Upload 3 files
Browse files- camie_tagger_initial.onnx +3 -0
- infer.py +80 -0
- metadata.json +0 -0
camie_tagger_initial.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ed6e97bf389857516873416affedc0572bb15c1a39531db2e8f92dfd5abdf0d
|
| 3 |
+
size 855879045
|
infer.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import onnxruntime as ort
|
| 2 |
+
import numpy as np
|
| 3 |
+
import json
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
# 1) Load ONNX model
|
| 7 |
+
session = ort.InferenceSession("camie_tagger_initial.onnx", providers=["CPUExecutionProvider"])
|
| 8 |
+
|
| 9 |
+
# 2) Preprocess your image (512x512, etc.)
|
| 10 |
+
def preprocess_image(img_path):
|
| 11 |
+
"""
|
| 12 |
+
Loads and resizes an image to 512x512, converts it to float32 [0..1],
|
| 13 |
+
and returns a (1,3,512,512) NumPy array (NCHW format).
|
| 14 |
+
"""
|
| 15 |
+
img = Image.open(img_path).convert("RGB").resize((512, 512))
|
| 16 |
+
x = np.array(img).astype(np.float32) / 255.0
|
| 17 |
+
x = np.transpose(x, (2, 0, 1)) # HWC -> CHW
|
| 18 |
+
x = np.expand_dims(x, 0) # add batch dimension -> (1,3,512,512)
|
| 19 |
+
return x
|
| 20 |
+
|
| 21 |
+
# Example input
|
| 22 |
+
def inference(input_path):
|
| 23 |
+
input_tensor = preprocess_image(input_path)
|
| 24 |
+
|
| 25 |
+
# 3) Run inference
|
| 26 |
+
input_name = session.get_inputs()[0].name
|
| 27 |
+
outputs = session.run(None, {input_name: input_tensor})
|
| 28 |
+
initial_logits, refined_logits = outputs # shape: (1, 70527) each
|
| 29 |
+
|
| 30 |
+
# 4) Convert logits to probabilities via sigmoid
|
| 31 |
+
refined_probs = 1 / (1 + np.exp(-refined_logits)) # shape: (1, 70527)
|
| 32 |
+
|
| 33 |
+
# 5) Load metadata & retrieve threshold info
|
| 34 |
+
with open("metadata.json", "r", encoding="utf-8") as f:
|
| 35 |
+
metadata = json.load(f)
|
| 36 |
+
|
| 37 |
+
# Dictionary of idx->tag_name, e.g. { "0": "brown_hair", "1": "blue_eyes", ... }
|
| 38 |
+
idx_to_tag = metadata["idx_to_tag"]
|
| 39 |
+
|
| 40 |
+
# Dictionary of tag->category, e.g. { "brown_hair": "character", "landscape": "general", ... }
|
| 41 |
+
tag_to_category = metadata.get("tag_to_category", {})
|
| 42 |
+
|
| 43 |
+
# Dictionary of category->threshold, e.g. { "character": 0.30, "general": 0.325, ... }
|
| 44 |
+
# If not present or incomplete, we'll use a default threshold of 0.325
|
| 45 |
+
category_thresholds = metadata.get("category_thresholds", {})
|
| 46 |
+
default_threshold = 0.325
|
| 47 |
+
|
| 48 |
+
# 6) Collect predictions by category
|
| 49 |
+
# We'll loop through all tags and check if the probability is above the category-specific threshold
|
| 50 |
+
results_by_category = {}
|
| 51 |
+
|
| 52 |
+
num_tags = refined_probs.shape[1] # 70527
|
| 53 |
+
for i in range(num_tags):
|
| 54 |
+
prob = float(refined_probs[0, i]) # get probability for this tag
|
| 55 |
+
tag_name = idx_to_tag[str(i)] # convert index -> tag name (keys in idx_to_tag are strings)
|
| 56 |
+
|
| 57 |
+
# Find category; if not in 'tag_to_category', label it "unknown"
|
| 58 |
+
category = tag_to_category.get(tag_name, "unknown")
|
| 59 |
+
|
| 60 |
+
# Find threshold for this category; fallback to default
|
| 61 |
+
cat_threshold = category_thresholds.get(category, default_threshold)
|
| 62 |
+
|
| 63 |
+
# Check if prob meets or exceeds the threshold
|
| 64 |
+
if prob >= cat_threshold:
|
| 65 |
+
if category not in results_by_category:
|
| 66 |
+
results_by_category[category] = []
|
| 67 |
+
# Store the tag name + its probability
|
| 68 |
+
results_by_category[category].append((tag_name, prob))
|
| 69 |
+
|
| 70 |
+
# 7) Print out the predicted tags category-wise
|
| 71 |
+
print("Predicted Tags by Category:\n")
|
| 72 |
+
|
| 73 |
+
for cat, tags_list in results_by_category.items():
|
| 74 |
+
print(f"Category: {cat} | Predicted {len(tags_list)} tags")
|
| 75 |
+
for tname, tprob in sorted(tags_list, key=lambda x: x[1], reverse=True):
|
| 76 |
+
print(f" Tag: {tname:30s} Prob: {tprob:.4f}")
|
| 77 |
+
print()
|
| 78 |
+
|
| 79 |
+
if __name__ == "__main__":
|
| 80 |
+
inference("example_image.jpg")
|
metadata.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|