--- library_name: peft license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer model-index: - name: whisper-large-v3-mn-ft results: [] --- # whisper-large-v3-mn-ft This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4317 | 0.5903 | 500 | 0.7475 | | 1.1836 | 1.1806 | 1000 | 0.5816 | | 0.8169 | 1.7710 | 1500 | 0.5508 | | 0.5782 | 2.3613 | 2000 | 0.5468 | | 0.4928 | 2.9516 | 2500 | 0.5429 | | 0.444 | 3.5419 | 3000 | 0.5626 | | 0.2888 | 4.1322 | 3500 | 0.5678 | | 0.283 | 4.7226 | 4000 | 0.5710 | | 0.1823 | 5.3129 | 4500 | 0.5852 | | 0.1725 | 5.9032 | 5000 | 0.5834 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.21.1