Update README.md
Browse files
README.md
CHANGED
|
@@ -68,39 +68,37 @@ The model is not intended for tasks requiring deep reasoning, complex multi-turn
|
|
| 68 |
Here is how you can use this model:
|
| 69 |
|
| 70 |
```python
|
| 71 |
-
from peft import PeftModel
|
| 72 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 73 |
import torch
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
-
adapter_model = "AmirMohseni/Llama-3.1-8B-Instruct-Persian-finetuned-sft"
|
| 78 |
|
| 79 |
-
# Load the
|
| 80 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
# Check if CUDA is available, otherwise use CPU
|
| 84 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 85 |
model = model.to(device)
|
| 86 |
|
| 87 |
-
# Load the tokenizer
|
| 88 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 89 |
-
|
| 90 |
-
# Add a new pad token if necessary
|
| 91 |
-
if tokenizer.pad_token is None:
|
| 92 |
-
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Adding a distinct pad token
|
| 93 |
-
|
| 94 |
# Example usage
|
| 95 |
input_text = "چطوری میتونم به اطلاعات درباره ی سهام شرکت های آمریکایی دست پیدا کنم؟"
|
| 96 |
|
| 97 |
-
# Tokenize the input
|
| 98 |
-
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
| 99 |
-
input_ids = inputs['input_ids'].to(device)
|
| 100 |
-
attention_mask = inputs['attention_mask'].to(device)
|
| 101 |
|
| 102 |
# Generate text
|
| 103 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
# Decode and print the output
|
| 106 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 68 |
Here is how you can use this model:
|
| 69 |
|
| 70 |
```python
|
|
|
|
| 71 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 72 |
import torch
|
| 73 |
|
| 74 |
+
# Specify the combined model
|
| 75 |
+
model_name = "AmirMohseni/Llama-3.1-8B-Instruct-Persian-finetuned-sft"
|
|
|
|
| 76 |
|
| 77 |
+
# Load the model and tokenizer
|
| 78 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
| 79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 80 |
+
|
| 81 |
+
# Ensure pad_token is set (if not already set)
|
| 82 |
+
if tokenizer.pad_token is None:
|
| 83 |
+
tokenizer.add_special_tokens({'pad_token': tokenizer.eos_token})
|
| 84 |
|
| 85 |
# Check if CUDA is available, otherwise use CPU
|
| 86 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 87 |
model = model.to(device)
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
# Example usage
|
| 90 |
input_text = "چطوری میتونم به اطلاعات درباره ی سهام شرکت های آمریکایی دست پیدا کنم؟"
|
| 91 |
|
| 92 |
+
# Tokenize the input
|
| 93 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).to(device)
|
|
|
|
|
|
|
| 94 |
|
| 95 |
# Generate text
|
| 96 |
+
outputs = model.generate(
|
| 97 |
+
inputs['input_ids'],
|
| 98 |
+
attention_mask=inputs['attention_mask'],
|
| 99 |
+
max_length=512,
|
| 100 |
+
pad_token_id=tokenizer.pad_token_id
|
| 101 |
+
)
|
| 102 |
|
| 103 |
# Decode and print the output
|
| 104 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|