simplevae / eval.py
recoilme's picture
test
c62f7d0
raw
history blame
20.5 kB
import os
import json
import random
from typing import Dict, List, Tuple, Optional, Any
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, Resize, ToTensor, CenterCrop
from torchvision.utils import save_image
import lpips
from diffusers import (
AutoencoderKL,
AutoencoderKLWan,
AutoencoderKLLTXVideo,
AutoencoderKLQwenImage
)
from scipy.stats import skew, kurtosis
# ========================== Конфиг ==========================
DEVICE = "cuda"
DTYPE = torch.float16
IMAGE_FOLDER = "/home/recoilme/dataset/alchemist"
MIN_SIZE = 1280
CROP_SIZE = 512
BATCH_SIZE = 5
MAX_IMAGES = 0
NUM_WORKERS = 4
SAMPLES_DIR = "test"
VAE_LIST = [
("SD15 VAE", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"),
("SDXL VAE fp16 fix", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None),
("AiArtLab/sdxl_vae", AutoencoderKL, "AiArtLab/sdxl_vae", "vae"),
("LTX-Video VAE", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"),
("Wan2.2-TI2V-5B", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"),
("AiArtLab/wan16x_vae", AutoencoderKLWan, "AiArtLab/wan16x_vae", "vae"),
("Wan2.2-T2V-A14B", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"),
("QwenImage", AutoencoderKLQwenImage, "Qwen/Qwen-Image", "vae"),
("AuraDiffusion/16ch-vae", AutoencoderKL, "AuraDiffusion/16ch-vae", None),
("FLUX.1-schnell VAE", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"),
("AiArtLab/simplevae", AutoencoderKL, "AiArtLab/simplevae", "vae"),
]
# ========================== Утилиты ==========================
def to_neg1_1(x: torch.Tensor) -> torch.Tensor:
return x * 2 - 1
def to_0_1(x: torch.Tensor) -> torch.Tensor:
return (x + 1) * 0.5
def safe_psnr(mse: float) -> float:
if mse <= 1e-12:
return float("inf")
return 10.0 * float(np.log10(1.0 / mse))
def is_video_like_vae(vae) -> bool:
# Wan и LTX-Video ждут [B, C, T, H, W]
return isinstance(vae, (AutoencoderKLWan, AutoencoderKLLTXVideo,AutoencoderKLQwenImage))
def add_time_dim_if_needed(x: torch.Tensor, vae) -> torch.Tensor:
if is_video_like_vae(vae) and x.ndim == 4:
return x.unsqueeze(2) # -> [B, C, 1, H, W]
return x
def strip_time_dim_if_possible(x: torch.Tensor, vae) -> torch.Tensor:
if is_video_like_vae(vae) and x.ndim == 5 and x.shape[2] == 1:
return x.squeeze(2) # -> [B, C, H, W]
return x
@torch.no_grad()
def sobel_edge_l1(real_0_1: torch.Tensor, fake_0_1: torch.Tensor) -> float:
real = to_neg1_1(real_0_1)
fake = to_neg1_1(fake_0_1)
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3)
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3)
C = real.shape[1]
kx = kx.to(real.dtype).repeat(C, 1, 1, 1)
ky = ky.to(real.dtype).repeat(C, 1, 1, 1)
def grad_mag(x):
gx = F.conv2d(x, kx, padding=1, groups=C)
gy = F.conv2d(x, ky, padding=1, groups=C)
return torch.sqrt(gx * gx + gy * gy + 1e-12)
return F.l1_loss(grad_mag(fake), grad_mag(real)).item()
def flatten_channels(x: torch.Tensor) -> torch.Tensor:
# -> [C, N*H*W] или [C, N*T*H*W]
if x.ndim == 4:
return x.permute(1, 0, 2, 3).reshape(x.shape[1], -1)
elif x.ndim == 5:
return x.permute(1, 0, 2, 3, 4).reshape(x.shape[1], -1)
else:
raise ValueError(f"Unexpected tensor ndim={x.ndim}")
def _to_numpy_1d(x: Any) -> Optional[np.ndarray]:
if x is None:
return None
if isinstance(x, (int, float)):
return None
if isinstance(x, torch.Tensor):
x = x.detach().cpu().float().numpy()
elif isinstance(x, (list, tuple)):
x = np.array(x, dtype=np.float32)
elif isinstance(x, np.ndarray):
x = x.astype(np.float32, copy=False)
else:
return None
x = x.reshape(-1)
return x
def _to_float(x: Any) -> Optional[float]:
if x is None:
return None
if isinstance(x, (int, float)):
return float(x)
if isinstance(x, np.ndarray) and x.size == 1:
return float(x.item())
if isinstance(x, torch.Tensor) and x.numel() == 1:
return float(x.item())
return None
def get_norm_tensors_and_summary(vae, latent_like: torch.Tensor):
"""
Нормализация латентов: глобальная и поканальная.
Применение: сначала глобальная (scalar), затем поканальная (vector).
Если в конфиге есть несколько ключей — аккумулируем.
"""
cfg = getattr(vae, "config", vae)
scale_keys = [
"latents_std"
]
shift_keys = [
"latents_mean"
]
C = latent_like.shape[1]
nd = latent_like.ndim # 4 или 5
dev = latent_like.device
dt = latent_like.dtype
scale_global = getattr(vae.config, "scaling_factor", 1.0)
shift_global = getattr(vae.config, "shift_factor", 0.0)
if scale_global is None:
scale_global = 1.0
if shift_global is None:
shift_global = 0.0
scale_channel = np.ones(C, dtype=np.float32)
shift_channel = np.zeros(C, dtype=np.float32)
for k in scale_keys:
v = getattr(cfg, k, None)
if v is None:
continue
vec = _to_numpy_1d(v)
if vec is not None and vec.size == C:
scale_channel *= vec
else:
s = _to_float(v)
if s is not None:
scale_global *= s
for k in shift_keys:
v = getattr(cfg, k, None)
if v is None:
continue
vec = _to_numpy_1d(v)
if vec is not None and vec.size == C:
shift_channel += vec
else:
s = _to_float(v)
if s is not None:
shift_global += s
g_shape = [1] * nd
c_shape = [1] * nd
c_shape[1] = C
t_scale_g = torch.tensor(scale_global, dtype=dt, device=dev).view(*g_shape)
t_shift_g = torch.tensor(shift_global, dtype=dt, device=dev).view(*g_shape)
t_scale_c = torch.from_numpy(scale_channel).to(device=dev, dtype=dt).view(*c_shape)
t_shift_c = torch.from_numpy(shift_channel).to(device=dev, dtype=dt).view(*c_shape)
summary = {
"scale_global": float(scale_global),
"shift_global": float(shift_global),
"scale_channel_min": float(scale_channel.min()),
"scale_channel_mean": float(scale_channel.mean()),
"scale_channel_max": float(scale_channel.max()),
"shift_channel_min": float(shift_channel.min()),
"shift_channel_mean": float(shift_channel.mean()),
"shift_channel_max": float(shift_channel.max()),
}
return t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary
@torch.no_grad()
def kl_divergence_per_image(mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
kl_map = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()) # [B, ...]
return kl_map.float().view(kl_map.shape[0], -1).mean(dim=1) # [B]
def sanitize_filename(name: str) -> str:
name = name.replace("/", "_").replace("\\", "_").replace(" ", "_")
return "".join(ch if (ch.isalnum() or ch in "._-") else "_" for ch in name)
# ========================== Датасет ==========================
class ImageFolderDataset(Dataset):
def __init__(self, root_dir: str, extensions=(".png", ".jpg", ".jpeg", ".webp"), min_size=1024, crop_size=512, limit=None):
paths = []
for root, _, files in os.walk(root_dir):
for fname in files:
if fname.lower().endswith(extensions):
paths.append(os.path.join(root, fname))
if limit:
paths = paths[:limit]
valid = []
for p in tqdm(paths, desc="Проверяем файлы"):
try:
with Image.open(p) as im:
im.verify()
valid.append(p)
except Exception:
pass
if not valid:
raise RuntimeError(f"Нет валидных изображений в {root_dir}")
random.shuffle(valid)
self.paths = valid
print(f"Найдено {len(self.paths)} изображений")
self.transform = Compose([
Resize(min_size),
CenterCrop(crop_size),
ToTensor(), # 0..1, float32
])
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
with Image.open(self.paths[idx]) as img:
img = img.convert("RGB")
return self.transform(img)
# ========================== Основное ==========================
def main():
torch.set_grad_enabled(False)
os.makedirs(SAMPLES_DIR, exist_ok=True)
dataset = ImageFolderDataset(IMAGE_FOLDER, min_size=MIN_SIZE, crop_size=CROP_SIZE, limit=MAX_IMAGES)
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS, pin_memory=True)
lpips_net = lpips.LPIPS(net="vgg").to(DEVICE).eval()
# Загрузка VAE
vaes: List[Tuple[str, object]] = []
print("\nЗагрузка VAE...")
for human_name, vae_class, model_path, subfolder in VAE_LIST:
try:
vae = vae_class.from_pretrained(model_path, subfolder=subfolder, torch_dtype=DTYPE)
vae = vae.to(DEVICE).eval()
vaes.append((human_name, vae))
print(f" ✅ {human_name}")
except Exception as e:
print(f" ❌ {human_name}: {e}")
if not vaes:
print("Нет успешно загруженных VAE. Выходим.")
return
# Агрегаторы
per_model_metrics: Dict[str, Dict[str, float]] = {
name: {"mse": 0.0, "psnr": 0.0, "lpips": 0.0, "edge": 0.0, "kl": 0.0, "count": 0.0}
for name, _ in vaes
}
buffers_zmodel: Dict[str, List[torch.Tensor]] = {name: [] for name, _ in vaes}
norm_summaries: Dict[str, Dict[str, float]] = {}
# Флаг для сохранения первой картинки
saved_first_for: Dict[str, bool] = {name: False for name, _ in vaes}
for batch_0_1 in tqdm(loader, desc="Батчи"):
batch_0_1 = batch_0_1.to(DEVICE, torch.float32)
batch_neg1_1 = to_neg1_1(batch_0_1).to(DTYPE)
for model_name, vae in vaes:
x_in = add_time_dim_if_needed(batch_neg1_1, vae)
posterior = vae.encode(x_in).latent_dist
mu, logvar = posterior.mean, posterior.logvar
# Реконструкция (детерминированно)
z_raw_mode = posterior.mode()
x_dec = vae.decode(z_raw_mode).sample # [-1, 1]
x_dec = strip_time_dim_if_possible(x_dec, vae)
x_rec_0_1 = to_0_1(x_dec.float()).clamp(0, 1)
# Латенты для UNet: global -> channelwise
z_raw_sample = posterior.sample()
t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary = get_norm_tensors_and_summary(vae, z_raw_sample)
if model_name not in norm_summaries:
norm_summaries[model_name] = summary
z_tmp = (z_raw_sample - t_shift_g) * t_scale_g
z_model = (z_tmp - t_shift_c) * t_scale_c
z_model = strip_time_dim_if_possible(z_model, vae)
buffers_zmodel[model_name].append(z_model.detach().to("cpu", torch.float32))
# Сохранить первую картинку (оригинал и реконструкцию) для каждого VAE
if not saved_first_for[model_name]:
safe = sanitize_filename(model_name)
orig_path = os.path.join(SAMPLES_DIR, f"{safe}_original.png")
dec_path = os.path.join(SAMPLES_DIR, f"{safe}_decoded.png")
save_image(batch_0_1[0:1].cpu(), orig_path)
save_image(x_rec_0_1[0:1].cpu(), dec_path)
saved_first_for[model_name] = True
# Метрики по картинкам
B = batch_0_1.shape[0]
for i in range(B):
gt = batch_0_1[i:i+1]
rec = x_rec_0_1[i:i+1]
mse = F.mse_loss(gt, rec).item()
psnr = safe_psnr(mse)
lp = float(lpips_net(gt, rec, normalize=True).mean().item())
edge = sobel_edge_l1(gt, rec)
per_model_metrics[model_name]["mse"] += mse
per_model_metrics[model_name]["psnr"] += psnr
per_model_metrics[model_name]["lpips"] += lp
per_model_metrics[model_name]["edge"] += edge
# KL per-image
kl_pi = kl_divergence_per_image(mu, logvar) # [B]
per_model_metrics[model_name]["kl"] += float(kl_pi.sum().item())
per_model_metrics[model_name]["count"] += B
# Усреднение метрик
for name in per_model_metrics:
c = max(1.0, per_model_metrics[name]["count"])
for k in ["mse", "psnr", "lpips", "edge", "kl"]:
per_model_metrics[name][k] /= c
# Подсчёт статистик латентов и нормальности
per_model_latent_stats = {}
for name, _ in vaes:
if not buffers_zmodel[name]:
continue
Z = torch.cat(buffers_zmodel[name], dim=0) # [N, C, H, W]
# Глобальные
z_min = float(Z.min().item())
z_mean = float(Z.mean().item())
z_max = float(Z.max().item())
z_std = float(Z.std(unbiased=True).item())
# Пер-канально: skew/kurtosis
Z_ch = flatten_channels(Z).numpy() # [C, *]
C = Z_ch.shape[0]
sk = np.zeros(C, dtype=np.float64)
ku = np.zeros(C, dtype=np.float64)
for c in range(C):
v = Z_ch[c]
sk[c] = float(skew(v, bias=False))
ku[c] = float(kurtosis(v, fisher=True, bias=False))
skew_min, skew_mean, skew_max = float(sk.min()), float(sk.mean()), float(sk.max())
kurt_min, kurt_mean, kurt_max = float(ku.min()), float(ku.mean()), float(ku.max())
mean_abs_skew = float(np.mean(np.abs(sk)))
mean_abs_kurt = float(np.mean(np.abs(ku)))
per_model_latent_stats[name] = {
"Z_min": z_min, "Z_mean": z_mean, "Z_max": z_max, "Z_std": z_std,
"skew_min": skew_min, "skew_mean": skew_mean, "skew_max": skew_max,
"kurt_min": kurt_min, "kurt_mean": kurt_mean, "kurt_max": kurt_max,
"mean_abs_skew": mean_abs_skew, "mean_abs_kurt": mean_abs_kurt,
}
# Печать параметров нормализации (shift/scale)
print("\n=== Параметры нормализации латентов (как применялись) ===")
for name, _ in vaes:
if name not in norm_summaries:
continue
s = norm_summaries[name]
print(
f"{name:26s} | "
f"shift_g={s['shift_global']:.6g} scale_g={s['scale_global']:.6g} | "
f"shift_c[min/mean/max]=[{s['shift_channel_min']:.6g}, {s['shift_channel_mean']:.6g}, {s['shift_channel_max']:.6g}] | "
f"scale_c[min/mean/max]=[{s['scale_channel_min']:.6g}, {s['scale_channel_mean']:.6g}, {s['scale_channel_max']:.6g}]"
)
# Абсолютные метрики
print("\n=== Абсолютные метрики реконструкции и латентов ===")
for name, _ in vaes:
if name not in per_model_latent_stats:
continue
m = per_model_metrics[name]
s = per_model_latent_stats[name]
print(
f"{name:26s} | "
f"MSE={m['mse']:.3e} PSNR={m['psnr']:.2f} LPIPS={m['lpips']:.3f} Edge={m['edge']:.3f} KL={m['kl']:.3f} | "
f"Z[min/mean/max/std]=[{s['Z_min']:.3f}, {s['Z_mean']:.3f}, {s['Z_max']:.3f}, {s['Z_std']:.3f}] | "
f"Skew[min/mean/max]=[{s['skew_min']:.3f}, {s['skew_mean']:.3f}, {s['skew_max']:.3f}] | "
f"Kurt[min/mean/max]=[{s['kurt_min']:.3f}, {s['kurt_mean']:.3f}, {s['kurt_max']:.3f}]"
)
# Сравнение с первой моделью
baseline = vaes[0][0]
print("\n=== Сравнение с первой моделью (проценты) ===")
print(f"| {'Модель':26s} | {'MSE':>9s} | {'PSNR':>9s} | {'LPIPS':>9s} | {'Edge':>9s} | {'Skew|0':>9s} | {'Kurt|0':>9s} |")
print(f"|{'-'*28}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|")
b_m = per_model_metrics[baseline]
b_s = per_model_latent_stats[baseline]
for name, _ in vaes:
m = per_model_metrics[name]
s = per_model_latent_stats[name]
mse_pct = (b_m["mse"] / max(1e-12, m["mse"])) * 100.0 # меньше лучше
psnr_pct = (m["psnr"] / max(1e-12, b_m["psnr"])) * 100.0 # больше лучше
lpips_pct= (b_m["lpips"] / max(1e-12, m["lpips"])) * 100.0 # меньше лучше
edge_pct = (b_m["edge"] / max(1e-12, m["edge"])) * 100.0 # меньше лучше
skew0_pct = (b_s["mean_abs_skew"] / max(1e-12, s["mean_abs_skew"])) * 100.0
kurt0_pct = (b_s["mean_abs_kurt"] / max(1e-12, s["mean_abs_kurt"])) * 100.0
if name == baseline:
print(f"| {name:26s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} |")
else:
print(f"| {name:26s} | {mse_pct:8.1f}% | {psnr_pct:8.1f}% | {lpips_pct:8.1f}% | {edge_pct:8.1f}% | {skew0_pct:8.1f}% | {kurt0_pct:8.1f}% |")
# ========================== Коррекции для последнего VAE + сохранение в JSON ==========================
last_name = vaes[-1][0]
if buffers_zmodel[last_name]:
Z = torch.cat(buffers_zmodel[last_name], dim=0) # [N, C, H, W]
# Глобальная коррекция (по всем каналам/пикселям)
z_mean = float(Z.mean().item())
z_std = float(Z.std(unbiased=True).item())
correction_global = {
"shift": -z_mean,
"scale": (1.0 / z_std) if z_std > 1e-12 else 1.0
}
# Поканальная коррекция
Z_ch = flatten_channels(Z) # [C, M]
ch_means_t = Z_ch.mean(dim=1) # [C]
ch_stds_t = Z_ch.std(dim=1, unbiased=True) + 1e-12 # [C]
ch_means = [float(x) for x in ch_means_t.tolist()]
ch_stds = [float(x) for x in ch_stds_t.tolist()]
correction_per_channel = [
{"shift": float(-m), "scale": float(1.0 / s)}
for m, s in zip(ch_means, ch_stds)
]
print(f"\n=== Доп. коррекция для {last_name} (поверх VAE-нормализации) ===")
print(f"global_correction = {correction_global}")
print(f"channelwise_means = {ch_means}")
print(f"channelwise_stds = {ch_stds}")
print(f"channelwise_correction = {correction_per_channel}")
# Сохранение в JSON
json_path = os.path.join(SAMPLES_DIR, f"{sanitize_filename(last_name)}_correction.json")
to_save = {
"model_name": last_name,
"vae_normalization_summary": norm_summaries.get(last_name, {}),
"global_correction": correction_global,
"per_channel_means": ch_means,
"per_channel_stds": ch_stds,
"per_channel_correction": correction_per_channel,
"apply_order": {
"forward": "z_model -> (z - global_shift)*global_scale -> (per-channel: (z - mean_c)/std_c)",
"inverse": "z_corr -> (per-channel: z*std_c + mean_c) -> (z/global_scale + global_shift)"
},
"note": "Эти коэффициенты рассчитаны по z_model (после встроенных VAE shift/scale), чтобы привести распределение к N(0,1)."
}
with open(json_path, "w", encoding="utf-8") as f:
json.dump(to_save, f, ensure_ascii=False, indent=2)
print("Corrections JSON saved to:", os.path.abspath(json_path))
print("\n✅ Готово. Сэмплы сохранены в:", os.path.abspath(SAMPLES_DIR))
if __name__ == "__main__":
main()