See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a88e78e41748bf83_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a88e78e41748bf83_train_data.json
type:
field_instruction: prompt
field_output: generation
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/6baccfbf-bbbc-4bc2-a86c-e8d2a31c938c
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2007
micro_batch_size: 4
mlflow_experiment_name: /tmp/a88e78e41748bf83_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 895387c3-0be7-49d8-a314-abeba9f636b4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 895387c3-0be7-49d8-a314-abeba9f636b4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
6baccfbf-bbbc-4bc2-a86c-e8d2a31c938c
This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7610
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2007
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.7715 | 0.0010 | 1 | 1.7711 |
| 0.9367 | 0.0963 | 100 | 0.9125 |
| 0.9026 | 0.1926 | 200 | 0.8665 |
| 0.865 | 0.2888 | 300 | 0.8448 |
| 0.8792 | 0.3851 | 400 | 0.8292 |
| 0.8294 | 0.4814 | 500 | 0.8173 |
| 0.8027 | 0.5777 | 600 | 0.8093 |
| 0.8164 | 0.6740 | 700 | 0.8003 |
| 0.8412 | 0.7702 | 800 | 0.7946 |
| 0.7625 | 0.8665 | 900 | 0.7882 |
| 0.7594 | 0.9628 | 1000 | 0.7830 |
| 0.7531 | 1.0596 | 1100 | 0.7792 |
| 0.7919 | 1.1559 | 1200 | 0.7752 |
| 0.71 | 1.2521 | 1300 | 0.7721 |
| 0.7058 | 1.3484 | 1400 | 0.7684 |
| 0.7522 | 1.4447 | 1500 | 0.7661 |
| 0.7818 | 1.5410 | 1600 | 0.7639 |
| 0.7388 | 1.6373 | 1700 | 0.7625 |
| 0.6826 | 1.7335 | 1800 | 0.7616 |
| 0.7884 | 1.8298 | 1900 | 0.7611 |
| 0.777 | 1.9261 | 2000 | 0.7610 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/6baccfbf-bbbc-4bc2-a86c-e8d2a31c938c
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-1.5B-Instruct