--- license: apache-2.0 base_model: - Ultralytics/YOLO11 pipeline_tag: object-detection tags: - pytorch --- ## YOLOv11x-Face-Detection A lightweight face detection model based on YOLO architecture ([YOLOv11 xlarge](https://huggingface.co/Ultralytics/YOLO11)), trained for 100 epochs on the WIDERFACE dataset. It's way more accurate than my [YOLOv11n](https://huggingface.co/AdamCodd/YOLOv11n-face-detection) model, but slower. It achieves the following results on the evaluation set: ``` ==================== Results ==================== Easy Val AP: 0.9629194049702874 Medium Val AP: 0.9519172409689101 Hard Val AP: 0.8800338681974709 ================================================= ``` YOLO results: ![Yolov11x results](https://huggingface.co/AdamCodd/YOLOv11x-face-detection/resolve/main/results.png) [Confusion matrix](https://huggingface.co/AdamCodd/YOLOv11x-face-detection/blob/main/confusion_matrix.png): [[27338 3110] [12337 0]] ### Usage ```python from huggingface_hub import hf_hub_download from ultralytics import YOLO model_path = hf_hub_download(repo_id="AdamCodd/YOLOv11x-face-detection", filename="model.pt") model = YOLO(model_path) results = model.predict("/path/to/your/image", save=True) # saves the result in runs/detect/predict ``` ### Limitations - Performance may vary in extreme lighting conditions - Best suited for frontal and slightly angled faces - Optimal performance for faces occupying >20 pixels