Upload 2 files
Browse files- dataprocessor.py +431 -0
- enviromentcreator.py +463 -0
dataprocessor.py
ADDED
|
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yfinance as yf
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from typing import List, Dict, Optional, Tuple
|
| 5 |
+
import os
|
| 6 |
+
import logging
|
| 7 |
+
from datetime import datetime, timedelta
|
| 8 |
+
import pickle
|
| 9 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 10 |
+
import time
|
| 11 |
+
from sklearn.preprocessing import MinMaxScaler, StandardScaler
|
| 12 |
+
import warnings
|
| 13 |
+
warnings.filterwarnings('ignore')
|
| 14 |
+
|
| 15 |
+
# Set up logging
|
| 16 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
class StockDataProcessor:
|
| 20 |
+
"""
|
| 21 |
+
A comprehensive class for downloading, processing, and preprocessing stock data
|
| 22 |
+
from Yahoo Finance for reinforcement learning applications.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, data_dir: str = "stock_data", cache_dir: str = "cache"):
|
| 26 |
+
self.data_dir = data_dir
|
| 27 |
+
self.cache_dir = cache_dir
|
| 28 |
+
self.scalers = {}
|
| 29 |
+
|
| 30 |
+
# Create directories if they don't exist
|
| 31 |
+
os.makedirs(data_dir, exist_ok=True)
|
| 32 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 33 |
+
|
| 34 |
+
def get_sp500_tickers(self) -> List[str]:
|
| 35 |
+
"""Get S&P 500 stock tickers"""
|
| 36 |
+
try:
|
| 37 |
+
# Download S&P 500 list from Wikipedia
|
| 38 |
+
url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
|
| 39 |
+
tables = pd.read_html(url)
|
| 40 |
+
sp500_table = tables[0]
|
| 41 |
+
tickers = sp500_table['Symbol'].tolist()
|
| 42 |
+
# Clean tickers (remove dots, etc.)
|
| 43 |
+
tickers = [ticker.replace('.', '-') for ticker in tickers]
|
| 44 |
+
logger.info(f"Retrieved {len(tickers)} S&P 500 tickers")
|
| 45 |
+
return tickers
|
| 46 |
+
except Exception as e:
|
| 47 |
+
logger.error(f"Error fetching S&P 500 tickers: {e}")
|
| 48 |
+
# Fallback to a smaller list of popular stocks
|
| 49 |
+
return ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA', 'META', 'NVDA', 'JPM', 'JNJ', 'V']
|
| 50 |
+
|
| 51 |
+
def download_stock_data(self,
|
| 52 |
+
ticker: str,
|
| 53 |
+
period: str = "10y",
|
| 54 |
+
interval: str = "1d") -> Optional[pd.DataFrame]:
|
| 55 |
+
"""
|
| 56 |
+
Download stock data for a single ticker
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
ticker: Stock symbol
|
| 60 |
+
period: Time period (1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max)
|
| 61 |
+
interval: Data interval (1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo)
|
| 62 |
+
"""
|
| 63 |
+
try:
|
| 64 |
+
stock = yf.Ticker(ticker)
|
| 65 |
+
data = stock.history(period=period, interval=interval)
|
| 66 |
+
|
| 67 |
+
if data.empty:
|
| 68 |
+
logger.warning(f"No data found for {ticker}")
|
| 69 |
+
return None
|
| 70 |
+
|
| 71 |
+
# Add ticker column
|
| 72 |
+
data['Ticker'] = ticker
|
| 73 |
+
data.reset_index(inplace=True)
|
| 74 |
+
|
| 75 |
+
logger.info(f"Downloaded {len(data)} records for {ticker}")
|
| 76 |
+
return data
|
| 77 |
+
|
| 78 |
+
except Exception as e:
|
| 79 |
+
logger.error(f"Error downloading data for {ticker}: {e}")
|
| 80 |
+
return None
|
| 81 |
+
|
| 82 |
+
def download_multiple_stocks(self,
|
| 83 |
+
tickers: List[str],
|
| 84 |
+
period: str = "10y",
|
| 85 |
+
interval: str = "1d",
|
| 86 |
+
max_workers: int = 10) -> pd.DataFrame:
|
| 87 |
+
"""
|
| 88 |
+
Download stock data for multiple tickers using parallel processing
|
| 89 |
+
"""
|
| 90 |
+
all_data = []
|
| 91 |
+
|
| 92 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
| 93 |
+
# Submit all download tasks
|
| 94 |
+
future_to_ticker = {
|
| 95 |
+
executor.submit(self.download_stock_data, ticker, period, interval): ticker
|
| 96 |
+
for ticker in tickers
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
# Collect results
|
| 100 |
+
for future in as_completed(future_to_ticker):
|
| 101 |
+
ticker = future_to_ticker[future]
|
| 102 |
+
try:
|
| 103 |
+
data = future.result()
|
| 104 |
+
if data is not None:
|
| 105 |
+
all_data.append(data)
|
| 106 |
+
except Exception as e:
|
| 107 |
+
logger.error(f"Error processing {ticker}: {e}")
|
| 108 |
+
|
| 109 |
+
# Rate limiting
|
| 110 |
+
time.sleep(0.1)
|
| 111 |
+
|
| 112 |
+
if all_data:
|
| 113 |
+
combined_data = pd.concat(all_data, ignore_index=True)
|
| 114 |
+
logger.info(f"Combined data shape: {combined_data.shape}")
|
| 115 |
+
return combined_data
|
| 116 |
+
else:
|
| 117 |
+
return pd.DataFrame()
|
| 118 |
+
|
| 119 |
+
def calculate_technical_indicators(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 120 |
+
"""
|
| 121 |
+
Calculate technical indicators for each stock
|
| 122 |
+
"""
|
| 123 |
+
logger.info("Calculating technical indicators...")
|
| 124 |
+
|
| 125 |
+
result_dfs = []
|
| 126 |
+
|
| 127 |
+
for ticker in df['Ticker'].unique():
|
| 128 |
+
ticker_data = df[df['Ticker'] == ticker].copy()
|
| 129 |
+
ticker_data = ticker_data.sort_values('Date')
|
| 130 |
+
|
| 131 |
+
# Moving averages
|
| 132 |
+
ticker_data['SMA_5'] = ticker_data['Close'].rolling(window=5).mean()
|
| 133 |
+
ticker_data['SMA_10'] = ticker_data['Close'].rolling(window=10).mean()
|
| 134 |
+
ticker_data['SMA_20'] = ticker_data['Close'].rolling(window=20).mean()
|
| 135 |
+
ticker_data['SMA_50'] = ticker_data['Close'].rolling(window=50).mean()
|
| 136 |
+
|
| 137 |
+
# Exponential moving averages
|
| 138 |
+
ticker_data['EMA_12'] = ticker_data['Close'].ewm(span=12).mean()
|
| 139 |
+
ticker_data['EMA_26'] = ticker_data['Close'].ewm(span=26).mean()
|
| 140 |
+
|
| 141 |
+
# MACD
|
| 142 |
+
ticker_data['MACD'] = ticker_data['EMA_12'] - ticker_data['EMA_26']
|
| 143 |
+
ticker_data['MACD_Signal'] = ticker_data['MACD'].ewm(span=9).mean()
|
| 144 |
+
ticker_data['MACD_Histogram'] = ticker_data['MACD'] - ticker_data['MACD_Signal']
|
| 145 |
+
|
| 146 |
+
# RSI
|
| 147 |
+
delta = ticker_data['Close'].diff()
|
| 148 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
| 149 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
| 150 |
+
rs = gain / loss
|
| 151 |
+
ticker_data['RSI'] = 100 - (100 / (1 + rs))
|
| 152 |
+
|
| 153 |
+
# Bollinger Bands
|
| 154 |
+
ticker_data['BB_Middle'] = ticker_data['Close'].rolling(window=20).mean()
|
| 155 |
+
bb_std = ticker_data['Close'].rolling(window=20).std()
|
| 156 |
+
ticker_data['BB_Upper'] = ticker_data['BB_Middle'] + (bb_std * 2)
|
| 157 |
+
ticker_data['BB_Lower'] = ticker_data['BB_Middle'] - (bb_std * 2)
|
| 158 |
+
ticker_data['BB_Width'] = ticker_data['BB_Upper'] - ticker_data['BB_Lower']
|
| 159 |
+
ticker_data['BB_Position'] = (ticker_data['Close'] - ticker_data['BB_Lower']) / ticker_data['BB_Width']
|
| 160 |
+
|
| 161 |
+
# Volatility
|
| 162 |
+
ticker_data['Volatility'] = ticker_data['Close'].rolling(window=20).std()
|
| 163 |
+
|
| 164 |
+
# Price change features
|
| 165 |
+
ticker_data['Price_Change'] = ticker_data['Close'].pct_change()
|
| 166 |
+
ticker_data['Price_Change_5d'] = ticker_data['Close'].pct_change(periods=5)
|
| 167 |
+
ticker_data['High_Low_Ratio'] = ticker_data['High'] / ticker_data['Low']
|
| 168 |
+
ticker_data['Open_Close_Ratio'] = ticker_data['Open'] / ticker_data['Close']
|
| 169 |
+
|
| 170 |
+
# Volume features
|
| 171 |
+
ticker_data['Volume_SMA'] = ticker_data['Volume'].rolling(window=20).mean()
|
| 172 |
+
ticker_data['Volume_Ratio'] = ticker_data['Volume'] / ticker_data['Volume_SMA']
|
| 173 |
+
|
| 174 |
+
result_dfs.append(ticker_data)
|
| 175 |
+
|
| 176 |
+
result = pd.concat(result_dfs, ignore_index=True)
|
| 177 |
+
logger.info(f"Technical indicators calculated. New shape: {result.shape}")
|
| 178 |
+
return result
|
| 179 |
+
|
| 180 |
+
def create_lagged_features(self, df: pd.DataFrame, lags: List[int] = [1, 2, 3, 5, 10]) -> pd.DataFrame:
|
| 181 |
+
"""
|
| 182 |
+
Create lagged features for time series analysis
|
| 183 |
+
"""
|
| 184 |
+
logger.info("Creating lagged features...")
|
| 185 |
+
|
| 186 |
+
result_dfs = []
|
| 187 |
+
feature_columns = ['Close', 'Volume', 'Price_Change', 'RSI', 'MACD', 'Volatility']
|
| 188 |
+
|
| 189 |
+
for ticker in df['Ticker'].unique():
|
| 190 |
+
ticker_data = df[df['Ticker'] == ticker].copy()
|
| 191 |
+
ticker_data = ticker_data.sort_values('Date')
|
| 192 |
+
|
| 193 |
+
for col in feature_columns:
|
| 194 |
+
if col in ticker_data.columns:
|
| 195 |
+
for lag in lags:
|
| 196 |
+
ticker_data[f'{col}_lag_{lag}'] = ticker_data[col].shift(lag)
|
| 197 |
+
|
| 198 |
+
result_dfs.append(ticker_data)
|
| 199 |
+
|
| 200 |
+
result = pd.concat(result_dfs, ignore_index=True)
|
| 201 |
+
logger.info(f"Lagged features created. New shape: {result.shape}")
|
| 202 |
+
return result
|
| 203 |
+
|
| 204 |
+
def create_future_returns(self, df: pd.DataFrame, horizons: List[int] = [1, 5, 10, 20]) -> pd.DataFrame:
|
| 205 |
+
"""
|
| 206 |
+
Create future return targets for prediction
|
| 207 |
+
"""
|
| 208 |
+
logger.info("Creating future return targets...")
|
| 209 |
+
|
| 210 |
+
result_dfs = []
|
| 211 |
+
|
| 212 |
+
for ticker in df['Ticker'].unique():
|
| 213 |
+
ticker_data = df[df['Ticker'] == ticker].copy()
|
| 214 |
+
ticker_data = ticker_data.sort_values('Date')
|
| 215 |
+
|
| 216 |
+
for horizon in horizons:
|
| 217 |
+
ticker_data[f'Future_Return_{horizon}d'] = ticker_data['Close'].shift(-horizon) / ticker_data['Close'] - 1
|
| 218 |
+
|
| 219 |
+
# Create binary classification targets
|
| 220 |
+
ticker_data[f'Future_Up_{horizon}d'] = (ticker_data[f'Future_Return_{horizon}d'] > 0).astype(int)
|
| 221 |
+
|
| 222 |
+
# Create categorical targets (strong down, down, up, strong up)
|
| 223 |
+
returns = ticker_data[f'Future_Return_{horizon}d']
|
| 224 |
+
ticker_data[f'Future_Category_{horizon}d'] = pd.cut(
|
| 225 |
+
returns,
|
| 226 |
+
bins=[-np.inf, -0.02, 0, 0.02, np.inf],
|
| 227 |
+
labels=[0, 1, 2, 3]
|
| 228 |
+
).astype(float)
|
| 229 |
+
|
| 230 |
+
result_dfs.append(ticker_data)
|
| 231 |
+
|
| 232 |
+
result = pd.concat(result_dfs, ignore_index=True)
|
| 233 |
+
logger.info(f"Future return targets created. New shape: {result.shape}")
|
| 234 |
+
return result
|
| 235 |
+
|
| 236 |
+
def clean_and_normalize_data(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 237 |
+
"""
|
| 238 |
+
Clean and normalize the data for ML/RL
|
| 239 |
+
"""
|
| 240 |
+
logger.info("Cleaning and normalizing data...")
|
| 241 |
+
|
| 242 |
+
# Remove rows with too many NaN values
|
| 243 |
+
df = df.dropna(thresh=len(df.columns) * 0.7)
|
| 244 |
+
|
| 245 |
+
# Forward fill remaining NaN values
|
| 246 |
+
numeric_columns = df.select_dtypes(include=[np.number]).columns
|
| 247 |
+
df[numeric_columns] = df[numeric_columns].fillna(method='ffill')
|
| 248 |
+
|
| 249 |
+
# Remove infinite values
|
| 250 |
+
df = df.replace([np.inf, -np.inf], np.nan)
|
| 251 |
+
df = df.dropna()
|
| 252 |
+
|
| 253 |
+
logger.info(f"Data cleaned. Final shape: {df.shape}")
|
| 254 |
+
return df
|
| 255 |
+
|
| 256 |
+
def create_rl_states_actions(self, df: pd.DataFrame) -> Dict:
|
| 257 |
+
"""
|
| 258 |
+
Create state and action spaces suitable for reinforcement learning
|
| 259 |
+
"""
|
| 260 |
+
logger.info("Creating RL state and action representations...")
|
| 261 |
+
|
| 262 |
+
# Define state features (technical indicators and market data)
|
| 263 |
+
state_features = [
|
| 264 |
+
'Open', 'High', 'Low', 'Close', 'Volume',
|
| 265 |
+
'SMA_5', 'SMA_10', 'SMA_20', 'SMA_50',
|
| 266 |
+
'EMA_12', 'EMA_26', 'MACD', 'MACD_Signal', 'RSI',
|
| 267 |
+
'BB_Position', 'BB_Width', 'Volatility',
|
| 268 |
+
'Price_Change', 'High_Low_Ratio', 'Volume_Ratio'
|
| 269 |
+
]
|
| 270 |
+
|
| 271 |
+
# Add lagged features to state
|
| 272 |
+
lag_features = [col for col in df.columns if '_lag_' in col]
|
| 273 |
+
state_features.extend(lag_features)
|
| 274 |
+
|
| 275 |
+
# Filter existing features
|
| 276 |
+
state_features = [feat for feat in state_features if feat in df.columns]
|
| 277 |
+
|
| 278 |
+
# Normalize state features
|
| 279 |
+
scaler = StandardScaler()
|
| 280 |
+
df_scaled = df.copy()
|
| 281 |
+
df_scaled[state_features] = scaler.fit_transform(df[state_features])
|
| 282 |
+
|
| 283 |
+
# Define action space (0: Hold, 1: Buy, 2: Sell)
|
| 284 |
+
# You can expand this based on your RL strategy
|
| 285 |
+
|
| 286 |
+
# Create sequences for each stock
|
| 287 |
+
rl_data = {}
|
| 288 |
+
sequence_length = 60 # Number of days to look back
|
| 289 |
+
|
| 290 |
+
for ticker in df_scaled['Ticker'].unique():
|
| 291 |
+
ticker_data = df_scaled[df_scaled['Ticker'] == ticker].sort_values('Date')
|
| 292 |
+
|
| 293 |
+
states = []
|
| 294 |
+
rewards = []
|
| 295 |
+
dates = []
|
| 296 |
+
|
| 297 |
+
for i in range(sequence_length, len(ticker_data)):
|
| 298 |
+
# State: sequence of technical indicators
|
| 299 |
+
state_sequence = ticker_data.iloc[i-sequence_length:i][state_features].values
|
| 300 |
+
states.append(state_sequence)
|
| 301 |
+
|
| 302 |
+
# Reward: next day return (can be modified based on your RL objective)
|
| 303 |
+
if 'Future_Return_1d' in ticker_data.columns:
|
| 304 |
+
reward = ticker_data.iloc[i]['Future_Return_1d']
|
| 305 |
+
else:
|
| 306 |
+
current_price = ticker_data.iloc[i]['Close']
|
| 307 |
+
if i < len(ticker_data) - 1:
|
| 308 |
+
next_price = ticker_data.iloc[i+1]['Close']
|
| 309 |
+
reward = (next_price - current_price) / current_price
|
| 310 |
+
else:
|
| 311 |
+
reward = 0
|
| 312 |
+
|
| 313 |
+
rewards.append(reward)
|
| 314 |
+
dates.append(ticker_data.iloc[i]['Date'])
|
| 315 |
+
|
| 316 |
+
rl_data[ticker] = {
|
| 317 |
+
'states': np.array(states),
|
| 318 |
+
'rewards': np.array(rewards),
|
| 319 |
+
'dates': dates,
|
| 320 |
+
'state_features': state_features
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
logger.info(f"RL data created for {len(rl_data)} stocks")
|
| 324 |
+
return rl_data, scaler
|
| 325 |
+
|
| 326 |
+
def save_processed_data(self, data: pd.DataFrame, rl_data: Dict, scaler, filename_prefix: str = "processed_stock_data"):
|
| 327 |
+
"""
|
| 328 |
+
Save processed data to files
|
| 329 |
+
"""
|
| 330 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 331 |
+
|
| 332 |
+
# Save CSV data
|
| 333 |
+
csv_filename = f"{self.data_dir}/{filename_prefix}_{timestamp}.csv"
|
| 334 |
+
data.to_csv(csv_filename, index=False)
|
| 335 |
+
logger.info(f"CSV data saved to {csv_filename}")
|
| 336 |
+
|
| 337 |
+
# Save RL data
|
| 338 |
+
rl_filename = f"{self.data_dir}/{filename_prefix}_rl_{timestamp}.pkl"
|
| 339 |
+
with open(rl_filename, 'wb') as f:
|
| 340 |
+
pickle.dump(rl_data, f)
|
| 341 |
+
logger.info(f"RL data saved to {rl_filename}")
|
| 342 |
+
|
| 343 |
+
# Save scaler
|
| 344 |
+
scaler_filename = f"{self.data_dir}/{filename_prefix}_scaler_{timestamp}.pkl"
|
| 345 |
+
with open(scaler_filename, 'wb') as f:
|
| 346 |
+
pickle.dump(scaler, f)
|
| 347 |
+
logger.info(f"Scaler saved to {scaler_filename}")
|
| 348 |
+
|
| 349 |
+
return csv_filename, rl_filename, scaler_filename
|
| 350 |
+
|
| 351 |
+
def process_stocks_pipeline(self,
|
| 352 |
+
tickers: Optional[List[str]] = None,
|
| 353 |
+
period: str = "10y",
|
| 354 |
+
interval: str = "1d",
|
| 355 |
+
use_sp500: bool = True) -> Tuple[pd.DataFrame, Dict, object]:
|
| 356 |
+
"""
|
| 357 |
+
Complete pipeline for processing stock data
|
| 358 |
+
"""
|
| 359 |
+
logger.info("Starting stock data processing pipeline...")
|
| 360 |
+
|
| 361 |
+
# Get tickers
|
| 362 |
+
if tickers is None:
|
| 363 |
+
if use_sp500:
|
| 364 |
+
tickers = self.get_sp500_tickers()
|
| 365 |
+
else:
|
| 366 |
+
tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA'] # Default list
|
| 367 |
+
|
| 368 |
+
# Download data
|
| 369 |
+
logger.info(f"Downloading data for {len(tickers)} tickers...")
|
| 370 |
+
raw_data = self.download_multiple_stocks(tickers, period, interval)
|
| 371 |
+
|
| 372 |
+
if raw_data.empty:
|
| 373 |
+
logger.error("No data downloaded. Exiting.")
|
| 374 |
+
return None, None, None
|
| 375 |
+
|
| 376 |
+
# Process data
|
| 377 |
+
data_with_indicators = self.calculate_technical_indicators(raw_data)
|
| 378 |
+
data_with_lags = self.create_lagged_features(data_with_indicators)
|
| 379 |
+
data_with_targets = self.create_future_returns(data_with_lags)
|
| 380 |
+
cleaned_data = self.clean_and_normalize_data(data_with_targets)
|
| 381 |
+
|
| 382 |
+
# Create RL data
|
| 383 |
+
rl_data, scaler = self.create_rl_states_actions(cleaned_data)
|
| 384 |
+
|
| 385 |
+
# Save data
|
| 386 |
+
self.save_processed_data(cleaned_data, rl_data, scaler)
|
| 387 |
+
|
| 388 |
+
logger.info("Pipeline completed successfully!")
|
| 389 |
+
return cleaned_data, rl_data, scaler
|
| 390 |
+
|
| 391 |
+
# Example usage and utility functions
|
| 392 |
+
def example_usage():
|
| 393 |
+
"""
|
| 394 |
+
Example of how to use the StockDataProcessor
|
| 395 |
+
"""
|
| 396 |
+
# Initialize processor
|
| 397 |
+
processor = StockDataProcessor()
|
| 398 |
+
|
| 399 |
+
# Option 1: Process S&P 500 stocks
|
| 400 |
+
print("Processing S&P 500 stocks...")
|
| 401 |
+
data, rl_data, scaler = processor.process_stocks_pipeline(use_sp500=True, period="5y")
|
| 402 |
+
|
| 403 |
+
# Option 2: Process specific stocks
|
| 404 |
+
# custom_tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'TSLA', 'META', 'NVDA']
|
| 405 |
+
# data, rl_data, scaler = processor.process_stocks_pipeline(tickers=custom_tickers, period="10y")
|
| 406 |
+
|
| 407 |
+
if data is not None:
|
| 408 |
+
print(f"Processed data shape: {data.shape}")
|
| 409 |
+
print(f"Features: {data.columns.tolist()}")
|
| 410 |
+
print(f"RL data available for {len(rl_data)} stocks")
|
| 411 |
+
|
| 412 |
+
# Example: Access RL data for a specific stock
|
| 413 |
+
if 'AAPL' in rl_data:
|
| 414 |
+
aapl_states = rl_data['AAPL']['states']
|
| 415 |
+
aapl_rewards = rl_data['AAPL']['rewards']
|
| 416 |
+
print(f"AAPL: {aapl_states.shape[0]} sequences, each with {aapl_states.shape[1]} timesteps and {aapl_states.shape[2]} features")
|
| 417 |
+
|
| 418 |
+
def load_processed_data(rl_filename: str, scaler_filename: str) -> Tuple[Dict, object]:
|
| 419 |
+
"""
|
| 420 |
+
Load previously processed RL data
|
| 421 |
+
"""
|
| 422 |
+
with open(rl_filename, 'rb') as f:
|
| 423 |
+
rl_data = pickle.load(f)
|
| 424 |
+
|
| 425 |
+
with open(scaler_filename, 'rb') as f:
|
| 426 |
+
scaler = pickle.load(f)
|
| 427 |
+
|
| 428 |
+
return rl_data, scaler
|
| 429 |
+
|
| 430 |
+
if __name__ == "__main__":
|
| 431 |
+
example_usage()
|
enviromentcreator.py
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import gymnasium as gym
|
| 4 |
+
from gymnasium import spaces
|
| 5 |
+
from typing import Dict, Tuple, List, Optional
|
| 6 |
+
import logging
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
from enum import Enum
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import seaborn as sns
|
| 11 |
+
from collections import deque
|
| 12 |
+
import json
|
| 13 |
+
|
| 14 |
+
# Configure logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
class ActionType(Enum):
|
| 19 |
+
HOLD = 0
|
| 20 |
+
BUY = 1
|
| 21 |
+
SELL = 2
|
| 22 |
+
|
| 23 |
+
@dataclass
|
| 24 |
+
class TradingMetrics:
|
| 25 |
+
"""Comprehensive trading metrics for evaluation"""
|
| 26 |
+
total_return: float = 0.0
|
| 27 |
+
sharpe_ratio: float = 0.0
|
| 28 |
+
max_drawdown: float = 0.0
|
| 29 |
+
win_rate: float = 0.0
|
| 30 |
+
total_trades: int = 0
|
| 31 |
+
profitable_trades: int = 0
|
| 32 |
+
average_trade_return: float = 0.0
|
| 33 |
+
volatility: float = 0.0
|
| 34 |
+
calmar_ratio: float = 0.0
|
| 35 |
+
sortino_ratio: float = 0.0
|
| 36 |
+
|
| 37 |
+
class EnhancedStockTradingEnvironment(gym.Env):
|
| 38 |
+
"""
|
| 39 |
+
Enhanced stock trading environment with comprehensive metrics and logging
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
def __init__(self,
|
| 43 |
+
rl_data: Dict,
|
| 44 |
+
ticker: str,
|
| 45 |
+
initial_balance: float = 10000,
|
| 46 |
+
transaction_cost: float = 0.001, # 0.1% transaction cost
|
| 47 |
+
max_position_size: float = 1.0, # Maximum position size as fraction of portfolio
|
| 48 |
+
lookback_window: int = 60, # Number of days to look back
|
| 49 |
+
reward_type: str = "return", # "return", "sharpe", "sortino"
|
| 50 |
+
enable_logging: bool = True):
|
| 51 |
+
|
| 52 |
+
super().__init__()
|
| 53 |
+
|
| 54 |
+
self.rl_data = rl_data
|
| 55 |
+
self.ticker = ticker
|
| 56 |
+
self.initial_balance = initial_balance
|
| 57 |
+
self.transaction_cost = transaction_cost
|
| 58 |
+
self.max_position_size = max_position_size
|
| 59 |
+
self.lookback_window = lookback_window
|
| 60 |
+
self.reward_type = reward_type
|
| 61 |
+
self.enable_logging = enable_logging
|
| 62 |
+
|
| 63 |
+
# Get data for the specific ticker
|
| 64 |
+
self.stock_data = rl_data[ticker]
|
| 65 |
+
self.states = self.stock_data['states']
|
| 66 |
+
self.prices = self._extract_prices() # Extract actual prices
|
| 67 |
+
self.dates = self.stock_data['dates']
|
| 68 |
+
|
| 69 |
+
# Environment parameters
|
| 70 |
+
self.current_step = 0
|
| 71 |
+
self.max_steps = len(self.states) - 1
|
| 72 |
+
|
| 73 |
+
# Portfolio state
|
| 74 |
+
self.reset_portfolio()
|
| 75 |
+
|
| 76 |
+
# Trading history
|
| 77 |
+
self.trade_history = []
|
| 78 |
+
self.portfolio_history = []
|
| 79 |
+
self.action_history = []
|
| 80 |
+
self.reward_history = []
|
| 81 |
+
|
| 82 |
+
# Performance tracking
|
| 83 |
+
self.daily_returns = deque(maxlen=252) # 1 year of returns for Sharpe calculation
|
| 84 |
+
self.drawdown_history = []
|
| 85 |
+
self.peak_portfolio_value = initial_balance
|
| 86 |
+
|
| 87 |
+
# Action space: 0 = Hold, 1 = Buy, 2 = Sell, with continuous position sizing
|
| 88 |
+
self.action_space = spaces.Box(
|
| 89 |
+
low=np.array([0, 0]), # [action_type (0-2), position_size (0-1)]
|
| 90 |
+
high=np.array([2, 1]),
|
| 91 |
+
dtype=np.float32
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Observation space: market state + portfolio state + technical indicators
|
| 95 |
+
market_state_size = self.states.shape[1] * self.states.shape[2]
|
| 96 |
+
portfolio_state_size = 8 # Extended portfolio state
|
| 97 |
+
|
| 98 |
+
self.observation_space = spaces.Box(
|
| 99 |
+
low=-np.inf,
|
| 100 |
+
high=np.inf,
|
| 101 |
+
shape=(market_state_size + portfolio_state_size,),
|
| 102 |
+
dtype=np.float32
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
if self.enable_logging:
|
| 106 |
+
logger.info(f"Environment initialized for {ticker}")
|
| 107 |
+
logger.info(f"Data shape: {self.states.shape}")
|
| 108 |
+
logger.info(f"Price range: ${self.prices.min():.2f} - ${self.prices.max():.2f}")
|
| 109 |
+
|
| 110 |
+
def _extract_prices(self) -> np.ndarray:
|
| 111 |
+
"""Extract actual prices from the state data"""
|
| 112 |
+
# Assuming the first feature in states is the close price
|
| 113 |
+
return self.states[:, -1, 3] # Close price is typically at index 3
|
| 114 |
+
|
| 115 |
+
def reset_portfolio(self):
|
| 116 |
+
"""Reset portfolio to initial state"""
|
| 117 |
+
self.balance = self.initial_balance
|
| 118 |
+
self.shares_held = 0
|
| 119 |
+
self.net_worth = self.initial_balance
|
| 120 |
+
self.max_net_worth = self.initial_balance
|
| 121 |
+
self.position_value = 0
|
| 122 |
+
self.total_transaction_costs = 0
|
| 123 |
+
|
| 124 |
+
def reset(self, seed=None, options=None):
|
| 125 |
+
super().reset(seed=seed)
|
| 126 |
+
|
| 127 |
+
self.current_step = 0
|
| 128 |
+
self.reset_portfolio()
|
| 129 |
+
|
| 130 |
+
# Clear histories
|
| 131 |
+
self.trade_history.clear()
|
| 132 |
+
self.portfolio_history.clear()
|
| 133 |
+
self.action_history.clear()
|
| 134 |
+
self.reward_history.clear()
|
| 135 |
+
self.daily_returns.clear()
|
| 136 |
+
self.drawdown_history.clear()
|
| 137 |
+
self.peak_portfolio_value = self.initial_balance
|
| 138 |
+
|
| 139 |
+
return self._get_observation(), {}
|
| 140 |
+
|
| 141 |
+
def step(self, action):
|
| 142 |
+
# Parse action
|
| 143 |
+
action_type = int(np.clip(action[0], 0, 2))
|
| 144 |
+
position_size = np.clip(action[1], 0, 1)
|
| 145 |
+
|
| 146 |
+
# Execute action
|
| 147 |
+
reward = self._execute_action(action_type, position_size)
|
| 148 |
+
|
| 149 |
+
# Update portfolio metrics
|
| 150 |
+
self._update_portfolio_metrics()
|
| 151 |
+
|
| 152 |
+
# Store history
|
| 153 |
+
self._store_step_data(action_type, position_size, reward)
|
| 154 |
+
|
| 155 |
+
# Move to next step
|
| 156 |
+
self.current_step += 1
|
| 157 |
+
|
| 158 |
+
# Check if episode is done
|
| 159 |
+
done = self.current_step >= self.max_steps
|
| 160 |
+
truncated = False
|
| 161 |
+
|
| 162 |
+
# Calculate final metrics if done
|
| 163 |
+
info = {}
|
| 164 |
+
if done:
|
| 165 |
+
info = self._calculate_episode_metrics()
|
| 166 |
+
|
| 167 |
+
return self._get_observation(), reward, done, truncated, info
|
| 168 |
+
|
| 169 |
+
def _execute_action(self, action_type: int, position_size: float) -> float:
|
| 170 |
+
"""Execute trading action and return reward"""
|
| 171 |
+
current_price = self.prices[self.current_step]
|
| 172 |
+
previous_net_worth = self.net_worth
|
| 173 |
+
|
| 174 |
+
if action_type == ActionType.BUY.value:
|
| 175 |
+
# Calculate how much to buy
|
| 176 |
+
max_affordable = self.balance / current_price
|
| 177 |
+
shares_to_buy = int(max_affordable * position_size)
|
| 178 |
+
|
| 179 |
+
if shares_to_buy > 0:
|
| 180 |
+
cost = shares_to_buy * current_price
|
| 181 |
+
transaction_cost = cost * self.transaction_cost
|
| 182 |
+
|
| 183 |
+
if self.balance >= cost + transaction_cost:
|
| 184 |
+
self.shares_held += shares_to_buy
|
| 185 |
+
self.balance -= (cost + transaction_cost)
|
| 186 |
+
self.total_transaction_costs += transaction_cost
|
| 187 |
+
|
| 188 |
+
self.trade_history.append({
|
| 189 |
+
'step': self.current_step,
|
| 190 |
+
'action': 'BUY',
|
| 191 |
+
'shares': shares_to_buy,
|
| 192 |
+
'price': current_price,
|
| 193 |
+
'cost': cost,
|
| 194 |
+
'transaction_cost': transaction_cost
|
| 195 |
+
})
|
| 196 |
+
|
| 197 |
+
elif action_type == ActionType.SELL.value:
|
| 198 |
+
# Calculate how much to sell
|
| 199 |
+
shares_to_sell = int(self.shares_held * position_size)
|
| 200 |
+
|
| 201 |
+
if shares_to_sell > 0:
|
| 202 |
+
revenue = shares_to_sell * current_price
|
| 203 |
+
transaction_cost = revenue * self.transaction_cost
|
| 204 |
+
|
| 205 |
+
self.shares_held -= shares_to_sell
|
| 206 |
+
self.balance += (revenue - transaction_cost)
|
| 207 |
+
self.total_transaction_costs += transaction_cost
|
| 208 |
+
|
| 209 |
+
self.trade_history.append({
|
| 210 |
+
'step': self.current_step,
|
| 211 |
+
'action': 'SELL',
|
| 212 |
+
'shares': shares_to_sell,
|
| 213 |
+
'price': current_price,
|
| 214 |
+
'revenue': revenue,
|
| 215 |
+
'transaction_cost': transaction_cost
|
| 216 |
+
})
|
| 217 |
+
|
| 218 |
+
# Calculate new net worth
|
| 219 |
+
self.position_value = self.shares_held * current_price
|
| 220 |
+
self.net_worth = self.balance + self.position_value
|
| 221 |
+
|
| 222 |
+
# Calculate reward based on selected method
|
| 223 |
+
reward = self._calculate_reward(previous_net_worth)
|
| 224 |
+
|
| 225 |
+
return reward
|
| 226 |
+
|
| 227 |
+
def _calculate_reward(self, previous_net_worth: float) -> float:
|
| 228 |
+
"""Calculate reward based on the selected reward type"""
|
| 229 |
+
if self.reward_type == "return":
|
| 230 |
+
# Simple return-based reward
|
| 231 |
+
return (self.net_worth - previous_net_worth) / previous_net_worth
|
| 232 |
+
|
| 233 |
+
elif self.reward_type == "sharpe":
|
| 234 |
+
# Sharpe ratio-based reward
|
| 235 |
+
if len(self.daily_returns) > 1:
|
| 236 |
+
returns = np.array(self.daily_returns)
|
| 237 |
+
if np.std(returns) > 0:
|
| 238 |
+
sharpe = np.mean(returns) / np.std(returns) * np.sqrt(252)
|
| 239 |
+
return sharpe / 100 # Scale down
|
| 240 |
+
return 0
|
| 241 |
+
|
| 242 |
+
elif self.reward_type == "sortino":
|
| 243 |
+
# Sortino ratio-based reward
|
| 244 |
+
if len(self.daily_returns) > 1:
|
| 245 |
+
returns = np.array(self.daily_returns)
|
| 246 |
+
negative_returns = returns[returns < 0]
|
| 247 |
+
if len(negative_returns) > 0 and np.std(negative_returns) > 0:
|
| 248 |
+
sortino = np.mean(returns) / np.std(negative_returns) * np.sqrt(252)
|
| 249 |
+
return sortino / 100 # Scale down
|
| 250 |
+
return 0
|
| 251 |
+
|
| 252 |
+
else:
|
| 253 |
+
return (self.net_worth - previous_net_worth) / previous_net_worth
|
| 254 |
+
|
| 255 |
+
def _update_portfolio_metrics(self):
|
| 256 |
+
"""Update portfolio performance metrics"""
|
| 257 |
+
# Calculate daily return
|
| 258 |
+
if len(self.portfolio_history) > 0:
|
| 259 |
+
daily_return = (self.net_worth - self.portfolio_history[-1]['net_worth']) / self.portfolio_history[-1]['net_worth']
|
| 260 |
+
self.daily_returns.append(daily_return)
|
| 261 |
+
|
| 262 |
+
# Update peak and drawdown
|
| 263 |
+
if self.net_worth > self.peak_portfolio_value:
|
| 264 |
+
self.peak_portfolio_value = self.net_worth
|
| 265 |
+
|
| 266 |
+
current_drawdown = (self.peak_portfolio_value - self.net_worth) / self.peak_portfolio_value
|
| 267 |
+
self.drawdown_history.append(current_drawdown)
|
| 268 |
+
|
| 269 |
+
def _store_step_data(self, action_type: int, position_size: float, reward: float):
|
| 270 |
+
"""Store data for analysis"""
|
| 271 |
+
self.action_history.append({
|
| 272 |
+
'step': self.current_step,
|
| 273 |
+
'action_type': action_type,
|
| 274 |
+
'position_size': position_size
|
| 275 |
+
})
|
| 276 |
+
|
| 277 |
+
self.portfolio_history.append({
|
| 278 |
+
'step': self.current_step,
|
| 279 |
+
'balance': self.balance,
|
| 280 |
+
'shares_held': self.shares_held,
|
| 281 |
+
'position_value': self.position_value,
|
| 282 |
+
'net_worth': self.net_worth,
|
| 283 |
+
'price': self.prices[self.current_step]
|
| 284 |
+
})
|
| 285 |
+
|
| 286 |
+
self.reward_history.append(reward)
|
| 287 |
+
|
| 288 |
+
def _calculate_episode_metrics(self) -> Dict:
|
| 289 |
+
"""Calculate comprehensive episode metrics"""
|
| 290 |
+
if len(self.portfolio_history) == 0:
|
| 291 |
+
return {}
|
| 292 |
+
|
| 293 |
+
# Basic returns
|
| 294 |
+
total_return = (self.net_worth - self.initial_balance) / self.initial_balance
|
| 295 |
+
|
| 296 |
+
# Risk metrics
|
| 297 |
+
returns = np.array(self.daily_returns) if self.daily_returns else np.array([0])
|
| 298 |
+
max_drawdown = max(self.drawdown_history) if self.drawdown_history else 0
|
| 299 |
+
volatility = np.std(returns) * np.sqrt(252)
|
| 300 |
+
|
| 301 |
+
# Sharpe ratio
|
| 302 |
+
sharpe_ratio = np.mean(returns) / np.std(returns) * np.sqrt(252) if np.std(returns) > 0 else 0
|
| 303 |
+
|
| 304 |
+
# Sortino ratio
|
| 305 |
+
negative_returns = returns[returns < 0]
|
| 306 |
+
sortino_ratio = np.mean(returns) / np.std(negative_returns) * np.sqrt(252) if len(negative_returns) > 0 and np.std(negative_returns) > 0 else 0
|
| 307 |
+
|
| 308 |
+
# Calmar ratio
|
| 309 |
+
calmar_ratio = (np.mean(returns) * 252) / max_drawdown if max_drawdown > 0 else 0
|
| 310 |
+
|
| 311 |
+
# Trading metrics
|
| 312 |
+
total_trades = len(self.trade_history)
|
| 313 |
+
buy_trades = [t for t in self.trade_history if t['action'] == 'BUY']
|
| 314 |
+
sell_trades = [t for t in self.trade_history if t['action'] == 'SELL']
|
| 315 |
+
|
| 316 |
+
# Win rate calculation (simplified)
|
| 317 |
+
profitable_trades = len([r for r in self.reward_history if r > 0])
|
| 318 |
+
win_rate = profitable_trades / len(self.reward_history) if len(self.reward_history) > 0 else 0
|
| 319 |
+
|
| 320 |
+
metrics = {
|
| 321 |
+
'total_return': total_return,
|
| 322 |
+
'sharpe_ratio': sharpe_ratio,
|
| 323 |
+
'sortino_ratio': sortino_ratio,
|
| 324 |
+
'calmar_ratio': calmar_ratio,
|
| 325 |
+
'max_drawdown': max_drawdown,
|
| 326 |
+
'volatility': volatility,
|
| 327 |
+
'win_rate': win_rate,
|
| 328 |
+
'total_trades': total_trades,
|
| 329 |
+
'buy_trades': len(buy_trades),
|
| 330 |
+
'sell_trades': len(sell_trades),
|
| 331 |
+
'final_balance': self.balance,
|
| 332 |
+
'final_shares': self.shares_held,
|
| 333 |
+
'final_net_worth': self.net_worth,
|
| 334 |
+
'total_transaction_costs': self.total_transaction_costs,
|
| 335 |
+
'average_reward': np.mean(self.reward_history) if self.reward_history else 0
|
| 336 |
+
}
|
| 337 |
+
|
| 338 |
+
if self.enable_logging:
|
| 339 |
+
logger.info(f"Episode completed for {self.ticker}")
|
| 340 |
+
logger.info(f"Total Return: {total_return:.2%}")
|
| 341 |
+
logger.info(f"Sharpe Ratio: {sharpe_ratio:.2f}")
|
| 342 |
+
logger.info(f"Max Drawdown: {max_drawdown:.2%}")
|
| 343 |
+
logger.info(f"Win Rate: {win_rate:.2%}")
|
| 344 |
+
|
| 345 |
+
return metrics
|
| 346 |
+
|
| 347 |
+
def _get_observation(self):
|
| 348 |
+
"""Get current observation"""
|
| 349 |
+
if self.current_step >= len(self.states):
|
| 350 |
+
# Return last available state if we're at the end
|
| 351 |
+
market_state = self.states[-1].flatten()
|
| 352 |
+
else:
|
| 353 |
+
market_state = self.states[self.current_step].flatten()
|
| 354 |
+
|
| 355 |
+
# Portfolio state (normalized)
|
| 356 |
+
current_price = self.prices[min(self.current_step, len(self.prices)-1)]
|
| 357 |
+
|
| 358 |
+
portfolio_state = np.array([
|
| 359 |
+
self.balance / self.initial_balance, # Normalized balance
|
| 360 |
+
self.shares_held * current_price / self.initial_balance, # Normalized position value
|
| 361 |
+
self.net_worth / self.initial_balance, # Normalized net worth
|
| 362 |
+
(self.net_worth - self.initial_balance) / self.initial_balance, # Return
|
| 363 |
+
len(self.trade_history) / 100, # Number of trades (normalized)
|
| 364 |
+
self.total_transaction_costs / self.initial_balance, # Transaction costs
|
| 365 |
+
max(self.drawdown_history) if self.drawdown_history else 0, # Current max drawdown
|
| 366 |
+
np.std(self.daily_returns) if len(self.daily_returns) > 1 else 0 # Volatility
|
| 367 |
+
])
|
| 368 |
+
|
| 369 |
+
return np.concatenate([market_state, portfolio_state]).astype(np.float32)
|
| 370 |
+
|
| 371 |
+
def render(self, mode='human'):
|
| 372 |
+
"""Render environment state"""
|
| 373 |
+
current_price = self.prices[min(self.current_step, len(self.prices)-1)]
|
| 374 |
+
|
| 375 |
+
print(f"\n=== {self.ticker} Trading Environment ===")
|
| 376 |
+
print(f"Step: {self.current_step}/{self.max_steps}")
|
| 377 |
+
print(f"Current Price: ${current_price:.2f}")
|
| 378 |
+
print(f"Balance: ${self.balance:.2f}")
|
| 379 |
+
print(f"Shares Held: {self.shares_held}")
|
| 380 |
+
print(f"Position Value: ${self.position_value:.2f}")
|
| 381 |
+
print(f"Net Worth: ${self.net_worth:.2f}")
|
| 382 |
+
print(f"Total Return: {((self.net_worth - self.initial_balance) / self.initial_balance):.2%}")
|
| 383 |
+
print(f"Total Trades: {len(self.trade_history)}")
|
| 384 |
+
print(f"Transaction Costs: ${self.total_transaction_costs:.2f}")
|
| 385 |
+
|
| 386 |
+
if self.drawdown_history:
|
| 387 |
+
print(f"Max Drawdown: {max(self.drawdown_history):.2%}")
|
| 388 |
+
|
| 389 |
+
print("=" * 40)
|
| 390 |
+
|
| 391 |
+
def plot_performance(self, save_path: Optional[str] = None):
|
| 392 |
+
"""Plot comprehensive performance metrics"""
|
| 393 |
+
if len(self.portfolio_history) == 0:
|
| 394 |
+
print("No data to plot")
|
| 395 |
+
return
|
| 396 |
+
|
| 397 |
+
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
|
| 398 |
+
fig.suptitle(f'{self.ticker} Trading Performance', fontsize=16)
|
| 399 |
+
|
| 400 |
+
# Portfolio value over time
|
| 401 |
+
steps = [p['step'] for p in self.portfolio_history]
|
| 402 |
+
net_worths = [p['net_worth'] for p in self.portfolio_history]
|
| 403 |
+
prices = [p['price'] for p in self.portfolio_history]
|
| 404 |
+
|
| 405 |
+
axes[0, 0].plot(steps, net_worths, label='Portfolio Value', linewidth=2)
|
| 406 |
+
axes[0, 0].axhline(y=self.initial_balance, color='r', linestyle='--', label='Initial Balance')
|
| 407 |
+
axes[0, 0].set_title('Portfolio Value Over Time')
|
| 408 |
+
axes[0, 0].set_xlabel('Time Steps')
|
| 409 |
+
axes[0, 0].set_ylabel('Portfolio Value ($)')
|
| 410 |
+
axes[0, 0].legend()
|
| 411 |
+
axes[0, 0].grid(True)
|
| 412 |
+
|
| 413 |
+
# Stock price over time
|
| 414 |
+
axes[0, 1].plot(steps, prices, label='Stock Price', color='orange', linewidth=2)
|
| 415 |
+
axes[0, 1].set_title('Stock Price Over Time')
|
| 416 |
+
axes[0, 1].set_xlabel('Time Steps')
|
| 417 |
+
axes[0, 1].set_ylabel('Price ($)')
|
| 418 |
+
axes[0, 1].legend()
|
| 419 |
+
axes[0, 1].grid(True)
|
| 420 |
+
|
| 421 |
+
# Drawdown
|
| 422 |
+
if self.drawdown_history:
|
| 423 |
+
axes[1, 0].fill_between(range(len(self.drawdown_history)),
|
| 424 |
+
self.drawdown_history, 0,
|
| 425 |
+
alpha=0.3, color='red')
|
| 426 |
+
axes[1, 0].plot(self.drawdown_history, color='red', linewidth=2)
|
| 427 |
+
axes[1, 0].set_title('Drawdown Over Time')
|
| 428 |
+
axes[1, 0].set_xlabel('Time Steps')
|
| 429 |
+
axes[1, 0].set_ylabel('Drawdown')
|
| 430 |
+
axes[1, 0].grid(True)
|
| 431 |
+
|
| 432 |
+
# Action distribution
|
| 433 |
+
actions = [a['action_type'] for a in self.action_history]
|
| 434 |
+
action_counts = [actions.count(i) for i in range(3)]
|
| 435 |
+
action_labels = ['Hold', 'Buy', 'Sell']
|
| 436 |
+
|
| 437 |
+
axes[1, 1].pie(action_counts, labels=action_labels, autopct='%1.1f%%')
|
| 438 |
+
axes[1, 1].set_title('Action Distribution')
|
| 439 |
+
|
| 440 |
+
plt.tight_layout()
|
| 441 |
+
|
| 442 |
+
if save_path:
|
| 443 |
+
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
| 444 |
+
logger.info(f"Performance plot saved to {save_path}")
|
| 445 |
+
|
| 446 |
+
plt.show()
|
| 447 |
+
|
| 448 |
+
def get_metrics_summary(self) -> TradingMetrics:
|
| 449 |
+
"""Get trading metrics as a structured object"""
|
| 450 |
+
metrics_dict = self._calculate_episode_metrics()
|
| 451 |
+
|
| 452 |
+
return TradingMetrics(
|
| 453 |
+
total_return=metrics_dict.get('total_return', 0),
|
| 454 |
+
sharpe_ratio=metrics_dict.get('sharpe_ratio', 0),
|
| 455 |
+
max_drawdown=metrics_dict.get('max_drawdown', 0),
|
| 456 |
+
win_rate=metrics_dict.get('win_rate', 0),
|
| 457 |
+
total_trades=metrics_dict.get('total_trades', 0),
|
| 458 |
+
profitable_trades=int(metrics_dict.get('win_rate', 0) * metrics_dict.get('total_trades', 0)),
|
| 459 |
+
average_trade_return=metrics_dict.get('average_reward', 0),
|
| 460 |
+
volatility=metrics_dict.get('volatility', 0),
|
| 461 |
+
calmar_ratio=metrics_dict.get('calmar_ratio', 0),
|
| 462 |
+
sortino_ratio=metrics_dict.get('sortino_ratio', 0)
|
| 463 |
+
)
|