File size: 15,019 Bytes
e628f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e0a5b
e628f0b
f5e0a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixelcopter-RL
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: Pixelcopter-PLE-v0
      type: Pixelcopter-PLE-v0
    metrics:
    - type: mean_reward
      value: 13.10 +/- 6.89
      name: mean_reward
      verified: false
---
# REINFORCE Agent for Pixelcopter-PLE-v0

## Model Description

This repository contains a trained REINFORCE (Policy Gradient) reinforcement learning agent that has learned to play Pixelcopter-PLE-v0, a challenging helicopter navigation game from the PyGame Learning Environment (PLE). The agent uses policy gradient methods to learn optimal flight control strategies through trial and error.

### Model Details

- **Algorithm**: REINFORCE (Monte Carlo Policy Gradient)
- **Environment**: Pixelcopter-PLE-v0 (PyGame Learning Environment)
- **Framework**: Custom implementation following Deep RL Course guidelines
- **Task Type**: Discrete Control (Binary Actions)
- **Action Space**: Discrete (2 actions: do nothing or thrust up)
- **Observation Space**: Visual/pixel-based or feature-based state representation

### Environment Overview

Pixelcopter-PLE-v0 is a classic helicopter control game where:
- **Objective**: Navigate a helicopter through obstacles without crashing
- **Challenge**: Requires precise timing and control to avoid ceiling, floor, and obstacles
- **Physics**: Gravity constantly pulls the helicopter down; player must apply thrust to maintain altitude
- **Scoring**: Points are awarded for surviving longer and successfully navigating through gaps
- **Difficulty**: Requires learning temporal dependencies and precise action timing

## Performance

The trained REINFORCE agent achieves the following performance metrics:

- **Mean Reward**: 13.10 ± 6.89
- **Performance Analysis**: This represents solid performance for this challenging environment
- **Consistency**: The standard deviation indicates moderate variability, which is expected for policy gradient methods

### Performance Context

The mean reward of 13.10 demonstrates that the agent has successfully learned to:
- Navigate through multiple obstacles before crashing
- Balance altitude control against obstacle avoidance
- Develop timing strategies for thrust application
- Achieve consistent survival beyond random baseline performance

The variability (±6.89) is characteristic of policy gradient methods and reflects the stochastic nature of the learned policy, which can lead to different episode outcomes based on exploration.

## Algorithm: REINFORCE

REINFORCE is a foundational policy gradient algorithm that:
- **Direct Policy Learning**: Learns a parameterized policy directly (no value function)
- **Monte Carlo Updates**: Uses complete episode returns for policy updates
- **Policy Gradient**: Updates policy parameters in direction of higher expected returns
- **Stochastic Policy**: Learns probabilistic action selection for exploration

### Key Advantages
- Simple and intuitive policy gradient approach
- Works well with discrete and continuous action spaces
- No need for value function approximation
- Good educational foundation for understanding policy gradients

## Usage

### Installation Requirements

```bash
# Core dependencies
pip install torch torchvision
pip install gymnasium
pip install pygame-learning-environment
pip install numpy matplotlib

# For visualization and analysis
pip install pillow
pip install imageio  # for gif creation
```

### Loading and Using the Model

```python
import torch
import gymnasium as gym
from ple import PLE
from ple.games.pixelcopter import Pixelcopter
import numpy as np

# Load the trained model
# Note: Adjust path based on your model file structure
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load("pixelcopter_reinforce_model.pth", map_location=device)
model.eval()

# Create the environment
def create_pixelcopter_env():
    game = Pixelcopter()
    env = PLE(game, fps=30, display=True)  # Set display=False for headless
    return env

# Initialize environment
env = create_pixelcopter_env()
env.init()

# Run trained agent
def run_agent(model, env, episodes=5):
    total_rewards = []
    
    for episode in range(episodes):
        env.reset_game()
        episode_reward = 0
        
        while not env.game_over():
            # Get current state
            state = env.getScreenRGB()  # or env.getGameState() if using features
            state = preprocess_state(state)  # Apply your preprocessing
            
            # Convert to tensor
            state_tensor = torch.FloatTensor(state).unsqueeze(0).to(device)
            
            # Get action probabilities
            with torch.no_grad():
                action_probs = model(state_tensor)
                action = torch.multinomial(action_probs, 1).item()
            
            # Execute action (0: do nothing, 1: thrust)
            reward = env.act(action)
            episode_reward += reward
        
        total_rewards.append(episode_reward)
        print(f"Episode {episode + 1}: Reward = {episode_reward:.2f}")
    
    mean_reward = np.mean(total_rewards)
    std_reward = np.std(total_rewards)
    print(f"\nAverage Performance: {mean_reward:.2f} ± {std_reward:.2f}")
    
    return total_rewards

# Preprocessing function (adjust based on your model's input requirements)
def preprocess_state(state):
    """
    Preprocess the game state for the neural network
    This should match the preprocessing used during training
    """
    if isinstance(state, np.ndarray) and len(state.shape) == 3:
        # If using image input
        state = np.transpose(state, (2, 0, 1))  # Channel first
        state = state / 255.0  # Normalize pixels
        return state.flatten()  # or keep as image depending on model
    else:
        # If using game state features
        return np.array(list(state.values()))

# Run the agent
rewards = run_agent(model, env, episodes=10)
```

### Training Your Own Agent

```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from collections import deque

class PolicyNetwork(nn.Module):
    def __init__(self, state_size, action_size, hidden_size=64):
        super(PolicyNetwork, self).__init__()
        self.fc1 = nn.Linear(state_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, action_size)
        self.softmax = nn.Softmax(dim=1)
        
    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return self.softmax(x)

class REINFORCEAgent:
    def __init__(self, state_size, action_size, lr=0.001):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.policy_net = PolicyNetwork(state_size, action_size).to(self.device)
        self.optimizer = optim.Adam(self.policy_net.parameters(), lr=lr)
        
        self.saved_log_probs = []
        self.rewards = []
        
    def select_action(self, state):
        state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
        probs = self.policy_net(state)
        action = torch.multinomial(probs, 1)
        
        self.saved_log_probs.append(torch.log(probs.squeeze(0)[action]))
        return action.item()
    
    def update_policy(self, gamma=0.99):
        # Calculate discounted rewards
        discounted_rewards = []
        R = 0
        
        for r in reversed(self.rewards):
            R = r + gamma * R
            discounted_rewards.insert(0, R)
        
        # Normalize rewards
        discounted_rewards = torch.FloatTensor(discounted_rewards).to(self.device)
        discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + 1e-8)
        
        # Calculate policy loss
        policy_loss = []
        for log_prob, reward in zip(self.saved_log_probs, discounted_rewards):
            policy_loss.append(-log_prob * reward)
        
        # Update policy
        self.optimizer.zero_grad()
        policy_loss = torch.cat(policy_loss).sum()
        policy_loss.backward()
        self.optimizer.step()
        
        # Clear episode data
        self.saved_log_probs.clear()
        self.rewards.clear()
        
        return policy_loss.item()

def train_agent(episodes=2000):
    env = create_pixelcopter_env()
    env.init()
    
    # Determine state size based on your preprocessing
    state_size = len(preprocess_state(env.getScreenRGB()))  # Adjust as needed
    action_size = 2  # do nothing, thrust
    
    agent = REINFORCEAgent(state_size, action_size)
    
    scores = deque(maxlen=100)
    
    for episode in range(episodes):
        env.reset_game()
        episode_reward = 0
        
        while not env.game_over():
            state = preprocess_state(env.getScreenRGB())
            action = agent.select_action(state)
            
            reward = env.act(action)
            agent.rewards.append(reward)
            episode_reward += reward
        
        # Update policy after each episode
        loss = agent.update_policy()
        scores.append(episode_reward)
        
        if episode % 100 == 0:
            avg_score = np.mean(scores)
            print(f"Episode {episode}, Average Score: {avg_score:.2f}, Loss: {loss:.4f}")
    
    # Save the trained model
    torch.save(agent.policy_net, "pixelcopter_reinforce_model.pth")
    return agent

# Train a new agent
# trained_agent = train_agent()
```

### Evaluation and Analysis

```python
import matplotlib.pyplot as plt

def evaluate_agent_detailed(model, env, episodes=50):
    """Detailed evaluation with statistics and visualization"""
    rewards = []
    episode_lengths = []
    
    for episode in range(episodes):
        env.reset_game()
        episode_reward = 0
        steps = 0
        
        while not env.game_over():
            state = preprocess_state(env.getScreenRGB())
            state_tensor = torch.FloatTensor(state).unsqueeze(0)
            
            with torch.no_grad():
                action_probs = model(state_tensor)
                action = torch.multinomial(action_probs, 1).item()
            
            reward = env.act(action)
            episode_reward += reward
            steps += 1
        
        rewards.append(episode_reward)
        episode_lengths.append(steps)
        
        if (episode + 1) % 10 == 0:
            print(f"Episodes {episode + 1}/{episodes} completed")
    
    # Statistical analysis
    mean_reward = np.mean(rewards)
    std_reward = np.std(rewards)
    median_reward = np.median(rewards)
    max_reward = np.max(rewards)
    min_reward = np.min(rewards)
    
    mean_length = np.mean(episode_lengths)
    
    print(f"\n--- Evaluation Results ---")
    print(f"Episodes: {episodes}")
    print(f"Mean Reward: {mean_reward:.2f} ± {std_reward:.2f}")
    print(f"Median Reward: {median_reward:.2f}")
    print(f"Max Reward: {max_reward:.2f}")
    print(f"Min Reward: {min_reward:.2f}")
    print(f"Mean Episode Length: {mean_length:.1f} steps")
    
    # Visualization
    plt.figure(figsize=(12, 4))
    
    plt.subplot(1, 2, 1)
    plt.plot(rewards)
    plt.axhline(y=mean_reward, color='r', linestyle='--', label=f'Mean: {mean_reward:.2f}')
    plt.title('Episode Rewards')
    plt.xlabel('Episode')
    plt.ylabel('Reward')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.hist(rewards, bins=20, alpha=0.7)
    plt.axvline(x=mean_reward, color='r', linestyle='--', label=f'Mean: {mean_reward:.2f}')
    plt.title('Reward Distribution')
    plt.xlabel('Reward')
    plt.ylabel('Frequency')
    plt.legend()
    
    plt.tight_layout()
    plt.show()
    
    return {
        'rewards': rewards,
        'episode_lengths': episode_lengths,
        'stats': {
            'mean': mean_reward,
            'std': std_reward,
            'median': median_reward,
            'max': max_reward,
            'min': min_reward
        }
    }

# Run detailed evaluation
# results = evaluate_agent_detailed(model, env, episodes=100)
```

## Training Information

### Hyperparameters

The REINFORCE agent was trained with carefully tuned hyperparameters:
- **Learning Rate**: Optimized for stable policy gradient updates
- **Discount Factor (γ)**: Balances immediate vs. future rewards
- **Network Architecture**: Multi-layer perceptron with appropriate hidden dimensions
- **Episode Length**: Sufficient episodes to learn temporal patterns

### Training Environment

- **State Representation**: Processed game screen or extracted features
- **Action Space**: Binary discrete actions (do nothing vs. thrust)
- **Reward Signal**: Game score progression with survival bonus
- **Training Episodes**: Extended training to achieve stable performance

### Algorithm Characteristics

- **Sample Efficiency**: Moderate (typical for policy gradient methods)
- **Stability**: Good convergence with proper hyperparameter tuning
- **Exploration**: Built-in through stochastic policy
- **Interpretability**: Clear policy learning through gradient ascent

## Limitations and Considerations

- **Sample Efficiency**: REINFORCE requires many episodes to learn effectively
- **Variance**: Policy gradient estimates can have high variance
- **Environment Specific**: Trained specifically for Pixelcopter game mechanics
- **Stochastic Performance**: Episode rewards vary due to policy stochasticity
- **Real-time Performance**: Inference speed suitable for real-time game play

## Related Work and Extensions

This model serves as an excellent educational example for:
- **Policy Gradient Methods**: Understanding direct policy optimization
- **Deep Reinforcement Learning**: Practical implementation of RL algorithms
- **Game AI**: Learning complex temporal control tasks
- **Baseline Comparisons**: Foundation for more advanced algorithms (A2C, PPO, etc.)

## Citation

If you use this model in your research or educational projects, please cite:

```bibtex
@misc{pixelcopter_reinforce_2024,
  title={REINFORCE Agent for Pixelcopter-PLE-v0},
  author={Adilbai},
  year={2024},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/Adilbai/Pixelcopter-RL}},
  note={Trained following Deep RL Course Unit 4}
}
```

## Educational Resources

This model was developed following the **Deep Reinforcement Learning Course Unit 4**:
- **Course Link**: [https://huggingface.co/deep-rl-course/unit4/introduction](https://huggingface.co/deep-rl-course/unit4/introduction)
- **Topic**: Policy Gradient Methods and REINFORCE
- **Learning Objectives**: Understanding policy-based RL algorithms

For comprehensive learning about REINFORCE and policy gradient methods, refer to the complete course materials.

## License

This model is distributed under the MIT License. The model is intended for educational and research purposes.