--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - CLEAR-Global/luo_19h - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-luo_cv_fleurs_19h results: [] --- # w2v-bert-2.0-luo_cv_fleurs_19h This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/LUO_19H - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2682 - Wer: 0.2998 - Cer: 0.0930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 0.698 | 6.4935 | 1000 | 0.7171 | 0.5988 | 0.1884 | | 0.2666 | 12.9870 | 2000 | 0.3521 | 0.3862 | 0.1107 | | 0.1497 | 19.4805 | 3000 | 0.2914 | 0.3351 | 0.0979 | | 0.0802 | 25.9740 | 4000 | 0.2682 | 0.2976 | 0.0931 | | 0.053 | 32.4675 | 5000 | 0.3036 | 0.3060 | 0.0913 | | 0.0309 | 38.9610 | 6000 | 0.3689 | 0.2906 | 0.0939 | | 0.0245 | 45.4545 | 7000 | 0.4164 | 0.3792 | 0.1007 | | 0.0122 | 51.9481 | 8000 | 0.3996 | 0.3166 | 0.0964 | | 0.0088 | 58.4416 | 9000 | 0.4323 | 0.3056 | 0.0952 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1