
+
_, scale_pred = torch.max(logits_list[i], 1)
|
| 1476 |
+
scale_correct[scale] += (scale_pred == labels).sum().item()
|
| 1477 |
+
|
| 1478 |
+
accuracy = 100 * correct / total
|
| 1479 |
+
scale_accs = {s: 100 * scale_correct[s] / total for s in scale_correct}
|
| 1480 |
+
|
| 1481 |
+
return accuracy, scale_accs
|
| 1482 |
+
|
| 1483 |
+
|
| 1484 |
+
# ============================================================================
|
| 1485 |
+
# MAIN TRAINING FUNCTION
|
| 1486 |
+
# ============================================================================
|
| 1487 |
+
|
| 1488 |
+
def train_david(config: DavidTrainingConfig):
|
| 1489 |
+
"""Main training pipeline."""
|
| 1490 |
+
|
| 1491 |
+
# Enable TensorFloat32 for better performance on Ampere+ GPUs
|
| 1492 |
+
torch.set_float32_matmul_precision('high')
|
| 1493 |
+
|
| 1494 |
+
print("="*80)
|
| 1495 |
+
print("🌟 DAVID TRAINING PIPELINE")
|
| 1496 |
+
print("="*80)
|
| 1497 |
+
print(f"Run ID: {config.run_id}")
|
| 1498 |
+
print(f"Preset: {config.preset}")
|
| 1499 |
+
print(f"Batch Size: {config.batch_size}")
|
| 1500 |
+
print(f"Learning Rate: {config.learning_rate}")
|
| 1501 |
+
print(f"Mixed Precision: {config.use_mixed_precision}")
|
| 1502 |
+
print(f"TensorFloat32: Enabled (high precision)")
|
| 1503 |
+
print("="*80)
|
| 1504 |
+
|
| 1505 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 1506 |
+
|
| 1507 |
+
# Load or create David config FIRST (needed for model_name)
|
| 1508 |
+
if config.custom_config_path:
|
| 1509 |
+
david_config = DavidArchitectureConfig.from_json(config.custom_config_path)
|
| 1510 |
+
print(f"[📁] Loaded custom config: {config.custom_config_path}")
|
| 1511 |
+
elif config.preset:
|
| 1512 |
+
david_config = DavidPresets.get_preset(config.preset)
|
| 1513 |
+
print(f"[⚙️] Using preset: {config.preset}")
|
| 1514 |
+
else:
|
| 1515 |
+
raise ValueError("Must specify either preset or custom_config_path")
|
| 1516 |
+
|
| 1517 |
+
# Create model name from architecture
|
| 1518 |
+
model_name = f"David-{david_config.sharing_mode}-{david_config.fusion_mode}"
|
| 1519 |
+
print(f"[🏷️] Model: {model_name}")
|
| 1520 |
+
|
| 1521 |
+
# Setup directories with proper hierarchy: weights/model_name/timestamp/
|
| 1522 |
+
weights_dir = os.path.join(config.base_dir, "weights", model_name, config.run_id)
|
| 1523 |
+
runs_dir = os.path.join(config.base_dir, "runs", model_name, config.run_id)
|
| 1524 |
+
os.makedirs(weights_dir, exist_ok=True)
|
| 1525 |
+
os.makedirs(runs_dir, exist_ok=True)
|
| 1526 |
+
|
| 1527 |
+
print(f"[📁] Weights: {weights_dir}")
|
| 1528 |
+
print(f"[📁] Logs: {runs_dir}")
|
| 1529 |
+
|
| 1530 |
+
writer = SummaryWriter(runs_dir)
|
| 1531 |
+
|
| 1532 |
+
# Apply overrides
|
| 1533 |
+
if config.num_classes_override:
|
| 1534 |
+
david_config.num_classes = config.num_classes_override
|
| 1535 |
+
if config.use_belly_override is not None:
|
| 1536 |
+
david_config.use_belly = config.use_belly_override
|
| 1537 |
+
if config.belly_expand_override is not None:
|
| 1538 |
+
david_config.belly_expand = config.belly_expand_override
|
| 1539 |
+
if config.progressive_training_override is not None:
|
| 1540 |
+
david_config.progressive_training = config.progressive_training_override
|
| 1541 |
+
if not david_config.progressive_training:
|
| 1542 |
+
# Disable warmup if progressive training disabled
|
| 1543 |
+
david_config.scale_warmup_epochs = {s: 0 for s in david_config.scales}
|
| 1544 |
+
|
| 1545 |
+
# Override scale warmup schedule if provided
|
| 1546 |
+
if config.scale_warmup_epochs_override is not None:
|
| 1547 |
+
david_config.scale_warmup_epochs = config.scale_warmup_epochs_override
|
| 1548 |
+
# Enable progressive training if custom schedule provided
|
| 1549 |
+
if not david_config.progressive_training:
|
| 1550 |
+
print(f"[⚙️] Enabling progressive training (custom warmup schedule provided)")
|
| 1551 |
+
david_config.progressive_training = True
|
| 1552 |
+
|
| 1553 |
+
print(f"[⚙️] Progressive training: {david_config.progressive_training}")
|
| 1554 |
+
if david_config.progressive_training:
|
| 1555 |
+
print(f" Scale warmup schedule: {david_config.scale_warmup_epochs}")
|
| 1556 |
+
|
| 1557 |
+
# Save configs
|
| 1558 |
+
david_config_path = os.path.join(weights_dir, "david_config.json")
|
| 1559 |
+
david_config.to_json(david_config_path)
|
| 1560 |
+
print(f"[💾] Saved David config: {david_config_path}")
|
| 1561 |
+
|
| 1562 |
+
train_config_path = os.path.join(weights_dir, "train_config.json")
|
| 1563 |
+
config.to_json(train_config_path)
|
| 1564 |
+
print(f"[💾] Saved training config: {train_config_path}")
|
| 1565 |
+
|
| 1566 |
+
# Initialize David
|
| 1567 |
+
david = David.from_config(david_config).cuda()
|
| 1568 |
+
print(f"\n{david}\n")
|
| 1569 |
+
|
| 1570 |
+
# Count parameters
|
| 1571 |
+
total_params = sum(p.numel() for p in david.parameters())
|
| 1572 |
+
trainable_params = sum(p.numel() for p in david.parameters() if p.requires_grad)
|
| 1573 |
+
print(f"[📊] Total Parameters: {total_params:,}")
|
| 1574 |
+
print(f"[📊] Trainable Parameters: {trainable_params:,}")
|
| 1575 |
+
|
| 1576 |
+
# Load data
|
| 1577 |
+
train_loader, val_loader = create_dataloaders(config)
|
| 1578 |
+
|
| 1579 |
+
# Generate crystals
|
| 1580 |
+
crystal_gen = CrystalGenerator(
|
| 1581 |
+
david_config.num_classes,
|
| 1582 |
+
david_config.scales,
|
| 1583 |
+
str(device)
|
| 1584 |
+
)
|
| 1585 |
+
anchors_dict, crystals_dict = crystal_gen.generate()
|
| 1586 |
+
|
| 1587 |
+
# Setup training
|
| 1588 |
+
criterion = MultiScaleCrystalLoss(
|
| 1589 |
+
scales=david_config.scales,
|
| 1590 |
+
num_classes=david_config.num_classes,
|
| 1591 |
+
use_rose_loss=config.use_rose_loss,
|
| 1592 |
+
use_cayley_loss=config.use_cayley_loss,
|
| 1593 |
+
rose_initial_weight=config.rose_initial_weight,
|
| 1594 |
+
rose_max_weight=config.rose_max_weight,
|
| 1595 |
+
cayley_weight=config.cayley_weight,
|
| 1596 |
+
scale_loss_balance=config.scale_loss_balance
|
| 1597 |
+
).cuda()
|
| 1598 |
+
|
| 1599 |
+
optimizer = create_optimizer(david, config)
|
| 1600 |
+
scheduler = create_scheduler(optimizer, config)
|
| 1601 |
+
|
| 1602 |
+
controller = AdaptiveTrainingController(david, config)
|
| 1603 |
+
|
| 1604 |
+
# Tracking
|
| 1605 |
+
best_val_acc = 0.0
|
| 1606 |
+
best_epoch = 0
|
| 1607 |
+
best_scale_accs = {}
|
| 1608 |
+
global_step = 0
|
| 1609 |
+
final_train_acc = 0.0
|
| 1610 |
+
final_train_loss = 0.0
|
| 1611 |
+
|
| 1612 |
+
# Training history for epoch-by-epoch tracking
|
| 1613 |
+
training_history = {
|
| 1614 |
+
'epochs': [],
|
| 1615 |
+
'train_loss': [],
|
| 1616 |
+
'train_acc': [],
|
| 1617 |
+
'val_acc': [],
|
| 1618 |
+
'scale_accs': {},
|
| 1619 |
+
'lr': []
|
| 1620 |
+
}
|
| 1621 |
+
|
| 1622 |
+
# DIAGNOSTIC: Test one forward/backward pass before training
|
| 1623 |
+
print("\n[🔍] Running diagnostic forward/backward pass...")
|
| 1624 |
+
david.train()
|
| 1625 |
+
|
| 1626 |
+
# Get a small batch
|
| 1627 |
+
for features_test, labels_test in train_loader:
|
| 1628 |
+
features_test = features_test.cuda(non_blocking=True)[:8] # Just 8 samples
|
| 1629 |
+
labels_test = labels_test.cuda(non_blocking=True)[:8]
|
| 1630 |
+
|
| 1631 |
+
# Forward
|
| 1632 |
+
combined_test, logits_test, features_test_out, _ = david(
|
| 1633 |
+
features_test, anchors_dict, return_all_scales=True
|
| 1634 |
+
)
|
| 1635 |
+
|
| 1636 |
+
# Loss
|
| 1637 |
+
losses_test = criterion(
|
| 1638 |
+
combined_test, logits_test, features_test_out,
|
| 1639 |
+
labels_test, crystals_dict, epoch=0
|
| 1640 |
+
)
|
| 1641 |
+
|
| 1642 |
+
print(f" Initial loss: {losses_test['total'].item():.6f}")
|
| 1643 |
+
print(f" Loss components:")
|
| 1644 |
+
for key, value in losses_test.items():
|
| 1645 |
+
if key != 'total':
|
| 1646 |
+
print(f" {key}: {value.item():.6f}")
|
| 1647 |
+
|
| 1648 |
+
# Backward
|
| 1649 |
+
optimizer.zero_grad()
|
| 1650 |
+
losses_test['total'].backward()
|
| 1651 |
+
|
| 1652 |
+
# Check gradients
|
| 1653 |
+
grad_count = sum(1 for p in david.parameters() if p.grad is not None and p.grad.norm() > 0)
|
| 1654 |
+
total_grad_params = sum(1 for p in david.parameters() if p.requires_grad)
|
| 1655 |
+
print(f" Parameters with non-zero gradients: {grad_count}/{total_grad_params}")
|
| 1656 |
+
|
| 1657 |
+
if grad_count == 0:
|
| 1658 |
+
print(f" ❌ ERROR: No gradients! Training will not work.")
|
| 1659 |
+
return None, 0.0
|
| 1660 |
+
elif grad_count < total_grad_params * 0.5:
|
| 1661 |
+
print(f" ⚠️ WARNING: Less than 50% of parameters have gradients")
|
| 1662 |
+
else:
|
| 1663 |
+
print(f" ✅ Gradients look good")
|
| 1664 |
+
|
| 1665 |
+
break # Only test one batch
|
| 1666 |
+
|
| 1667 |
+
print("\n[🚀] Starting training...\n")
|
| 1668 |
+
|
| 1669 |
+
for epoch in range(config.num_epochs):
|
| 1670 |
+
epoch_start = time.time()
|
| 1671 |
+
|
| 1672 |
+
# Train
|
| 1673 |
+
train_loss, train_acc, global_step, loss_components = train_epoch(
|
| 1674 |
+
david, train_loader, optimizer, criterion,
|
| 1675 |
+
anchors_dict, crystals_dict, epoch, config,
|
| 1676 |
+
writer, global_step
|
| 1677 |
+
)
|
| 1678 |
+
|
| 1679 |
+
# Validate
|
| 1680 |
+
val_acc, scale_accs = validate(david, val_loader, anchors_dict, config)
|
| 1681 |
+
|
| 1682 |
+
# Update controller
|
| 1683 |
+
controller.update_metrics(scale_accs, val_acc)
|
| 1684 |
+
controller.apply_adaptive_strategies(scale_accs, epoch)
|
| 1685 |
+
|
| 1686 |
+
# Step scheduler
|
| 1687 |
+
if scheduler:
|
| 1688 |
+
scheduler.step()
|
| 1689 |
+
|
| 1690 |
+
epoch_time = time.time() - epoch_start
|
| 1691 |
+
|
| 1692 |
+
# Print
|
| 1693 |
+
print(f"\n📊 Epoch {epoch+1}/{config.num_epochs} ({epoch_time:.1f}s)")
|
| 1694 |
+
print(f" Train: Loss={train_loss:.4f}, Acc={train_acc:.2f}%")
|
| 1695 |
+
print(f" Val: Acc={val_acc:.2f}% (Best: {best_val_acc:.2f}%)")
|
| 1696 |
+
print(f" Active scales: {david.get_active_scales()}")
|
| 1697 |
+
print(f" LR: {optimizer.param_groups[0]['lr']:.2e}")
|
| 1698 |
+
|
| 1699 |
+
if config.log_loss_components and loss_components:
|
| 1700 |
+
print(f" Loss breakdown:")
|
| 1701 |
+
for key, value in sorted(loss_components.items()):
|
| 1702 |
+
if key != 'total':
|
| 1703 |
+
print(f" {key:20s}: {value:.6f}")
|
| 1704 |
+
|
| 1705 |
+
for scale, acc in scale_accs.items():
|
| 1706 |
+
frozen = "❄️" if controller.scales_frozen.get(scale, False) else "🔥"
|
| 1707 |
+
print(f" {frozen} Scale {scale}: {acc:.2f}%")
|
| 1708 |
+
|
| 1709 |
+
# Update tracking
|
| 1710 |
+
final_train_acc = train_acc
|
| 1711 |
+
final_train_loss = train_loss
|
| 1712 |
+
|
| 1713 |
+
# Record training history
|
| 1714 |
+
training_history['epochs'].append(epoch + 1)
|
| 1715 |
+
training_history['train_loss'].append(train_loss)
|
| 1716 |
+
training_history['train_acc'].append(train_acc)
|
| 1717 |
+
training_history['val_acc'].append(val_acc)
|
| 1718 |
+
training_history['lr'].append(optimizer.param_groups[0]['lr'])
|
| 1719 |
+
|
| 1720 |
+
# Record per-scale accuracies
|
| 1721 |
+
for scale, acc in scale_accs.items():
|
| 1722 |
+
if scale not in training_history['scale_accs']:
|
| 1723 |
+
training_history['scale_accs'][scale] = []
|
| 1724 |
+
training_history['scale_accs'][scale].append(acc)
|
| 1725 |
+
|
| 1726 |
+
# TensorBoard
|
| 1727 |
+
writer.add_scalar('train/loss', train_loss, epoch)
|
| 1728 |
+
writer.add_scalar('train/acc', train_acc, epoch)
|
| 1729 |
+
writer.add_scalar('val/acc', val_acc, epoch)
|
| 1730 |
+
|
| 1731 |
+
for scale, acc in scale_accs.items():
|
| 1732 |
+
writer.add_scalar(f'val/acc_scale_{scale}', acc, epoch)
|
| 1733 |
+
|
| 1734 |
+
# Save best
|
| 1735 |
+
if val_acc > best_val_acc:
|
| 1736 |
+
best_val_acc = val_acc
|
| 1737 |
+
best_epoch = epoch
|
| 1738 |
+
best_scale_accs = scale_accs.copy()
|
| 1739 |
+
|
| 1740 |
+
# Save training history alongside best model
|
| 1741 |
+
history_path = os.path.join(weights_dir, 'training_history.json')
|
| 1742 |
+
with open(history_path, 'w') as f:
|
| 1743 |
+
json.dump(training_history, f, indent=2)
|
| 1744 |
+
|
| 1745 |
+
save_checkpoint(
|
| 1746 |
+
os.path.join(weights_dir, 'best_model'),
|
| 1747 |
+
david, optimizer, scheduler, epoch,
|
| 1748 |
+
{
|
| 1749 |
+
'best_val_acc': best_val_acc,
|
| 1750 |
+
'best_epoch': best_epoch,
|
| 1751 |
+
'scale_accuracies': best_scale_accs,
|
| 1752 |
+
'training_history': training_history
|
| 1753 |
+
},
|
| 1754 |
+
config
|
| 1755 |
+
)
|
| 1756 |
+
|
| 1757 |
+
# Upload to hub when best model improves
|
| 1758 |
+
if config.upload_to_hub:
|
| 1759 |
+
best_metrics = {
|
| 1760 |
+
'best_val_acc': best_val_acc,
|
| 1761 |
+
'best_epoch': best_epoch,
|
| 1762 |
+
'scale_accuracies': best_scale_accs,
|
| 1763 |
+
'final_train_acc': train_acc,
|
| 1764 |
+
'final_train_loss': train_loss,
|
| 1765 |
+
'training_history': training_history,
|
| 1766 |
+
'parameters': total_params
|
| 1767 |
+
}
|
| 1768 |
+
prepare_hub_upload(weights_dir, runs_dir, config, david_config, best_metrics, model_name)
|
| 1769 |
+
|
| 1770 |
+
# Periodic save
|
| 1771 |
+
if (epoch + 1) % config.save_interval == 0:
|
| 1772 |
+
save_checkpoint(
|
| 1773 |
+
os.path.join(weights_dir, f'checkpoint_epoch_{epoch+1}'),
|
| 1774 |
+
david, optimizer, scheduler, epoch,
|
| 1775 |
+
{'val_acc': val_acc},
|
| 1776 |
+
config
|
| 1777 |
+
)
|
| 1778 |
+
|
| 1779 |
+
# Final save
|
| 1780 |
+
save_checkpoint(
|
| 1781 |
+
os.path.join(weights_dir, 'final_model'),
|
| 1782 |
+
david, optimizer, scheduler, config.num_epochs - 1,
|
| 1783 |
+
{'final_val_acc': val_acc},
|
| 1784 |
+
config
|
| 1785 |
+
)
|
| 1786 |
+
|
| 1787 |
+
writer.close()
|
| 1788 |
+
|
| 1789 |
+
# Final hub upload with all artifacts
|
| 1790 |
+
if config.upload_to_hub:
|
| 1791 |
+
print("\n[🤗] Performing final HuggingFace Hub upload...")
|
| 1792 |
+
final_metrics = {
|
| 1793 |
+
'best_val_acc': best_val_acc,
|
| 1794 |
+
'best_epoch': best_epoch,
|
| 1795 |
+
'scale_accuracies': best_scale_accs,
|
| 1796 |
+
'final_train_acc': final_train_acc,
|
| 1797 |
+
'final_train_loss': final_train_loss,
|
| 1798 |
+
'training_history': training_history,
|
| 1799 |
+
'parameters': total_params
|
| 1800 |
+
}
|
| 1801 |
+
prepare_hub_upload(weights_dir, runs_dir, config, david_config, final_metrics, model_name)
|
| 1802 |
+
|
| 1803 |
+
# Upload TensorBoard logs at the end
|
| 1804 |
+
if os.path.exists(runs_dir):
|
| 1805 |
+
runs_repo_path = f"runs/{model_name}/{config.run_id}"
|
| 1806 |
+
print(f"[📤] Uploading TensorBoard logs to {runs_repo_path}...")
|
| 1807 |
+
upload_to_huggingface(
|
| 1808 |
+
local_dir=runs_dir,
|
| 1809 |
+
repo_id=config.hf_repo,
|
| 1810 |
+
commit_message=f"Upload TensorBoard logs - {model_name} - Run {config.run_id}",
|
| 1811 |
+
path_in_repo=runs_repo_path
|
| 1812 |
+
)
|
| 1813 |
+
|
| 1814 |
+
print("\n" + "="*80)
|
| 1815 |
+
print(f"🎉 Training Complete!")
|
| 1816 |
+
print(f" Best Val Acc: {best_val_acc:.2f}% (Epoch {best_epoch+1})")
|
| 1817 |
+
print(f" Final Train Acc: {final_train_acc:.2f}%")
|
| 1818 |
+
print(f" Weights: {weights_dir}")
|
| 1819 |
+
if config.upload_to_hub:
|
| 1820 |
+
print(f" Hub: https://huggingface.co/{config.hf_repo}")
|
| 1821 |
+
print("="*80)
|
| 1822 |
+
|
| 1823 |
+
return david, best_val_acc
|
| 1824 |
+
|
| 1825 |
+
|
| 1826 |
+
# ============================================================================
|
| 1827 |
+
# USAGE EXAMPLE
|
| 1828 |
+
# ============================================================================
|
| 1829 |
+
|
| 1830 |
+
if __name__ == "__main__":
|
| 1831 |
+
# ============================================================================
|
| 1832 |
+
# EXPERIMENT 1: Single Encoder (Standard Training)
|
| 1833 |
+
# ============================================================================
|
| 1834 |
+
|
| 1835 |
+
# config = DavidTrainingConfig(
|
| 1836 |
+
# preset="balanced",
|
| 1837 |
+
# model_variant="clip_vit_b16", # Single encoder
|
| 1838 |
+
#
|
| 1839 |
+
# num_epochs=10,
|
| 1840 |
+
# batch_size=1024,
|
| 1841 |
+
# learning_rate=1e-2,
|
| 1842 |
+
#
|
| 1843 |
+
# use_rose_loss=True,
|
| 1844 |
+
# rose_initial_weight=0.1,
|
| 1845 |
+
# rose_max_weight=0.5,
|
| 1846 |
+
#
|
| 1847 |
+
# upload_to_hub=True,
|
| 1848 |
+
# hf_repo="AbstractPhil/gated-david",
|
| 1849 |
+
# )
|
| 1850 |
+
|
| 1851 |
+
# ============================================================================
|
| 1852 |
+
# EXPERIMENT 2: Multi-Encoder Unified Space (THE TEST!)
|
| 1853 |
+
# ============================================================================
|
| 1854 |
+
|
| 1855 |
+
config = DavidTrainingConfig(
|
| 1856 |
+
preset="balanced", # 4 scales: [256, 512, 768, 1024]
|
| 1857 |
+
|
| 1858 |
+
# 🧪 MULTI-ENCODER: OpenAI CLIP-B/32 vs LAION CLIP-B/32
|
| 1859 |
+
model_variant=["clip_vit_b16", "clip_vit_laion_b32"], # Both B/32!
|
| 1860 |
+
|
| 1861 |
+
num_epochs=10,
|
| 1862 |
+
batch_size=1024,
|
| 1863 |
+
learning_rate=1e-2,
|
| 1864 |
+
|
| 1865 |
+
# Custom warmup for 4 scales
|
| 1866 |
+
scale_warmup_epochs_override={
|
| 1867 |
+
256: 0,
|
| 1868 |
+
512: 2,
|
| 1869 |
+
768: 5,
|
| 1870 |
+
1024: 8
|
| 1871 |
+
},
|
| 1872 |
+
|
| 1873 |
+
use_rose_loss=True,
|
| 1874 |
+
rose_initial_weight=0.2, # Higher for diversity
|
| 1875 |
+
rose_max_weight=0.8,
|
| 1876 |
+
|
| 1877 |
+
use_cayley_loss=True, # Extra geometric regularization
|
| 1878 |
+
cayley_weight=0.01,
|
| 1879 |
+
|
| 1880 |
+
freeze_strategy="never",
|
| 1881 |
+
gradient_clip=10.0,
|
| 1882 |
+
|
| 1883 |
+
save_format="safetensors",
|
| 1884 |
+
upload_to_hub=False,
|
| 1885 |
+
hf_repo="YourName/YourRepoHere"#"AbstractPhil/david-shared-space",
|
| 1886 |
+
)
|
| 1887 |
+
|
| 1888 |
+
print("="*80)
|
| 1889 |
+
print("🧪 UNIFIED SPACE EXPERIMENT")
|
| 1890 |
+
print("="*80)
|
| 1891 |
+
print(f"Testing if David can unify:")
|
| 1892 |
+
if isinstance(config.model_variant, list):
|
| 1893 |
+
for variant in config.model_variant:
|
| 1894 |
+
print(f" • {variant}")
|
| 1895 |
+
print("="*80)
|
| 1896 |
+
|
| 1897 |
+
david, best_acc = train_david(config)
|