End of training
Browse files
README.md
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
base_model: camembert-base
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
model-index:
|
| 7 |
+
- name: camembert_question_answering_tools_qlora_fr
|
| 8 |
+
results: []
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 12 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 13 |
+
|
| 14 |
+
# camembert_question_answering_tools_qlora_fr
|
| 15 |
+
|
| 16 |
+
This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset.
|
| 17 |
+
It achieves the following results on the evaluation set:
|
| 18 |
+
- Loss: 2.3275
|
| 19 |
+
- Learning Rate: 0.0
|
| 20 |
+
|
| 21 |
+
## Model description
|
| 22 |
+
|
| 23 |
+
More information needed
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Training and evaluation data
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training procedure
|
| 34 |
+
|
| 35 |
+
### Training hyperparameters
|
| 36 |
+
|
| 37 |
+
The following hyperparameters were used during training:
|
| 38 |
+
- learning_rate: 0.0001
|
| 39 |
+
- train_batch_size: 24
|
| 40 |
+
- eval_batch_size: 192
|
| 41 |
+
- seed: 42
|
| 42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 43 |
+
- lr_scheduler_type: linear
|
| 44 |
+
- num_epochs: 60
|
| 45 |
+
|
| 46 |
+
### Training results
|
| 47 |
+
|
| 48 |
+
| Training Loss | Epoch | Step | Validation Loss | Rate |
|
| 49 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
| 50 |
+
| No log | 1.0 | 7 | 5.8555 | 0.0001 |
|
| 51 |
+
| No log | 2.0 | 14 | 5.7277 | 0.0001 |
|
| 52 |
+
| No log | 3.0 | 21 | 5.5916 | 0.0001 |
|
| 53 |
+
| No log | 4.0 | 28 | 5.4433 | 0.0001 |
|
| 54 |
+
| No log | 5.0 | 35 | 5.2833 | 0.0001 |
|
| 55 |
+
| No log | 6.0 | 42 | 5.1312 | 9e-05 |
|
| 56 |
+
| No log | 7.0 | 49 | 4.9815 | 0.0001 |
|
| 57 |
+
| No log | 8.0 | 56 | 4.8317 | 0.0001 |
|
| 58 |
+
| No log | 9.0 | 63 | 4.6800 | 0.0001 |
|
| 59 |
+
| No log | 10.0 | 70 | 4.5265 | 0.0001 |
|
| 60 |
+
| No log | 11.0 | 77 | 4.3673 | 0.0001 |
|
| 61 |
+
| No log | 12.0 | 84 | 4.2002 | 8e-05 |
|
| 62 |
+
| No log | 13.0 | 91 | 4.0344 | 0.0001 |
|
| 63 |
+
| No log | 14.0 | 98 | 3.8807 | 0.0001 |
|
| 64 |
+
| No log | 15.0 | 105 | 3.7267 | 0.0001 |
|
| 65 |
+
| No log | 16.0 | 112 | 3.5812 | 0.0001 |
|
| 66 |
+
| No log | 17.0 | 119 | 3.4528 | 0.0001 |
|
| 67 |
+
| No log | 18.0 | 126 | 3.3323 | 7e-05 |
|
| 68 |
+
| No log | 19.0 | 133 | 3.2173 | 0.0001 |
|
| 69 |
+
| No log | 20.0 | 140 | 3.1382 | 0.0001 |
|
| 70 |
+
| No log | 21.0 | 147 | 3.0190 | 0.0001 |
|
| 71 |
+
| No log | 22.0 | 154 | 2.9614 | 0.0001 |
|
| 72 |
+
| No log | 23.0 | 161 | 2.8867 | 0.0001 |
|
| 73 |
+
| No log | 24.0 | 168 | 2.8360 | 6e-05 |
|
| 74 |
+
| No log | 25.0 | 175 | 2.7882 | 0.0001 |
|
| 75 |
+
| No log | 26.0 | 182 | 2.7450 | 0.0001 |
|
| 76 |
+
| No log | 27.0 | 189 | 2.6969 | 0.0001 |
|
| 77 |
+
| No log | 28.0 | 196 | 2.6651 | 0.0001 |
|
| 78 |
+
| No log | 29.0 | 203 | 2.6440 | 0.0001 |
|
| 79 |
+
| No log | 30.0 | 210 | 2.6032 | 5e-05 |
|
| 80 |
+
| No log | 31.0 | 217 | 2.5762 | 0.0000 |
|
| 81 |
+
| No log | 32.0 | 224 | 2.5473 | 0.0000 |
|
| 82 |
+
| No log | 33.0 | 231 | 2.5338 | 0.0000 |
|
| 83 |
+
| No log | 34.0 | 238 | 2.5056 | 0.0000 |
|
| 84 |
+
| No log | 35.0 | 245 | 2.4919 | 0.0000 |
|
| 85 |
+
| No log | 36.0 | 252 | 2.4773 | 4e-05 |
|
| 86 |
+
| No log | 37.0 | 259 | 2.4594 | 0.0000 |
|
| 87 |
+
| No log | 38.0 | 266 | 2.4429 | 0.0000 |
|
| 88 |
+
| No log | 39.0 | 273 | 2.4275 | 0.0000 |
|
| 89 |
+
| No log | 40.0 | 280 | 2.4184 | 0.0000 |
|
| 90 |
+
| No log | 41.0 | 287 | 2.4123 | 0.0000 |
|
| 91 |
+
| No log | 42.0 | 294 | 2.3951 | 3e-05 |
|
| 92 |
+
| No log | 43.0 | 301 | 2.3963 | 0.0000 |
|
| 93 |
+
| No log | 44.0 | 308 | 2.3848 | 0.0000 |
|
| 94 |
+
| No log | 45.0 | 315 | 2.3714 | 0.0000 |
|
| 95 |
+
| No log | 46.0 | 322 | 2.3696 | 0.0000 |
|
| 96 |
+
| No log | 47.0 | 329 | 2.3626 | 0.0000 |
|
| 97 |
+
| No log | 48.0 | 336 | 2.3545 | 2e-05 |
|
| 98 |
+
| No log | 49.0 | 343 | 2.3523 | 0.0000 |
|
| 99 |
+
| No log | 50.0 | 350 | 2.3492 | 0.0000 |
|
| 100 |
+
| No log | 51.0 | 357 | 2.3429 | 0.0000 |
|
| 101 |
+
| No log | 52.0 | 364 | 2.3364 | 0.0000 |
|
| 102 |
+
| No log | 53.0 | 371 | 2.3371 | 0.0000 |
|
| 103 |
+
| No log | 54.0 | 378 | 2.3360 | 1e-05 |
|
| 104 |
+
| No log | 55.0 | 385 | 2.3329 | 0.0000 |
|
| 105 |
+
| No log | 56.0 | 392 | 2.3316 | 0.0000 |
|
| 106 |
+
| No log | 57.0 | 399 | 2.3292 | 5e-06 |
|
| 107 |
+
| No log | 58.0 | 406 | 2.3281 | 0.0000 |
|
| 108 |
+
| No log | 59.0 | 413 | 2.3278 | 0.0000 |
|
| 109 |
+
| No log | 60.0 | 420 | 2.3275 | 0.0 |
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
### Framework versions
|
| 113 |
+
|
| 114 |
+
- Transformers 4.34.0
|
| 115 |
+
- Pytorch 2.0.1+cu117
|
| 116 |
+
- Datasets 2.14.5
|
| 117 |
+
- Tokenizers 0.14.1
|