Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- checkpoint-210/added_tokens.json +24 -0
- checkpoint-210/config.json +28 -0
- checkpoint-210/generation_config.json +7 -0
- checkpoint-210/latest +1 -0
- checkpoint-210/merges.txt +0 -0
- checkpoint-210/model.safetensors +3 -0
- checkpoint-210/rng_state_0.pth +3 -0
- checkpoint-210/rng_state_1.pth +3 -0
- checkpoint-210/scheduler.pt +3 -0
- checkpoint-210/special_tokens_map.json +31 -0
- checkpoint-210/tokenizer.json +3 -0
- checkpoint-210/tokenizer_config.json +208 -0
- checkpoint-210/trainer_state.json +1504 -0
- checkpoint-210/training_args.bin +3 -0
- checkpoint-210/vocab.json +0 -0
- checkpoint-210/zero_to_fp32.py +674 -0
- checkpoint-315/added_tokens.json +24 -0
- checkpoint-315/config.json +28 -0
- checkpoint-315/generation_config.json +7 -0
- checkpoint-315/latest +1 -0
- checkpoint-315/merges.txt +0 -0
- checkpoint-315/model.safetensors +3 -0
- checkpoint-315/rng_state_0.pth +3 -0
- checkpoint-315/rng_state_1.pth +3 -0
- checkpoint-315/scheduler.pt +3 -0
- checkpoint-315/special_tokens_map.json +31 -0
- checkpoint-315/tokenizer.json +3 -0
- checkpoint-315/tokenizer_config.json +208 -0
- checkpoint-315/trainer_state.json +2239 -0
- checkpoint-315/training_args.bin +3 -0
- checkpoint-315/vocab.json +0 -0
- checkpoint-315/zero_to_fp32.py +674 -0
- checkpoint-420/added_tokens.json +24 -0
- checkpoint-420/config.json +28 -0
- checkpoint-420/generation_config.json +7 -0
- checkpoint-420/latest +1 -0
- checkpoint-420/merges.txt +0 -0
- checkpoint-420/model.safetensors +3 -0
- checkpoint-420/rng_state_0.pth +3 -0
- checkpoint-420/rng_state_1.pth +3 -0
- checkpoint-420/scheduler.pt +3 -0
- checkpoint-420/special_tokens_map.json +31 -0
- checkpoint-420/tokenizer.json +3 -0
- checkpoint-420/tokenizer_config.json +208 -0
- checkpoint-420/trainer_state.json +2974 -0
- checkpoint-420/training_args.bin +3 -0
- checkpoint-420/vocab.json +0 -0
- checkpoint-420/zero_to_fp32.py +674 -0
- checkpoint-522/added_tokens.json +24 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
checkpoint-210/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
checkpoint-315/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
checkpoint-420/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
checkpoint-522/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-210/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-210/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"eos_token_id": 151643,
|
| 7 |
+
"hidden_act": "silu",
|
| 8 |
+
"hidden_size": 1536,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"intermediate_size": 8960,
|
| 11 |
+
"max_position_embeddings": 131072,
|
| 12 |
+
"max_window_layers": 28,
|
| 13 |
+
"model_type": "qwen2",
|
| 14 |
+
"num_attention_heads": 12,
|
| 15 |
+
"num_hidden_layers": 28,
|
| 16 |
+
"num_key_value_heads": 2,
|
| 17 |
+
"rms_norm_eps": 1e-06,
|
| 18 |
+
"rope_scaling": null,
|
| 19 |
+
"rope_theta": 1000000.0,
|
| 20 |
+
"sliding_window": 131072,
|
| 21 |
+
"tie_word_embeddings": true,
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.51.3",
|
| 24 |
+
"use_cache": false,
|
| 25 |
+
"use_mrope": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
checkpoint-210/generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"max_new_tokens": 2048,
|
| 6 |
+
"transformers_version": "4.51.3"
|
| 7 |
+
}
|
checkpoint-210/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step210
|
checkpoint-210/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-210/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:552c4c41554d61deab927a28aaecc9b0db1ed3d80886d821577fc25bf4532339
|
| 3 |
+
size 3554214752
|
checkpoint-210/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
|
| 3 |
+
size 14512
|
checkpoint-210/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
|
| 3 |
+
size 14512
|
checkpoint-210/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bd9619b29ba8eccd0bac55eb76eb51a451347acd8a0824d109fe4121ffbee803
|
| 3 |
+
size 1064
|
checkpoint-210/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-210/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
checkpoint-210/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|endoftext|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-210/trainer_state.json
ADDED
|
@@ -0,0 +1,1504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 0.40210627094303497,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 210,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.0019147917663954045,
|
| 14 |
+
"grad_norm": 2.9491562843322754,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 0.6229,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.003829583532790809,
|
| 21 |
+
"grad_norm": 3.0646867752075195,
|
| 22 |
+
"learning_rate": 3.846153846153847e-07,
|
| 23 |
+
"loss": 0.6119,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.0057443752991862135,
|
| 28 |
+
"grad_norm": 3.0737922191619873,
|
| 29 |
+
"learning_rate": 7.692307692307694e-07,
|
| 30 |
+
"loss": 0.6582,
|
| 31 |
+
"step": 3
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.007659167065581618,
|
| 35 |
+
"grad_norm": 2.9172728061676025,
|
| 36 |
+
"learning_rate": 1.153846153846154e-06,
|
| 37 |
+
"loss": 0.6209,
|
| 38 |
+
"step": 4
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.009573958831977022,
|
| 42 |
+
"grad_norm": 2.668588161468506,
|
| 43 |
+
"learning_rate": 1.5384615384615387e-06,
|
| 44 |
+
"loss": 0.5589,
|
| 45 |
+
"step": 5
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.011488750598372427,
|
| 49 |
+
"grad_norm": 3.2810585498809814,
|
| 50 |
+
"learning_rate": 1.9230769230769234e-06,
|
| 51 |
+
"loss": 0.5968,
|
| 52 |
+
"step": 6
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.013403542364767831,
|
| 56 |
+
"grad_norm": 2.434365749359131,
|
| 57 |
+
"learning_rate": 2.307692307692308e-06,
|
| 58 |
+
"loss": 0.5636,
|
| 59 |
+
"step": 7
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.015318334131163236,
|
| 63 |
+
"grad_norm": 2.060615301132202,
|
| 64 |
+
"learning_rate": 2.6923076923076923e-06,
|
| 65 |
+
"loss": 0.5661,
|
| 66 |
+
"step": 8
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.01723312589755864,
|
| 70 |
+
"grad_norm": 1.8817814588546753,
|
| 71 |
+
"learning_rate": 3.0769230769230774e-06,
|
| 72 |
+
"loss": 0.5817,
|
| 73 |
+
"step": 9
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.019147917663954045,
|
| 77 |
+
"grad_norm": 1.766438603401184,
|
| 78 |
+
"learning_rate": 3.4615384615384617e-06,
|
| 79 |
+
"loss": 0.5529,
|
| 80 |
+
"step": 10
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.02106270943034945,
|
| 84 |
+
"grad_norm": 1.5240556001663208,
|
| 85 |
+
"learning_rate": 3.846153846153847e-06,
|
| 86 |
+
"loss": 0.5207,
|
| 87 |
+
"step": 11
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.022977501196744854,
|
| 91 |
+
"grad_norm": 1.5381622314453125,
|
| 92 |
+
"learning_rate": 4.230769230769231e-06,
|
| 93 |
+
"loss": 0.5171,
|
| 94 |
+
"step": 12
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.02489229296314026,
|
| 98 |
+
"grad_norm": 1.4144328832626343,
|
| 99 |
+
"learning_rate": 4.615384615384616e-06,
|
| 100 |
+
"loss": 0.5612,
|
| 101 |
+
"step": 13
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.026807084729535663,
|
| 105 |
+
"grad_norm": 1.282257318496704,
|
| 106 |
+
"learning_rate": 5e-06,
|
| 107 |
+
"loss": 0.493,
|
| 108 |
+
"step": 14
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.028721876495931067,
|
| 112 |
+
"grad_norm": 1.3273121118545532,
|
| 113 |
+
"learning_rate": 5.384615384615385e-06,
|
| 114 |
+
"loss": 0.4723,
|
| 115 |
+
"step": 15
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.030636668262326472,
|
| 119 |
+
"grad_norm": 1.1829627752304077,
|
| 120 |
+
"learning_rate": 5.769230769230769e-06,
|
| 121 |
+
"loss": 0.4675,
|
| 122 |
+
"step": 16
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.032551460028721876,
|
| 126 |
+
"grad_norm": 1.0885576009750366,
|
| 127 |
+
"learning_rate": 6.153846153846155e-06,
|
| 128 |
+
"loss": 0.4275,
|
| 129 |
+
"step": 17
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.03446625179511728,
|
| 133 |
+
"grad_norm": 0.9974104762077332,
|
| 134 |
+
"learning_rate": 6.538461538461539e-06,
|
| 135 |
+
"loss": 0.4709,
|
| 136 |
+
"step": 18
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.036381043561512685,
|
| 140 |
+
"grad_norm": 1.0769761800765991,
|
| 141 |
+
"learning_rate": 6.923076923076923e-06,
|
| 142 |
+
"loss": 0.4916,
|
| 143 |
+
"step": 19
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.03829583532790809,
|
| 147 |
+
"grad_norm": 0.967096745967865,
|
| 148 |
+
"learning_rate": 7.307692307692308e-06,
|
| 149 |
+
"loss": 0.4785,
|
| 150 |
+
"step": 20
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.040210627094303494,
|
| 154 |
+
"grad_norm": 1.0460747480392456,
|
| 155 |
+
"learning_rate": 7.692307692307694e-06,
|
| 156 |
+
"loss": 0.4653,
|
| 157 |
+
"step": 21
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.0421254188606989,
|
| 161 |
+
"grad_norm": 1.0114920139312744,
|
| 162 |
+
"learning_rate": 8.076923076923077e-06,
|
| 163 |
+
"loss": 0.4648,
|
| 164 |
+
"step": 22
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.0440402106270943,
|
| 168 |
+
"grad_norm": 1.1619290113449097,
|
| 169 |
+
"learning_rate": 8.461538461538462e-06,
|
| 170 |
+
"loss": 0.4833,
|
| 171 |
+
"step": 23
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.04595500239348971,
|
| 175 |
+
"grad_norm": 0.9872665405273438,
|
| 176 |
+
"learning_rate": 8.846153846153847e-06,
|
| 177 |
+
"loss": 0.4545,
|
| 178 |
+
"step": 24
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.04786979415988511,
|
| 182 |
+
"grad_norm": 0.9702840447425842,
|
| 183 |
+
"learning_rate": 9.230769230769232e-06,
|
| 184 |
+
"loss": 0.4651,
|
| 185 |
+
"step": 25
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.04978458592628052,
|
| 189 |
+
"grad_norm": 0.9493695497512817,
|
| 190 |
+
"learning_rate": 9.615384615384616e-06,
|
| 191 |
+
"loss": 0.477,
|
| 192 |
+
"step": 26
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.05169937769267592,
|
| 196 |
+
"grad_norm": 0.9152507185935974,
|
| 197 |
+
"learning_rate": 1e-05,
|
| 198 |
+
"loss": 0.4499,
|
| 199 |
+
"step": 27
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.053614169459071326,
|
| 203 |
+
"grad_norm": 1.0640617609024048,
|
| 204 |
+
"learning_rate": 9.999899706000774e-06,
|
| 205 |
+
"loss": 0.4853,
|
| 206 |
+
"step": 28
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.05552896122546673,
|
| 210 |
+
"grad_norm": 0.9641034603118896,
|
| 211 |
+
"learning_rate": 9.999598828026644e-06,
|
| 212 |
+
"loss": 0.475,
|
| 213 |
+
"step": 29
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.057443752991862135,
|
| 217 |
+
"grad_norm": 0.8927161693572998,
|
| 218 |
+
"learning_rate": 9.999097378148116e-06,
|
| 219 |
+
"loss": 0.4448,
|
| 220 |
+
"step": 30
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.05935854475825754,
|
| 224 |
+
"grad_norm": 0.881844699382782,
|
| 225 |
+
"learning_rate": 9.998395376482152e-06,
|
| 226 |
+
"loss": 0.4327,
|
| 227 |
+
"step": 31
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.061273336524652944,
|
| 231 |
+
"grad_norm": 0.8794113993644714,
|
| 232 |
+
"learning_rate": 9.99749285119138e-06,
|
| 233 |
+
"loss": 0.4294,
|
| 234 |
+
"step": 32
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.06318812829104835,
|
| 238 |
+
"grad_norm": 0.9898825287818909,
|
| 239 |
+
"learning_rate": 9.996389838482942e-06,
|
| 240 |
+
"loss": 0.5294,
|
| 241 |
+
"step": 33
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.06510292005744375,
|
| 245 |
+
"grad_norm": 0.9184749126434326,
|
| 246 |
+
"learning_rate": 9.995086382607064e-06,
|
| 247 |
+
"loss": 0.4774,
|
| 248 |
+
"step": 34
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.06701771182383916,
|
| 252 |
+
"grad_norm": 0.9067336320877075,
|
| 253 |
+
"learning_rate": 9.993582535855265e-06,
|
| 254 |
+
"loss": 0.4569,
|
| 255 |
+
"step": 35
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.06893250359023456,
|
| 259 |
+
"grad_norm": 0.8807307481765747,
|
| 260 |
+
"learning_rate": 9.991878358558267e-06,
|
| 261 |
+
"loss": 0.478,
|
| 262 |
+
"step": 36
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.07084729535662997,
|
| 266 |
+
"grad_norm": 0.9359887838363647,
|
| 267 |
+
"learning_rate": 9.989973919083576e-06,
|
| 268 |
+
"loss": 0.4659,
|
| 269 |
+
"step": 37
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.07276208712302537,
|
| 273 |
+
"grad_norm": 0.9008484482765198,
|
| 274 |
+
"learning_rate": 9.987869293832727e-06,
|
| 275 |
+
"loss": 0.4659,
|
| 276 |
+
"step": 38
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.07467687888942078,
|
| 280 |
+
"grad_norm": 0.8065485954284668,
|
| 281 |
+
"learning_rate": 9.985564567238237e-06,
|
| 282 |
+
"loss": 0.4441,
|
| 283 |
+
"step": 39
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.07659167065581618,
|
| 287 |
+
"grad_norm": 0.9766021966934204,
|
| 288 |
+
"learning_rate": 9.983059831760205e-06,
|
| 289 |
+
"loss": 0.4834,
|
| 290 |
+
"step": 40
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.07850646242221158,
|
| 294 |
+
"grad_norm": 0.8222993016242981,
|
| 295 |
+
"learning_rate": 9.980355187882606e-06,
|
| 296 |
+
"loss": 0.443,
|
| 297 |
+
"step": 41
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.08042125418860699,
|
| 301 |
+
"grad_norm": 0.8215630054473877,
|
| 302 |
+
"learning_rate": 9.977450744109258e-06,
|
| 303 |
+
"loss": 0.4219,
|
| 304 |
+
"step": 42
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.0823360459550024,
|
| 308 |
+
"grad_norm": 0.8324375748634338,
|
| 309 |
+
"learning_rate": 9.974346616959476e-06,
|
| 310 |
+
"loss": 0.4362,
|
| 311 |
+
"step": 43
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.0842508377213978,
|
| 315 |
+
"grad_norm": 0.9242782592773438,
|
| 316 |
+
"learning_rate": 9.97104293096339e-06,
|
| 317 |
+
"loss": 0.4738,
|
| 318 |
+
"step": 44
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.0861656294877932,
|
| 322 |
+
"grad_norm": 0.9275208711624146,
|
| 323 |
+
"learning_rate": 9.967539818656953e-06,
|
| 324 |
+
"loss": 0.4571,
|
| 325 |
+
"step": 45
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.0880804212541886,
|
| 329 |
+
"grad_norm": 0.876868724822998,
|
| 330 |
+
"learning_rate": 9.96383742057662e-06,
|
| 331 |
+
"loss": 0.5172,
|
| 332 |
+
"step": 46
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.08999521302058401,
|
| 336 |
+
"grad_norm": 0.8446276783943176,
|
| 337 |
+
"learning_rate": 9.959935885253715e-06,
|
| 338 |
+
"loss": 0.4457,
|
| 339 |
+
"step": 47
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.09191000478697942,
|
| 343 |
+
"grad_norm": 0.8077015280723572,
|
| 344 |
+
"learning_rate": 9.955835369208475e-06,
|
| 345 |
+
"loss": 0.4234,
|
| 346 |
+
"step": 48
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.09382479655337482,
|
| 350 |
+
"grad_norm": 0.7882896065711975,
|
| 351 |
+
"learning_rate": 9.951536036943753e-06,
|
| 352 |
+
"loss": 0.4264,
|
| 353 |
+
"step": 49
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.09573958831977022,
|
| 357 |
+
"grad_norm": 0.8539751768112183,
|
| 358 |
+
"learning_rate": 9.94703806093845e-06,
|
| 359 |
+
"loss": 0.461,
|
| 360 |
+
"step": 50
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.09765438008616563,
|
| 364 |
+
"grad_norm": 0.8285911679267883,
|
| 365 |
+
"learning_rate": 9.942341621640558e-06,
|
| 366 |
+
"loss": 0.4379,
|
| 367 |
+
"step": 51
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.09956917185256103,
|
| 371 |
+
"grad_norm": 0.8029133081436157,
|
| 372 |
+
"learning_rate": 9.937446907459954e-06,
|
| 373 |
+
"loss": 0.4565,
|
| 374 |
+
"step": 52
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.10148396361895644,
|
| 378 |
+
"grad_norm": 0.7964851260185242,
|
| 379 |
+
"learning_rate": 9.932354114760819e-06,
|
| 380 |
+
"loss": 0.4262,
|
| 381 |
+
"step": 53
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.10339875538535184,
|
| 385 |
+
"grad_norm": 0.9846324920654297,
|
| 386 |
+
"learning_rate": 9.92706344785377e-06,
|
| 387 |
+
"loss": 0.5302,
|
| 388 |
+
"step": 54
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.10531354715174725,
|
| 392 |
+
"grad_norm": 0.7648650407791138,
|
| 393 |
+
"learning_rate": 9.921575118987672e-06,
|
| 394 |
+
"loss": 0.4066,
|
| 395 |
+
"step": 55
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.10722833891814265,
|
| 399 |
+
"grad_norm": 0.83173668384552,
|
| 400 |
+
"learning_rate": 9.915889348341098e-06,
|
| 401 |
+
"loss": 0.4438,
|
| 402 |
+
"step": 56
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.10914313068453806,
|
| 406 |
+
"grad_norm": 0.7968882322311401,
|
| 407 |
+
"learning_rate": 9.910006364013522e-06,
|
| 408 |
+
"loss": 0.407,
|
| 409 |
+
"step": 57
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.11105792245093346,
|
| 413 |
+
"grad_norm": 0.8423118591308594,
|
| 414 |
+
"learning_rate": 9.903926402016153e-06,
|
| 415 |
+
"loss": 0.4174,
|
| 416 |
+
"step": 58
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.11297271421732887,
|
| 420 |
+
"grad_norm": 0.9054727554321289,
|
| 421 |
+
"learning_rate": 9.897649706262474e-06,
|
| 422 |
+
"loss": 0.4764,
|
| 423 |
+
"step": 59
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.11488750598372427,
|
| 427 |
+
"grad_norm": 0.8318431973457336,
|
| 428 |
+
"learning_rate": 9.891176528558451e-06,
|
| 429 |
+
"loss": 0.4326,
|
| 430 |
+
"step": 60
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.11680229775011967,
|
| 434 |
+
"grad_norm": 0.8409565687179565,
|
| 435 |
+
"learning_rate": 9.884507128592435e-06,
|
| 436 |
+
"loss": 0.4451,
|
| 437 |
+
"step": 61
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.11871708951651508,
|
| 441 |
+
"grad_norm": 0.8471431136131287,
|
| 442 |
+
"learning_rate": 9.877641773924748e-06,
|
| 443 |
+
"loss": 0.4217,
|
| 444 |
+
"step": 62
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.12063188128291048,
|
| 448 |
+
"grad_norm": 0.8495103120803833,
|
| 449 |
+
"learning_rate": 9.870580739976936e-06,
|
| 450 |
+
"loss": 0.421,
|
| 451 |
+
"step": 63
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.12254667304930589,
|
| 455 |
+
"grad_norm": 0.8164567947387695,
|
| 456 |
+
"learning_rate": 9.863324310020735e-06,
|
| 457 |
+
"loss": 0.4266,
|
| 458 |
+
"step": 64
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.12446146481570129,
|
| 462 |
+
"grad_norm": 0.8732247948646545,
|
| 463 |
+
"learning_rate": 9.855872775166696e-06,
|
| 464 |
+
"loss": 0.4661,
|
| 465 |
+
"step": 65
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.1263762565820967,
|
| 469 |
+
"grad_norm": 0.8157728910446167,
|
| 470 |
+
"learning_rate": 9.848226434352513e-06,
|
| 471 |
+
"loss": 0.4401,
|
| 472 |
+
"step": 66
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.12829104834849211,
|
| 476 |
+
"grad_norm": 0.8860891461372375,
|
| 477 |
+
"learning_rate": 9.840385594331022e-06,
|
| 478 |
+
"loss": 0.4748,
|
| 479 |
+
"step": 67
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.1302058401148875,
|
| 483 |
+
"grad_norm": 0.8987312316894531,
|
| 484 |
+
"learning_rate": 9.83235056965791e-06,
|
| 485 |
+
"loss": 0.4881,
|
| 486 |
+
"step": 68
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.13212063188128292,
|
| 490 |
+
"grad_norm": 0.8786044716835022,
|
| 491 |
+
"learning_rate": 9.824121682679072e-06,
|
| 492 |
+
"loss": 0.4417,
|
| 493 |
+
"step": 69
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.13403542364767831,
|
| 497 |
+
"grad_norm": 0.8325650691986084,
|
| 498 |
+
"learning_rate": 9.815699263517712e-06,
|
| 499 |
+
"loss": 0.4377,
|
| 500 |
+
"step": 70
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.13595021541407373,
|
| 504 |
+
"grad_norm": 0.8149142861366272,
|
| 505 |
+
"learning_rate": 9.807083650061063e-06,
|
| 506 |
+
"loss": 0.4496,
|
| 507 |
+
"step": 71
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.13786500718046912,
|
| 511 |
+
"grad_norm": 0.8394611477851868,
|
| 512 |
+
"learning_rate": 9.798275187946859e-06,
|
| 513 |
+
"loss": 0.4394,
|
| 514 |
+
"step": 72
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.13977979894686454,
|
| 518 |
+
"grad_norm": 0.7746449112892151,
|
| 519 |
+
"learning_rate": 9.789274230549456e-06,
|
| 520 |
+
"loss": 0.4039,
|
| 521 |
+
"step": 73
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.14169459071325993,
|
| 525 |
+
"grad_norm": 0.7592336535453796,
|
| 526 |
+
"learning_rate": 9.780081138965663e-06,
|
| 527 |
+
"loss": 0.3788,
|
| 528 |
+
"step": 74
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.14360938247965535,
|
| 532 |
+
"grad_norm": 0.9066088199615479,
|
| 533 |
+
"learning_rate": 9.770696282000245e-06,
|
| 534 |
+
"loss": 0.4541,
|
| 535 |
+
"step": 75
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.14552417424605074,
|
| 539 |
+
"grad_norm": 0.8512394428253174,
|
| 540 |
+
"learning_rate": 9.761120036151138e-06,
|
| 541 |
+
"loss": 0.4217,
|
| 542 |
+
"step": 76
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.14743896601244616,
|
| 546 |
+
"grad_norm": 0.795378565788269,
|
| 547 |
+
"learning_rate": 9.751352785594337e-06,
|
| 548 |
+
"loss": 0.4014,
|
| 549 |
+
"step": 77
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.14935375777884155,
|
| 553 |
+
"grad_norm": 0.9467825293540955,
|
| 554 |
+
"learning_rate": 9.741394922168495e-06,
|
| 555 |
+
"loss": 0.4855,
|
| 556 |
+
"step": 78
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.15126854954523697,
|
| 560 |
+
"grad_norm": 0.7824875712394714,
|
| 561 |
+
"learning_rate": 9.731246845359187e-06,
|
| 562 |
+
"loss": 0.4088,
|
| 563 |
+
"step": 79
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.15318334131163236,
|
| 567 |
+
"grad_norm": 0.7557615637779236,
|
| 568 |
+
"learning_rate": 9.720908962282893e-06,
|
| 569 |
+
"loss": 0.4023,
|
| 570 |
+
"step": 80
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.15509813307802778,
|
| 574 |
+
"grad_norm": 0.8093947768211365,
|
| 575 |
+
"learning_rate": 9.710381687670675e-06,
|
| 576 |
+
"loss": 0.4345,
|
| 577 |
+
"step": 81
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.15701292484442317,
|
| 581 |
+
"grad_norm": 0.8901275396347046,
|
| 582 |
+
"learning_rate": 9.699665443851518e-06,
|
| 583 |
+
"loss": 0.4444,
|
| 584 |
+
"step": 82
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.1589277166108186,
|
| 588 |
+
"grad_norm": 0.7518415451049805,
|
| 589 |
+
"learning_rate": 9.688760660735403e-06,
|
| 590 |
+
"loss": 0.4024,
|
| 591 |
+
"step": 83
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.16084250837721398,
|
| 595 |
+
"grad_norm": 0.7495772242546082,
|
| 596 |
+
"learning_rate": 9.677667775796052e-06,
|
| 597 |
+
"loss": 0.4005,
|
| 598 |
+
"step": 84
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.1627573001436094,
|
| 602 |
+
"grad_norm": 0.8903560638427734,
|
| 603 |
+
"learning_rate": 9.666387234053385e-06,
|
| 604 |
+
"loss": 0.4495,
|
| 605 |
+
"step": 85
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.1646720919100048,
|
| 609 |
+
"grad_norm": 0.8854427933692932,
|
| 610 |
+
"learning_rate": 9.654919488055656e-06,
|
| 611 |
+
"loss": 0.4381,
|
| 612 |
+
"step": 86
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.1665868836764002,
|
| 616 |
+
"grad_norm": 0.8393151164054871,
|
| 617 |
+
"learning_rate": 9.643264997861312e-06,
|
| 618 |
+
"loss": 0.4177,
|
| 619 |
+
"step": 87
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.1685016754427956,
|
| 623 |
+
"grad_norm": 0.8448845148086548,
|
| 624 |
+
"learning_rate": 9.631424231020523e-06,
|
| 625 |
+
"loss": 0.4437,
|
| 626 |
+
"step": 88
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.170416467209191,
|
| 630 |
+
"grad_norm": 0.8987253904342651,
|
| 631 |
+
"learning_rate": 9.619397662556434e-06,
|
| 632 |
+
"loss": 0.4479,
|
| 633 |
+
"step": 89
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.1723312589755864,
|
| 637 |
+
"grad_norm": 0.9512760639190674,
|
| 638 |
+
"learning_rate": 9.607185774946106e-06,
|
| 639 |
+
"loss": 0.5188,
|
| 640 |
+
"step": 90
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.17424605074198182,
|
| 644 |
+
"grad_norm": 0.9057194590568542,
|
| 645 |
+
"learning_rate": 9.594789058101154e-06,
|
| 646 |
+
"loss": 0.4448,
|
| 647 |
+
"step": 91
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.1761608425083772,
|
| 651 |
+
"grad_norm": 0.8147549033164978,
|
| 652 |
+
"learning_rate": 9.582208009348104e-06,
|
| 653 |
+
"loss": 0.4106,
|
| 654 |
+
"step": 92
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.17807563427477263,
|
| 658 |
+
"grad_norm": 0.8666926622390747,
|
| 659 |
+
"learning_rate": 9.569443133408434e-06,
|
| 660 |
+
"loss": 0.4558,
|
| 661 |
+
"step": 93
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.17999042604116802,
|
| 665 |
+
"grad_norm": 0.8677969574928284,
|
| 666 |
+
"learning_rate": 9.556494942378328e-06,
|
| 667 |
+
"loss": 0.4379,
|
| 668 |
+
"step": 94
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.18190521780756344,
|
| 672 |
+
"grad_norm": 0.8896477222442627,
|
| 673 |
+
"learning_rate": 9.543363955708124e-06,
|
| 674 |
+
"loss": 0.4498,
|
| 675 |
+
"step": 95
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.18382000957395883,
|
| 679 |
+
"grad_norm": 0.7357858419418335,
|
| 680 |
+
"learning_rate": 9.530050700181499e-06,
|
| 681 |
+
"loss": 0.3666,
|
| 682 |
+
"step": 96
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.18573480134035425,
|
| 686 |
+
"grad_norm": 0.7851715683937073,
|
| 687 |
+
"learning_rate": 9.5165557098943e-06,
|
| 688 |
+
"loss": 0.411,
|
| 689 |
+
"step": 97
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.18764959310674964,
|
| 693 |
+
"grad_norm": 0.8098123669624329,
|
| 694 |
+
"learning_rate": 9.502879526233151e-06,
|
| 695 |
+
"loss": 0.4023,
|
| 696 |
+
"step": 98
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.18956438487314506,
|
| 700 |
+
"grad_norm": 0.8245725631713867,
|
| 701 |
+
"learning_rate": 9.48902269785371e-06,
|
| 702 |
+
"loss": 0.423,
|
| 703 |
+
"step": 99
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.19147917663954045,
|
| 707 |
+
"grad_norm": 0.8497715592384338,
|
| 708 |
+
"learning_rate": 9.47498578065867e-06,
|
| 709 |
+
"loss": 0.4125,
|
| 710 |
+
"step": 100
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.19339396840593587,
|
| 714 |
+
"grad_norm": 0.8205481171607971,
|
| 715 |
+
"learning_rate": 9.460769337775461e-06,
|
| 716 |
+
"loss": 0.4312,
|
| 717 |
+
"step": 101
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.19530876017233126,
|
| 721 |
+
"grad_norm": 0.8062931299209595,
|
| 722 |
+
"learning_rate": 9.446373939533642e-06,
|
| 723 |
+
"loss": 0.3961,
|
| 724 |
+
"step": 102
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.19722355193872668,
|
| 728 |
+
"grad_norm": 0.8209528923034668,
|
| 729 |
+
"learning_rate": 9.431800163442043e-06,
|
| 730 |
+
"loss": 0.4121,
|
| 731 |
+
"step": 103
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.19913834370512207,
|
| 735 |
+
"grad_norm": 0.8154571652412415,
|
| 736 |
+
"learning_rate": 9.417048594165572e-06,
|
| 737 |
+
"loss": 0.4475,
|
| 738 |
+
"step": 104
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.20105313547151749,
|
| 742 |
+
"grad_norm": 0.8546404838562012,
|
| 743 |
+
"learning_rate": 9.402119823501787e-06,
|
| 744 |
+
"loss": 0.4293,
|
| 745 |
+
"step": 105
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.20296792723791288,
|
| 749 |
+
"grad_norm": 0.8470130562782288,
|
| 750 |
+
"learning_rate": 9.387014450357128e-06,
|
| 751 |
+
"loss": 0.4139,
|
| 752 |
+
"step": 106
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.2048827190043083,
|
| 756 |
+
"grad_norm": 0.9199275970458984,
|
| 757 |
+
"learning_rate": 9.371733080722911e-06,
|
| 758 |
+
"loss": 0.4825,
|
| 759 |
+
"step": 107
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.20679751077070369,
|
| 763 |
+
"grad_norm": 0.9049551486968994,
|
| 764 |
+
"learning_rate": 9.356276327651006e-06,
|
| 765 |
+
"loss": 0.4378,
|
| 766 |
+
"step": 108
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.2087123025370991,
|
| 770 |
+
"grad_norm": 0.8089979887008667,
|
| 771 |
+
"learning_rate": 9.340644811229243e-06,
|
| 772 |
+
"loss": 0.4027,
|
| 773 |
+
"step": 109
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.2106270943034945,
|
| 777 |
+
"grad_norm": 0.7452864050865173,
|
| 778 |
+
"learning_rate": 9.324839158556542e-06,
|
| 779 |
+
"loss": 0.3795,
|
| 780 |
+
"step": 110
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.2125418860698899,
|
| 784 |
+
"grad_norm": 0.8286869525909424,
|
| 785 |
+
"learning_rate": 9.308860003717748e-06,
|
| 786 |
+
"loss": 0.4137,
|
| 787 |
+
"step": 111
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.2144566778362853,
|
| 791 |
+
"grad_norm": 0.8634768724441528,
|
| 792 |
+
"learning_rate": 9.292707987758202e-06,
|
| 793 |
+
"loss": 0.445,
|
| 794 |
+
"step": 112
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.21637146960268072,
|
| 798 |
+
"grad_norm": 0.8329188227653503,
|
| 799 |
+
"learning_rate": 9.27638375865801e-06,
|
| 800 |
+
"loss": 0.4307,
|
| 801 |
+
"step": 113
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.2182862613690761,
|
| 805 |
+
"grad_norm": 0.8780718445777893,
|
| 806 |
+
"learning_rate": 9.259887971306064e-06,
|
| 807 |
+
"loss": 0.4863,
|
| 808 |
+
"step": 114
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.22020105313547153,
|
| 812 |
+
"grad_norm": 0.9007835388183594,
|
| 813 |
+
"learning_rate": 9.243221287473755e-06,
|
| 814 |
+
"loss": 0.4482,
|
| 815 |
+
"step": 115
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.22211584490186692,
|
| 819 |
+
"grad_norm": 0.8163229823112488,
|
| 820 |
+
"learning_rate": 9.226384375788435e-06,
|
| 821 |
+
"loss": 0.4168,
|
| 822 |
+
"step": 116
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.22403063666826234,
|
| 826 |
+
"grad_norm": 0.8288677334785461,
|
| 827 |
+
"learning_rate": 9.209377911706585e-06,
|
| 828 |
+
"loss": 0.4038,
|
| 829 |
+
"step": 117
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.22594542843465773,
|
| 833 |
+
"grad_norm": 0.8035851716995239,
|
| 834 |
+
"learning_rate": 9.192202577486725e-06,
|
| 835 |
+
"loss": 0.3922,
|
| 836 |
+
"step": 118
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.22786022020105315,
|
| 840 |
+
"grad_norm": 0.8203516006469727,
|
| 841 |
+
"learning_rate": 9.174859062162037e-06,
|
| 842 |
+
"loss": 0.3971,
|
| 843 |
+
"step": 119
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.22977501196744854,
|
| 847 |
+
"grad_norm": 0.8246352076530457,
|
| 848 |
+
"learning_rate": 9.157348061512728e-06,
|
| 849 |
+
"loss": 0.4433,
|
| 850 |
+
"step": 120
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.23168980373384396,
|
| 854 |
+
"grad_norm": 0.8655344247817993,
|
| 855 |
+
"learning_rate": 9.139670278038109e-06,
|
| 856 |
+
"loss": 0.4405,
|
| 857 |
+
"step": 121
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.23360459550023935,
|
| 861 |
+
"grad_norm": 0.7439157366752625,
|
| 862 |
+
"learning_rate": 9.121826420928421e-06,
|
| 863 |
+
"loss": 0.3683,
|
| 864 |
+
"step": 122
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.23551938726663477,
|
| 868 |
+
"grad_norm": 0.817434549331665,
|
| 869 |
+
"learning_rate": 9.103817206036383e-06,
|
| 870 |
+
"loss": 0.4034,
|
| 871 |
+
"step": 123
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.23743417903303016,
|
| 875 |
+
"grad_norm": 0.8455221056938171,
|
| 876 |
+
"learning_rate": 9.085643355848468e-06,
|
| 877 |
+
"loss": 0.4418,
|
| 878 |
+
"step": 124
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.23934897079942558,
|
| 882 |
+
"grad_norm": 0.8356925845146179,
|
| 883 |
+
"learning_rate": 9.06730559945592e-06,
|
| 884 |
+
"loss": 0.4012,
|
| 885 |
+
"step": 125
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.24126376256582097,
|
| 889 |
+
"grad_norm": 0.8181227445602417,
|
| 890 |
+
"learning_rate": 9.048804672525513e-06,
|
| 891 |
+
"loss": 0.4174,
|
| 892 |
+
"step": 126
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.24317855433221638,
|
| 896 |
+
"grad_norm": 0.8010542988777161,
|
| 897 |
+
"learning_rate": 9.030141317270026e-06,
|
| 898 |
+
"loss": 0.3952,
|
| 899 |
+
"step": 127
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.24509334609861178,
|
| 903 |
+
"grad_norm": 0.8500829935073853,
|
| 904 |
+
"learning_rate": 9.011316282418474e-06,
|
| 905 |
+
"loss": 0.4123,
|
| 906 |
+
"step": 128
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.2470081378650072,
|
| 910 |
+
"grad_norm": 0.8971666693687439,
|
| 911 |
+
"learning_rate": 8.992330323186069e-06,
|
| 912 |
+
"loss": 0.4451,
|
| 913 |
+
"step": 129
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.24892292963140258,
|
| 917 |
+
"grad_norm": 0.9065473079681396,
|
| 918 |
+
"learning_rate": 8.973184201243922e-06,
|
| 919 |
+
"loss": 0.4821,
|
| 920 |
+
"step": 130
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.250837721397798,
|
| 924 |
+
"grad_norm": 0.8722876906394958,
|
| 925 |
+
"learning_rate": 8.953878684688492e-06,
|
| 926 |
+
"loss": 0.4204,
|
| 927 |
+
"step": 131
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.2527525131641934,
|
| 931 |
+
"grad_norm": 0.8343362808227539,
|
| 932 |
+
"learning_rate": 8.934414548010764e-06,
|
| 933 |
+
"loss": 0.408,
|
| 934 |
+
"step": 132
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.2546673049305888,
|
| 938 |
+
"grad_norm": 0.8162686824798584,
|
| 939 |
+
"learning_rate": 8.914792572065178e-06,
|
| 940 |
+
"loss": 0.416,
|
| 941 |
+
"step": 133
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.25658209669698423,
|
| 945 |
+
"grad_norm": 0.9116921424865723,
|
| 946 |
+
"learning_rate": 8.89501354403831e-06,
|
| 947 |
+
"loss": 0.4589,
|
| 948 |
+
"step": 134
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.2584968884633796,
|
| 952 |
+
"grad_norm": 0.9577599763870239,
|
| 953 |
+
"learning_rate": 8.875078257417294e-06,
|
| 954 |
+
"loss": 0.4654,
|
| 955 |
+
"step": 135
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.260411680229775,
|
| 959 |
+
"grad_norm": 0.8709072470664978,
|
| 960 |
+
"learning_rate": 8.854987511957974e-06,
|
| 961 |
+
"loss": 0.4395,
|
| 962 |
+
"step": 136
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.26232647199617043,
|
| 966 |
+
"grad_norm": 0.8386030197143555,
|
| 967 |
+
"learning_rate": 8.834742113652835e-06,
|
| 968 |
+
"loss": 0.4281,
|
| 969 |
+
"step": 137
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.26424126376256585,
|
| 973 |
+
"grad_norm": 0.7646230459213257,
|
| 974 |
+
"learning_rate": 8.81434287469866e-06,
|
| 975 |
+
"loss": 0.3804,
|
| 976 |
+
"step": 138
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.2661560555289612,
|
| 980 |
+
"grad_norm": 0.8096075057983398,
|
| 981 |
+
"learning_rate": 8.793790613463956e-06,
|
| 982 |
+
"loss": 0.4112,
|
| 983 |
+
"step": 139
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.26807084729535663,
|
| 987 |
+
"grad_norm": 0.8051929473876953,
|
| 988 |
+
"learning_rate": 8.773086154456106e-06,
|
| 989 |
+
"loss": 0.4172,
|
| 990 |
+
"step": 140
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.26998563906175205,
|
| 994 |
+
"grad_norm": 0.9208196401596069,
|
| 995 |
+
"learning_rate": 8.752230328288314e-06,
|
| 996 |
+
"loss": 0.4768,
|
| 997 |
+
"step": 141
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.27190043082814747,
|
| 1001 |
+
"grad_norm": 0.7890869975090027,
|
| 1002 |
+
"learning_rate": 8.731223971646261e-06,
|
| 1003 |
+
"loss": 0.3915,
|
| 1004 |
+
"step": 142
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.27381522259454283,
|
| 1008 |
+
"grad_norm": 0.786723792552948,
|
| 1009 |
+
"learning_rate": 8.710067927254555e-06,
|
| 1010 |
+
"loss": 0.3844,
|
| 1011 |
+
"step": 143
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.27573001436093825,
|
| 1015 |
+
"grad_norm": 0.791117250919342,
|
| 1016 |
+
"learning_rate": 8.688763043842916e-06,
|
| 1017 |
+
"loss": 0.4065,
|
| 1018 |
+
"step": 144
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.27764480612733367,
|
| 1022 |
+
"grad_norm": 0.8172312378883362,
|
| 1023 |
+
"learning_rate": 8.66731017611213e-06,
|
| 1024 |
+
"loss": 0.4337,
|
| 1025 |
+
"step": 145
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.2795595978937291,
|
| 1029 |
+
"grad_norm": 0.8335762023925781,
|
| 1030 |
+
"learning_rate": 8.645710184699756e-06,
|
| 1031 |
+
"loss": 0.4182,
|
| 1032 |
+
"step": 146
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 0.28147438966012445,
|
| 1036 |
+
"grad_norm": 0.8034957051277161,
|
| 1037 |
+
"learning_rate": 8.6239639361456e-06,
|
| 1038 |
+
"loss": 0.4097,
|
| 1039 |
+
"step": 147
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 0.28338918142651986,
|
| 1043 |
+
"grad_norm": 0.8107390403747559,
|
| 1044 |
+
"learning_rate": 8.602072302856961e-06,
|
| 1045 |
+
"loss": 0.4055,
|
| 1046 |
+
"step": 148
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.2853039731929153,
|
| 1050 |
+
"grad_norm": 0.8442232012748718,
|
| 1051 |
+
"learning_rate": 8.580036163073615e-06,
|
| 1052 |
+
"loss": 0.4307,
|
| 1053 |
+
"step": 149
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.2872187649593107,
|
| 1057 |
+
"grad_norm": 0.8290265202522278,
|
| 1058 |
+
"learning_rate": 8.5578564008326e-06,
|
| 1059 |
+
"loss": 0.3892,
|
| 1060 |
+
"step": 150
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.28913355672570606,
|
| 1064 |
+
"grad_norm": 0.8057438731193542,
|
| 1065 |
+
"learning_rate": 8.535533905932739e-06,
|
| 1066 |
+
"loss": 0.4042,
|
| 1067 |
+
"step": 151
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 0.2910483484921015,
|
| 1071 |
+
"grad_norm": 0.8582248091697693,
|
| 1072 |
+
"learning_rate": 8.513069573898944e-06,
|
| 1073 |
+
"loss": 0.4149,
|
| 1074 |
+
"step": 152
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.2929631402584969,
|
| 1078 |
+
"grad_norm": 0.8402311205863953,
|
| 1079 |
+
"learning_rate": 8.490464305946296e-06,
|
| 1080 |
+
"loss": 0.4243,
|
| 1081 |
+
"step": 153
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 0.2948779320248923,
|
| 1085 |
+
"grad_norm": 0.812869668006897,
|
| 1086 |
+
"learning_rate": 8.467719008943886e-06,
|
| 1087 |
+
"loss": 0.4134,
|
| 1088 |
+
"step": 154
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 0.2967927237912877,
|
| 1092 |
+
"grad_norm": 0.8431028723716736,
|
| 1093 |
+
"learning_rate": 8.444834595378434e-06,
|
| 1094 |
+
"loss": 0.4185,
|
| 1095 |
+
"step": 155
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.2987075155576831,
|
| 1099 |
+
"grad_norm": 0.802760899066925,
|
| 1100 |
+
"learning_rate": 8.421811983317682e-06,
|
| 1101 |
+
"loss": 0.4011,
|
| 1102 |
+
"step": 156
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 0.3006223073240785,
|
| 1106 |
+
"grad_norm": 0.814274251461029,
|
| 1107 |
+
"learning_rate": 8.398652096373566e-06,
|
| 1108 |
+
"loss": 0.4194,
|
| 1109 |
+
"step": 157
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 0.30253709909047394,
|
| 1113 |
+
"grad_norm": 0.8286414742469788,
|
| 1114 |
+
"learning_rate": 8.375355863665155e-06,
|
| 1115 |
+
"loss": 0.4044,
|
| 1116 |
+
"step": 158
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.3044518908568693,
|
| 1120 |
+
"grad_norm": 0.8244617581367493,
|
| 1121 |
+
"learning_rate": 8.351924219781393e-06,
|
| 1122 |
+
"loss": 0.4415,
|
| 1123 |
+
"step": 159
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 0.3063666826232647,
|
| 1127 |
+
"grad_norm": 0.8288456201553345,
|
| 1128 |
+
"learning_rate": 8.328358104743588e-06,
|
| 1129 |
+
"loss": 0.4143,
|
| 1130 |
+
"step": 160
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.30828147438966014,
|
| 1134 |
+
"grad_norm": 0.7895364165306091,
|
| 1135 |
+
"learning_rate": 8.304658463967705e-06,
|
| 1136 |
+
"loss": 0.4122,
|
| 1137 |
+
"step": 161
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.31019626615605556,
|
| 1141 |
+
"grad_norm": 0.7923944592475891,
|
| 1142 |
+
"learning_rate": 8.28082624822645e-06,
|
| 1143 |
+
"loss": 0.3812,
|
| 1144 |
+
"step": 162
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.3121110579224509,
|
| 1148 |
+
"grad_norm": 0.7424578666687012,
|
| 1149 |
+
"learning_rate": 8.256862413611113e-06,
|
| 1150 |
+
"loss": 0.3883,
|
| 1151 |
+
"step": 163
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 0.31402584968884634,
|
| 1155 |
+
"grad_norm": 0.8261198401451111,
|
| 1156 |
+
"learning_rate": 8.232767921493216e-06,
|
| 1157 |
+
"loss": 0.432,
|
| 1158 |
+
"step": 164
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 0.31594064145524176,
|
| 1162 |
+
"grad_norm": 0.8710785508155823,
|
| 1163 |
+
"learning_rate": 8.20854373848595e-06,
|
| 1164 |
+
"loss": 0.4508,
|
| 1165 |
+
"step": 165
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 0.3178554332216372,
|
| 1169 |
+
"grad_norm": 0.7583726048469543,
|
| 1170 |
+
"learning_rate": 8.184190836405394e-06,
|
| 1171 |
+
"loss": 0.3709,
|
| 1172 |
+
"step": 166
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 0.31977022498803254,
|
| 1176 |
+
"grad_norm": 0.7795834541320801,
|
| 1177 |
+
"learning_rate": 8.15971019223152e-06,
|
| 1178 |
+
"loss": 0.4055,
|
| 1179 |
+
"step": 167
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.32168501675442795,
|
| 1183 |
+
"grad_norm": 0.7580612897872925,
|
| 1184 |
+
"learning_rate": 8.135102788069015e-06,
|
| 1185 |
+
"loss": 0.3605,
|
| 1186 |
+
"step": 168
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.3235998085208234,
|
| 1190 |
+
"grad_norm": 0.7536636590957642,
|
| 1191 |
+
"learning_rate": 8.110369611107869e-06,
|
| 1192 |
+
"loss": 0.3656,
|
| 1193 |
+
"step": 169
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 0.3255146002872188,
|
| 1197 |
+
"grad_norm": 0.8029680252075195,
|
| 1198 |
+
"learning_rate": 8.085511653583772e-06,
|
| 1199 |
+
"loss": 0.3819,
|
| 1200 |
+
"step": 170
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 0.32742939205361415,
|
| 1204 |
+
"grad_norm": 0.8548794388771057,
|
| 1205 |
+
"learning_rate": 8.060529912738316e-06,
|
| 1206 |
+
"loss": 0.4449,
|
| 1207 |
+
"step": 171
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.3293441838200096,
|
| 1211 |
+
"grad_norm": 0.877955436706543,
|
| 1212 |
+
"learning_rate": 8.035425390778975e-06,
|
| 1213 |
+
"loss": 0.4504,
|
| 1214 |
+
"step": 172
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.331258975586405,
|
| 1218 |
+
"grad_norm": 0.8173900246620178,
|
| 1219 |
+
"learning_rate": 8.010199094838915e-06,
|
| 1220 |
+
"loss": 0.4211,
|
| 1221 |
+
"step": 173
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.3331737673528004,
|
| 1225 |
+
"grad_norm": 0.8715358972549438,
|
| 1226 |
+
"learning_rate": 7.984852036936578e-06,
|
| 1227 |
+
"loss": 0.3909,
|
| 1228 |
+
"step": 174
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 0.3350885591191958,
|
| 1232 |
+
"grad_norm": 0.8475743532180786,
|
| 1233 |
+
"learning_rate": 7.959385233935087e-06,
|
| 1234 |
+
"loss": 0.4416,
|
| 1235 |
+
"step": 175
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 0.3370033508855912,
|
| 1239 |
+
"grad_norm": 0.7483753561973572,
|
| 1240 |
+
"learning_rate": 7.933799707501448e-06,
|
| 1241 |
+
"loss": 0.351,
|
| 1242 |
+
"step": 176
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.3389181426519866,
|
| 1246 |
+
"grad_norm": 0.8065423965454102,
|
| 1247 |
+
"learning_rate": 7.908096484065569e-06,
|
| 1248 |
+
"loss": 0.4085,
|
| 1249 |
+
"step": 177
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 0.340832934418382,
|
| 1253 |
+
"grad_norm": 0.8215972185134888,
|
| 1254 |
+
"learning_rate": 7.88227659477908e-06,
|
| 1255 |
+
"loss": 0.4132,
|
| 1256 |
+
"step": 178
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.3427477261847774,
|
| 1260 |
+
"grad_norm": 0.7788512706756592,
|
| 1261 |
+
"learning_rate": 7.856341075473963e-06,
|
| 1262 |
+
"loss": 0.3828,
|
| 1263 |
+
"step": 179
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.3446625179511728,
|
| 1267 |
+
"grad_norm": 0.7943012118339539,
|
| 1268 |
+
"learning_rate": 7.830290966620997e-06,
|
| 1269 |
+
"loss": 0.3737,
|
| 1270 |
+
"step": 180
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 0.3465773097175682,
|
| 1274 |
+
"grad_norm": 0.8680888414382935,
|
| 1275 |
+
"learning_rate": 7.804127313288023e-06,
|
| 1276 |
+
"loss": 0.4019,
|
| 1277 |
+
"step": 181
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 0.34849210148396365,
|
| 1281 |
+
"grad_norm": 0.8370754718780518,
|
| 1282 |
+
"learning_rate": 7.777851165098012e-06,
|
| 1283 |
+
"loss": 0.4202,
|
| 1284 |
+
"step": 182
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 0.350406893250359,
|
| 1288 |
+
"grad_norm": 0.7426475882530212,
|
| 1289 |
+
"learning_rate": 7.751463576186957e-06,
|
| 1290 |
+
"loss": 0.378,
|
| 1291 |
+
"step": 183
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 0.3523216850167544,
|
| 1295 |
+
"grad_norm": 0.827038586139679,
|
| 1296 |
+
"learning_rate": 7.72496560516159e-06,
|
| 1297 |
+
"loss": 0.415,
|
| 1298 |
+
"step": 184
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.35423647678314985,
|
| 1302 |
+
"grad_norm": 0.8714759349822998,
|
| 1303 |
+
"learning_rate": 7.6983583150569e-06,
|
| 1304 |
+
"loss": 0.4204,
|
| 1305 |
+
"step": 185
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.35615126854954526,
|
| 1309 |
+
"grad_norm": 0.8127462863922119,
|
| 1310 |
+
"learning_rate": 7.671642773293506e-06,
|
| 1311 |
+
"loss": 0.3904,
|
| 1312 |
+
"step": 186
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 0.3580660603159406,
|
| 1316 |
+
"grad_norm": 0.8972522020339966,
|
| 1317 |
+
"learning_rate": 7.644820051634813e-06,
|
| 1318 |
+
"loss": 0.4168,
|
| 1319 |
+
"step": 187
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 0.35998085208233604,
|
| 1323 |
+
"grad_norm": 0.9051675200462341,
|
| 1324 |
+
"learning_rate": 7.617891226144034e-06,
|
| 1325 |
+
"loss": 0.4742,
|
| 1326 |
+
"step": 188
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 0.36189564384873146,
|
| 1330 |
+
"grad_norm": 0.8041402101516724,
|
| 1331 |
+
"learning_rate": 7.59085737714101e-06,
|
| 1332 |
+
"loss": 0.3916,
|
| 1333 |
+
"step": 189
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 0.3638104356151269,
|
| 1337 |
+
"grad_norm": 0.9296969175338745,
|
| 1338 |
+
"learning_rate": 7.563719589158874e-06,
|
| 1339 |
+
"loss": 0.4198,
|
| 1340 |
+
"step": 190
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 0.36572522738152224,
|
| 1344 |
+
"grad_norm": 0.8441433310508728,
|
| 1345 |
+
"learning_rate": 7.536478950900537e-06,
|
| 1346 |
+
"loss": 0.4094,
|
| 1347 |
+
"step": 191
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.36764001914791766,
|
| 1351 |
+
"grad_norm": 0.8146634101867676,
|
| 1352 |
+
"learning_rate": 7.509136555195025e-06,
|
| 1353 |
+
"loss": 0.398,
|
| 1354 |
+
"step": 192
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.3695548109143131,
|
| 1358 |
+
"grad_norm": 0.8095076680183411,
|
| 1359 |
+
"learning_rate": 7.481693498953621e-06,
|
| 1360 |
+
"loss": 0.4121,
|
| 1361 |
+
"step": 193
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 0.3714696026807085,
|
| 1365 |
+
"grad_norm": 0.8033435344696045,
|
| 1366 |
+
"learning_rate": 7.4541508831258695e-06,
|
| 1367 |
+
"loss": 0.3912,
|
| 1368 |
+
"step": 194
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.37338439444710386,
|
| 1372 |
+
"grad_norm": 0.7945087552070618,
|
| 1373 |
+
"learning_rate": 7.4265098126554065e-06,
|
| 1374 |
+
"loss": 0.3784,
|
| 1375 |
+
"step": 195
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 0.3752991862134993,
|
| 1379 |
+
"grad_norm": 0.858241081237793,
|
| 1380 |
+
"learning_rate": 7.3987713964356335e-06,
|
| 1381 |
+
"loss": 0.451,
|
| 1382 |
+
"step": 196
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 0.3772139779798947,
|
| 1386 |
+
"grad_norm": 0.9208387136459351,
|
| 1387 |
+
"learning_rate": 7.370936747265226e-06,
|
| 1388 |
+
"loss": 0.4539,
|
| 1389 |
+
"step": 197
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.3791287697462901,
|
| 1393 |
+
"grad_norm": 0.775140643119812,
|
| 1394 |
+
"learning_rate": 7.3430069818035e-06,
|
| 1395 |
+
"loss": 0.3956,
|
| 1396 |
+
"step": 198
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 0.3810435615126855,
|
| 1400 |
+
"grad_norm": 0.7926008105278015,
|
| 1401 |
+
"learning_rate": 7.314983220525604e-06,
|
| 1402 |
+
"loss": 0.4044,
|
| 1403 |
+
"step": 199
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 0.3829583532790809,
|
| 1407 |
+
"grad_norm": 0.7891693711280823,
|
| 1408 |
+
"learning_rate": 7.286866587677576e-06,
|
| 1409 |
+
"loss": 0.3881,
|
| 1410 |
+
"step": 200
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.3848731450454763,
|
| 1414 |
+
"grad_norm": 0.8547941446304321,
|
| 1415 |
+
"learning_rate": 7.2586582112312355e-06,
|
| 1416 |
+
"loss": 0.4289,
|
| 1417 |
+
"step": 201
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 0.38678793681187174,
|
| 1421 |
+
"grad_norm": 0.7894405722618103,
|
| 1422 |
+
"learning_rate": 7.230359222838939e-06,
|
| 1423 |
+
"loss": 0.3886,
|
| 1424 |
+
"step": 202
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 0.3887027285782671,
|
| 1428 |
+
"grad_norm": 0.9024775624275208,
|
| 1429 |
+
"learning_rate": 7.201970757788172e-06,
|
| 1430 |
+
"loss": 0.4586,
|
| 1431 |
+
"step": 203
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.3906175203446625,
|
| 1435 |
+
"grad_norm": 0.7940675616264343,
|
| 1436 |
+
"learning_rate": 7.173493954956012e-06,
|
| 1437 |
+
"loss": 0.3905,
|
| 1438 |
+
"step": 204
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 0.39253231211105793,
|
| 1442 |
+
"grad_norm": 0.8231476545333862,
|
| 1443 |
+
"learning_rate": 7.144929956763438e-06,
|
| 1444 |
+
"loss": 0.4044,
|
| 1445 |
+
"step": 205
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 0.39444710387745335,
|
| 1449 |
+
"grad_norm": 0.9094031453132629,
|
| 1450 |
+
"learning_rate": 7.116279909129492e-06,
|
| 1451 |
+
"loss": 0.4502,
|
| 1452 |
+
"step": 206
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 0.3963618956438487,
|
| 1456 |
+
"grad_norm": 0.843540608882904,
|
| 1457 |
+
"learning_rate": 7.087544961425317e-06,
|
| 1458 |
+
"loss": 0.4037,
|
| 1459 |
+
"step": 207
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 0.39827668741024413,
|
| 1463 |
+
"grad_norm": 0.8074728846549988,
|
| 1464 |
+
"learning_rate": 7.058726266428042e-06,
|
| 1465 |
+
"loss": 0.405,
|
| 1466 |
+
"step": 208
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.40019147917663955,
|
| 1470 |
+
"grad_norm": 0.7620254755020142,
|
| 1471 |
+
"learning_rate": 7.029824980274536e-06,
|
| 1472 |
+
"loss": 0.3727,
|
| 1473 |
+
"step": 209
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.40210627094303497,
|
| 1477 |
+
"grad_norm": 0.8311992883682251,
|
| 1478 |
+
"learning_rate": 7.0008422624150285e-06,
|
| 1479 |
+
"loss": 0.4172,
|
| 1480 |
+
"step": 210
|
| 1481 |
+
}
|
| 1482 |
+
],
|
| 1483 |
+
"logging_steps": 1,
|
| 1484 |
+
"max_steps": 522,
|
| 1485 |
+
"num_input_tokens_seen": 0,
|
| 1486 |
+
"num_train_epochs": 1,
|
| 1487 |
+
"save_steps": 105,
|
| 1488 |
+
"stateful_callbacks": {
|
| 1489 |
+
"TrainerControl": {
|
| 1490 |
+
"args": {
|
| 1491 |
+
"should_epoch_stop": false,
|
| 1492 |
+
"should_evaluate": false,
|
| 1493 |
+
"should_log": false,
|
| 1494 |
+
"should_save": true,
|
| 1495 |
+
"should_training_stop": false
|
| 1496 |
+
},
|
| 1497 |
+
"attributes": {}
|
| 1498 |
+
}
|
| 1499 |
+
},
|
| 1500 |
+
"total_flos": 1.1029906388628275e+17,
|
| 1501 |
+
"train_batch_size": 8,
|
| 1502 |
+
"trial_name": null,
|
| 1503 |
+
"trial_params": null
|
| 1504 |
+
}
|
checkpoint-210/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:103fd3bb469213774a4b43139febd5a468076d3935b2ed67984e8c9a1aaaa004
|
| 3 |
+
size 10936
|
checkpoint-210/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-210/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-315/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-315/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"eos_token_id": 151643,
|
| 7 |
+
"hidden_act": "silu",
|
| 8 |
+
"hidden_size": 1536,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"intermediate_size": 8960,
|
| 11 |
+
"max_position_embeddings": 131072,
|
| 12 |
+
"max_window_layers": 28,
|
| 13 |
+
"model_type": "qwen2",
|
| 14 |
+
"num_attention_heads": 12,
|
| 15 |
+
"num_hidden_layers": 28,
|
| 16 |
+
"num_key_value_heads": 2,
|
| 17 |
+
"rms_norm_eps": 1e-06,
|
| 18 |
+
"rope_scaling": null,
|
| 19 |
+
"rope_theta": 1000000.0,
|
| 20 |
+
"sliding_window": 131072,
|
| 21 |
+
"tie_word_embeddings": true,
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.51.3",
|
| 24 |
+
"use_cache": false,
|
| 25 |
+
"use_mrope": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
checkpoint-315/generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"max_new_tokens": 2048,
|
| 6 |
+
"transformers_version": "4.51.3"
|
| 7 |
+
}
|
checkpoint-315/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step315
|
checkpoint-315/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-315/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3008dc79742ac1f79aad19617361f946f8a3846f39aefa74b80c0c9cb96823be
|
| 3 |
+
size 3554214752
|
checkpoint-315/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
|
| 3 |
+
size 14512
|
checkpoint-315/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
|
| 3 |
+
size 14512
|
checkpoint-315/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4ec420f7da6d05dd8e17b1cc8fc882ab1f031dca3a4f53381815b864453c833
|
| 3 |
+
size 1064
|
checkpoint-315/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-315/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
checkpoint-315/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|endoftext|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-315/trainer_state.json
ADDED
|
@@ -0,0 +1,2239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 0.6031594064145525,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 315,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.0019147917663954045,
|
| 14 |
+
"grad_norm": 2.9491562843322754,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 0.6229,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.003829583532790809,
|
| 21 |
+
"grad_norm": 3.0646867752075195,
|
| 22 |
+
"learning_rate": 3.846153846153847e-07,
|
| 23 |
+
"loss": 0.6119,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.0057443752991862135,
|
| 28 |
+
"grad_norm": 3.0737922191619873,
|
| 29 |
+
"learning_rate": 7.692307692307694e-07,
|
| 30 |
+
"loss": 0.6582,
|
| 31 |
+
"step": 3
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.007659167065581618,
|
| 35 |
+
"grad_norm": 2.9172728061676025,
|
| 36 |
+
"learning_rate": 1.153846153846154e-06,
|
| 37 |
+
"loss": 0.6209,
|
| 38 |
+
"step": 4
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.009573958831977022,
|
| 42 |
+
"grad_norm": 2.668588161468506,
|
| 43 |
+
"learning_rate": 1.5384615384615387e-06,
|
| 44 |
+
"loss": 0.5589,
|
| 45 |
+
"step": 5
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.011488750598372427,
|
| 49 |
+
"grad_norm": 3.2810585498809814,
|
| 50 |
+
"learning_rate": 1.9230769230769234e-06,
|
| 51 |
+
"loss": 0.5968,
|
| 52 |
+
"step": 6
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.013403542364767831,
|
| 56 |
+
"grad_norm": 2.434365749359131,
|
| 57 |
+
"learning_rate": 2.307692307692308e-06,
|
| 58 |
+
"loss": 0.5636,
|
| 59 |
+
"step": 7
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.015318334131163236,
|
| 63 |
+
"grad_norm": 2.060615301132202,
|
| 64 |
+
"learning_rate": 2.6923076923076923e-06,
|
| 65 |
+
"loss": 0.5661,
|
| 66 |
+
"step": 8
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.01723312589755864,
|
| 70 |
+
"grad_norm": 1.8817814588546753,
|
| 71 |
+
"learning_rate": 3.0769230769230774e-06,
|
| 72 |
+
"loss": 0.5817,
|
| 73 |
+
"step": 9
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.019147917663954045,
|
| 77 |
+
"grad_norm": 1.766438603401184,
|
| 78 |
+
"learning_rate": 3.4615384615384617e-06,
|
| 79 |
+
"loss": 0.5529,
|
| 80 |
+
"step": 10
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.02106270943034945,
|
| 84 |
+
"grad_norm": 1.5240556001663208,
|
| 85 |
+
"learning_rate": 3.846153846153847e-06,
|
| 86 |
+
"loss": 0.5207,
|
| 87 |
+
"step": 11
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.022977501196744854,
|
| 91 |
+
"grad_norm": 1.5381622314453125,
|
| 92 |
+
"learning_rate": 4.230769230769231e-06,
|
| 93 |
+
"loss": 0.5171,
|
| 94 |
+
"step": 12
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.02489229296314026,
|
| 98 |
+
"grad_norm": 1.4144328832626343,
|
| 99 |
+
"learning_rate": 4.615384615384616e-06,
|
| 100 |
+
"loss": 0.5612,
|
| 101 |
+
"step": 13
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.026807084729535663,
|
| 105 |
+
"grad_norm": 1.282257318496704,
|
| 106 |
+
"learning_rate": 5e-06,
|
| 107 |
+
"loss": 0.493,
|
| 108 |
+
"step": 14
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.028721876495931067,
|
| 112 |
+
"grad_norm": 1.3273121118545532,
|
| 113 |
+
"learning_rate": 5.384615384615385e-06,
|
| 114 |
+
"loss": 0.4723,
|
| 115 |
+
"step": 15
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.030636668262326472,
|
| 119 |
+
"grad_norm": 1.1829627752304077,
|
| 120 |
+
"learning_rate": 5.769230769230769e-06,
|
| 121 |
+
"loss": 0.4675,
|
| 122 |
+
"step": 16
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.032551460028721876,
|
| 126 |
+
"grad_norm": 1.0885576009750366,
|
| 127 |
+
"learning_rate": 6.153846153846155e-06,
|
| 128 |
+
"loss": 0.4275,
|
| 129 |
+
"step": 17
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.03446625179511728,
|
| 133 |
+
"grad_norm": 0.9974104762077332,
|
| 134 |
+
"learning_rate": 6.538461538461539e-06,
|
| 135 |
+
"loss": 0.4709,
|
| 136 |
+
"step": 18
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.036381043561512685,
|
| 140 |
+
"grad_norm": 1.0769761800765991,
|
| 141 |
+
"learning_rate": 6.923076923076923e-06,
|
| 142 |
+
"loss": 0.4916,
|
| 143 |
+
"step": 19
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.03829583532790809,
|
| 147 |
+
"grad_norm": 0.967096745967865,
|
| 148 |
+
"learning_rate": 7.307692307692308e-06,
|
| 149 |
+
"loss": 0.4785,
|
| 150 |
+
"step": 20
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.040210627094303494,
|
| 154 |
+
"grad_norm": 1.0460747480392456,
|
| 155 |
+
"learning_rate": 7.692307692307694e-06,
|
| 156 |
+
"loss": 0.4653,
|
| 157 |
+
"step": 21
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.0421254188606989,
|
| 161 |
+
"grad_norm": 1.0114920139312744,
|
| 162 |
+
"learning_rate": 8.076923076923077e-06,
|
| 163 |
+
"loss": 0.4648,
|
| 164 |
+
"step": 22
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.0440402106270943,
|
| 168 |
+
"grad_norm": 1.1619290113449097,
|
| 169 |
+
"learning_rate": 8.461538461538462e-06,
|
| 170 |
+
"loss": 0.4833,
|
| 171 |
+
"step": 23
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.04595500239348971,
|
| 175 |
+
"grad_norm": 0.9872665405273438,
|
| 176 |
+
"learning_rate": 8.846153846153847e-06,
|
| 177 |
+
"loss": 0.4545,
|
| 178 |
+
"step": 24
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.04786979415988511,
|
| 182 |
+
"grad_norm": 0.9702840447425842,
|
| 183 |
+
"learning_rate": 9.230769230769232e-06,
|
| 184 |
+
"loss": 0.4651,
|
| 185 |
+
"step": 25
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.04978458592628052,
|
| 189 |
+
"grad_norm": 0.9493695497512817,
|
| 190 |
+
"learning_rate": 9.615384615384616e-06,
|
| 191 |
+
"loss": 0.477,
|
| 192 |
+
"step": 26
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.05169937769267592,
|
| 196 |
+
"grad_norm": 0.9152507185935974,
|
| 197 |
+
"learning_rate": 1e-05,
|
| 198 |
+
"loss": 0.4499,
|
| 199 |
+
"step": 27
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.053614169459071326,
|
| 203 |
+
"grad_norm": 1.0640617609024048,
|
| 204 |
+
"learning_rate": 9.999899706000774e-06,
|
| 205 |
+
"loss": 0.4853,
|
| 206 |
+
"step": 28
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.05552896122546673,
|
| 210 |
+
"grad_norm": 0.9641034603118896,
|
| 211 |
+
"learning_rate": 9.999598828026644e-06,
|
| 212 |
+
"loss": 0.475,
|
| 213 |
+
"step": 29
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.057443752991862135,
|
| 217 |
+
"grad_norm": 0.8927161693572998,
|
| 218 |
+
"learning_rate": 9.999097378148116e-06,
|
| 219 |
+
"loss": 0.4448,
|
| 220 |
+
"step": 30
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.05935854475825754,
|
| 224 |
+
"grad_norm": 0.881844699382782,
|
| 225 |
+
"learning_rate": 9.998395376482152e-06,
|
| 226 |
+
"loss": 0.4327,
|
| 227 |
+
"step": 31
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.061273336524652944,
|
| 231 |
+
"grad_norm": 0.8794113993644714,
|
| 232 |
+
"learning_rate": 9.99749285119138e-06,
|
| 233 |
+
"loss": 0.4294,
|
| 234 |
+
"step": 32
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.06318812829104835,
|
| 238 |
+
"grad_norm": 0.9898825287818909,
|
| 239 |
+
"learning_rate": 9.996389838482942e-06,
|
| 240 |
+
"loss": 0.5294,
|
| 241 |
+
"step": 33
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.06510292005744375,
|
| 245 |
+
"grad_norm": 0.9184749126434326,
|
| 246 |
+
"learning_rate": 9.995086382607064e-06,
|
| 247 |
+
"loss": 0.4774,
|
| 248 |
+
"step": 34
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.06701771182383916,
|
| 252 |
+
"grad_norm": 0.9067336320877075,
|
| 253 |
+
"learning_rate": 9.993582535855265e-06,
|
| 254 |
+
"loss": 0.4569,
|
| 255 |
+
"step": 35
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.06893250359023456,
|
| 259 |
+
"grad_norm": 0.8807307481765747,
|
| 260 |
+
"learning_rate": 9.991878358558267e-06,
|
| 261 |
+
"loss": 0.478,
|
| 262 |
+
"step": 36
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.07084729535662997,
|
| 266 |
+
"grad_norm": 0.9359887838363647,
|
| 267 |
+
"learning_rate": 9.989973919083576e-06,
|
| 268 |
+
"loss": 0.4659,
|
| 269 |
+
"step": 37
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.07276208712302537,
|
| 273 |
+
"grad_norm": 0.9008484482765198,
|
| 274 |
+
"learning_rate": 9.987869293832727e-06,
|
| 275 |
+
"loss": 0.4659,
|
| 276 |
+
"step": 38
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.07467687888942078,
|
| 280 |
+
"grad_norm": 0.8065485954284668,
|
| 281 |
+
"learning_rate": 9.985564567238237e-06,
|
| 282 |
+
"loss": 0.4441,
|
| 283 |
+
"step": 39
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.07659167065581618,
|
| 287 |
+
"grad_norm": 0.9766021966934204,
|
| 288 |
+
"learning_rate": 9.983059831760205e-06,
|
| 289 |
+
"loss": 0.4834,
|
| 290 |
+
"step": 40
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.07850646242221158,
|
| 294 |
+
"grad_norm": 0.8222993016242981,
|
| 295 |
+
"learning_rate": 9.980355187882606e-06,
|
| 296 |
+
"loss": 0.443,
|
| 297 |
+
"step": 41
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.08042125418860699,
|
| 301 |
+
"grad_norm": 0.8215630054473877,
|
| 302 |
+
"learning_rate": 9.977450744109258e-06,
|
| 303 |
+
"loss": 0.4219,
|
| 304 |
+
"step": 42
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.0823360459550024,
|
| 308 |
+
"grad_norm": 0.8324375748634338,
|
| 309 |
+
"learning_rate": 9.974346616959476e-06,
|
| 310 |
+
"loss": 0.4362,
|
| 311 |
+
"step": 43
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.0842508377213978,
|
| 315 |
+
"grad_norm": 0.9242782592773438,
|
| 316 |
+
"learning_rate": 9.97104293096339e-06,
|
| 317 |
+
"loss": 0.4738,
|
| 318 |
+
"step": 44
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.0861656294877932,
|
| 322 |
+
"grad_norm": 0.9275208711624146,
|
| 323 |
+
"learning_rate": 9.967539818656953e-06,
|
| 324 |
+
"loss": 0.4571,
|
| 325 |
+
"step": 45
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.0880804212541886,
|
| 329 |
+
"grad_norm": 0.876868724822998,
|
| 330 |
+
"learning_rate": 9.96383742057662e-06,
|
| 331 |
+
"loss": 0.5172,
|
| 332 |
+
"step": 46
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.08999521302058401,
|
| 336 |
+
"grad_norm": 0.8446276783943176,
|
| 337 |
+
"learning_rate": 9.959935885253715e-06,
|
| 338 |
+
"loss": 0.4457,
|
| 339 |
+
"step": 47
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.09191000478697942,
|
| 343 |
+
"grad_norm": 0.8077015280723572,
|
| 344 |
+
"learning_rate": 9.955835369208475e-06,
|
| 345 |
+
"loss": 0.4234,
|
| 346 |
+
"step": 48
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.09382479655337482,
|
| 350 |
+
"grad_norm": 0.7882896065711975,
|
| 351 |
+
"learning_rate": 9.951536036943753e-06,
|
| 352 |
+
"loss": 0.4264,
|
| 353 |
+
"step": 49
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.09573958831977022,
|
| 357 |
+
"grad_norm": 0.8539751768112183,
|
| 358 |
+
"learning_rate": 9.94703806093845e-06,
|
| 359 |
+
"loss": 0.461,
|
| 360 |
+
"step": 50
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.09765438008616563,
|
| 364 |
+
"grad_norm": 0.8285911679267883,
|
| 365 |
+
"learning_rate": 9.942341621640558e-06,
|
| 366 |
+
"loss": 0.4379,
|
| 367 |
+
"step": 51
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.09956917185256103,
|
| 371 |
+
"grad_norm": 0.8029133081436157,
|
| 372 |
+
"learning_rate": 9.937446907459954e-06,
|
| 373 |
+
"loss": 0.4565,
|
| 374 |
+
"step": 52
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.10148396361895644,
|
| 378 |
+
"grad_norm": 0.7964851260185242,
|
| 379 |
+
"learning_rate": 9.932354114760819e-06,
|
| 380 |
+
"loss": 0.4262,
|
| 381 |
+
"step": 53
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.10339875538535184,
|
| 385 |
+
"grad_norm": 0.9846324920654297,
|
| 386 |
+
"learning_rate": 9.92706344785377e-06,
|
| 387 |
+
"loss": 0.5302,
|
| 388 |
+
"step": 54
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.10531354715174725,
|
| 392 |
+
"grad_norm": 0.7648650407791138,
|
| 393 |
+
"learning_rate": 9.921575118987672e-06,
|
| 394 |
+
"loss": 0.4066,
|
| 395 |
+
"step": 55
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.10722833891814265,
|
| 399 |
+
"grad_norm": 0.83173668384552,
|
| 400 |
+
"learning_rate": 9.915889348341098e-06,
|
| 401 |
+
"loss": 0.4438,
|
| 402 |
+
"step": 56
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.10914313068453806,
|
| 406 |
+
"grad_norm": 0.7968882322311401,
|
| 407 |
+
"learning_rate": 9.910006364013522e-06,
|
| 408 |
+
"loss": 0.407,
|
| 409 |
+
"step": 57
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.11105792245093346,
|
| 413 |
+
"grad_norm": 0.8423118591308594,
|
| 414 |
+
"learning_rate": 9.903926402016153e-06,
|
| 415 |
+
"loss": 0.4174,
|
| 416 |
+
"step": 58
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.11297271421732887,
|
| 420 |
+
"grad_norm": 0.9054727554321289,
|
| 421 |
+
"learning_rate": 9.897649706262474e-06,
|
| 422 |
+
"loss": 0.4764,
|
| 423 |
+
"step": 59
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.11488750598372427,
|
| 427 |
+
"grad_norm": 0.8318431973457336,
|
| 428 |
+
"learning_rate": 9.891176528558451e-06,
|
| 429 |
+
"loss": 0.4326,
|
| 430 |
+
"step": 60
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.11680229775011967,
|
| 434 |
+
"grad_norm": 0.8409565687179565,
|
| 435 |
+
"learning_rate": 9.884507128592435e-06,
|
| 436 |
+
"loss": 0.4451,
|
| 437 |
+
"step": 61
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.11871708951651508,
|
| 441 |
+
"grad_norm": 0.8471431136131287,
|
| 442 |
+
"learning_rate": 9.877641773924748e-06,
|
| 443 |
+
"loss": 0.4217,
|
| 444 |
+
"step": 62
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.12063188128291048,
|
| 448 |
+
"grad_norm": 0.8495103120803833,
|
| 449 |
+
"learning_rate": 9.870580739976936e-06,
|
| 450 |
+
"loss": 0.421,
|
| 451 |
+
"step": 63
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.12254667304930589,
|
| 455 |
+
"grad_norm": 0.8164567947387695,
|
| 456 |
+
"learning_rate": 9.863324310020735e-06,
|
| 457 |
+
"loss": 0.4266,
|
| 458 |
+
"step": 64
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.12446146481570129,
|
| 462 |
+
"grad_norm": 0.8732247948646545,
|
| 463 |
+
"learning_rate": 9.855872775166696e-06,
|
| 464 |
+
"loss": 0.4661,
|
| 465 |
+
"step": 65
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.1263762565820967,
|
| 469 |
+
"grad_norm": 0.8157728910446167,
|
| 470 |
+
"learning_rate": 9.848226434352513e-06,
|
| 471 |
+
"loss": 0.4401,
|
| 472 |
+
"step": 66
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.12829104834849211,
|
| 476 |
+
"grad_norm": 0.8860891461372375,
|
| 477 |
+
"learning_rate": 9.840385594331022e-06,
|
| 478 |
+
"loss": 0.4748,
|
| 479 |
+
"step": 67
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.1302058401148875,
|
| 483 |
+
"grad_norm": 0.8987312316894531,
|
| 484 |
+
"learning_rate": 9.83235056965791e-06,
|
| 485 |
+
"loss": 0.4881,
|
| 486 |
+
"step": 68
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.13212063188128292,
|
| 490 |
+
"grad_norm": 0.8786044716835022,
|
| 491 |
+
"learning_rate": 9.824121682679072e-06,
|
| 492 |
+
"loss": 0.4417,
|
| 493 |
+
"step": 69
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.13403542364767831,
|
| 497 |
+
"grad_norm": 0.8325650691986084,
|
| 498 |
+
"learning_rate": 9.815699263517712e-06,
|
| 499 |
+
"loss": 0.4377,
|
| 500 |
+
"step": 70
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.13595021541407373,
|
| 504 |
+
"grad_norm": 0.8149142861366272,
|
| 505 |
+
"learning_rate": 9.807083650061063e-06,
|
| 506 |
+
"loss": 0.4496,
|
| 507 |
+
"step": 71
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.13786500718046912,
|
| 511 |
+
"grad_norm": 0.8394611477851868,
|
| 512 |
+
"learning_rate": 9.798275187946859e-06,
|
| 513 |
+
"loss": 0.4394,
|
| 514 |
+
"step": 72
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.13977979894686454,
|
| 518 |
+
"grad_norm": 0.7746449112892151,
|
| 519 |
+
"learning_rate": 9.789274230549456e-06,
|
| 520 |
+
"loss": 0.4039,
|
| 521 |
+
"step": 73
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.14169459071325993,
|
| 525 |
+
"grad_norm": 0.7592336535453796,
|
| 526 |
+
"learning_rate": 9.780081138965663e-06,
|
| 527 |
+
"loss": 0.3788,
|
| 528 |
+
"step": 74
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.14360938247965535,
|
| 532 |
+
"grad_norm": 0.9066088199615479,
|
| 533 |
+
"learning_rate": 9.770696282000245e-06,
|
| 534 |
+
"loss": 0.4541,
|
| 535 |
+
"step": 75
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.14552417424605074,
|
| 539 |
+
"grad_norm": 0.8512394428253174,
|
| 540 |
+
"learning_rate": 9.761120036151138e-06,
|
| 541 |
+
"loss": 0.4217,
|
| 542 |
+
"step": 76
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.14743896601244616,
|
| 546 |
+
"grad_norm": 0.795378565788269,
|
| 547 |
+
"learning_rate": 9.751352785594337e-06,
|
| 548 |
+
"loss": 0.4014,
|
| 549 |
+
"step": 77
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.14935375777884155,
|
| 553 |
+
"grad_norm": 0.9467825293540955,
|
| 554 |
+
"learning_rate": 9.741394922168495e-06,
|
| 555 |
+
"loss": 0.4855,
|
| 556 |
+
"step": 78
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.15126854954523697,
|
| 560 |
+
"grad_norm": 0.7824875712394714,
|
| 561 |
+
"learning_rate": 9.731246845359187e-06,
|
| 562 |
+
"loss": 0.4088,
|
| 563 |
+
"step": 79
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.15318334131163236,
|
| 567 |
+
"grad_norm": 0.7557615637779236,
|
| 568 |
+
"learning_rate": 9.720908962282893e-06,
|
| 569 |
+
"loss": 0.4023,
|
| 570 |
+
"step": 80
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.15509813307802778,
|
| 574 |
+
"grad_norm": 0.8093947768211365,
|
| 575 |
+
"learning_rate": 9.710381687670675e-06,
|
| 576 |
+
"loss": 0.4345,
|
| 577 |
+
"step": 81
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.15701292484442317,
|
| 581 |
+
"grad_norm": 0.8901275396347046,
|
| 582 |
+
"learning_rate": 9.699665443851518e-06,
|
| 583 |
+
"loss": 0.4444,
|
| 584 |
+
"step": 82
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.1589277166108186,
|
| 588 |
+
"grad_norm": 0.7518415451049805,
|
| 589 |
+
"learning_rate": 9.688760660735403e-06,
|
| 590 |
+
"loss": 0.4024,
|
| 591 |
+
"step": 83
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.16084250837721398,
|
| 595 |
+
"grad_norm": 0.7495772242546082,
|
| 596 |
+
"learning_rate": 9.677667775796052e-06,
|
| 597 |
+
"loss": 0.4005,
|
| 598 |
+
"step": 84
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.1627573001436094,
|
| 602 |
+
"grad_norm": 0.8903560638427734,
|
| 603 |
+
"learning_rate": 9.666387234053385e-06,
|
| 604 |
+
"loss": 0.4495,
|
| 605 |
+
"step": 85
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.1646720919100048,
|
| 609 |
+
"grad_norm": 0.8854427933692932,
|
| 610 |
+
"learning_rate": 9.654919488055656e-06,
|
| 611 |
+
"loss": 0.4381,
|
| 612 |
+
"step": 86
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.1665868836764002,
|
| 616 |
+
"grad_norm": 0.8393151164054871,
|
| 617 |
+
"learning_rate": 9.643264997861312e-06,
|
| 618 |
+
"loss": 0.4177,
|
| 619 |
+
"step": 87
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.1685016754427956,
|
| 623 |
+
"grad_norm": 0.8448845148086548,
|
| 624 |
+
"learning_rate": 9.631424231020523e-06,
|
| 625 |
+
"loss": 0.4437,
|
| 626 |
+
"step": 88
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.170416467209191,
|
| 630 |
+
"grad_norm": 0.8987253904342651,
|
| 631 |
+
"learning_rate": 9.619397662556434e-06,
|
| 632 |
+
"loss": 0.4479,
|
| 633 |
+
"step": 89
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.1723312589755864,
|
| 637 |
+
"grad_norm": 0.9512760639190674,
|
| 638 |
+
"learning_rate": 9.607185774946106e-06,
|
| 639 |
+
"loss": 0.5188,
|
| 640 |
+
"step": 90
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.17424605074198182,
|
| 644 |
+
"grad_norm": 0.9057194590568542,
|
| 645 |
+
"learning_rate": 9.594789058101154e-06,
|
| 646 |
+
"loss": 0.4448,
|
| 647 |
+
"step": 91
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.1761608425083772,
|
| 651 |
+
"grad_norm": 0.8147549033164978,
|
| 652 |
+
"learning_rate": 9.582208009348104e-06,
|
| 653 |
+
"loss": 0.4106,
|
| 654 |
+
"step": 92
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.17807563427477263,
|
| 658 |
+
"grad_norm": 0.8666926622390747,
|
| 659 |
+
"learning_rate": 9.569443133408434e-06,
|
| 660 |
+
"loss": 0.4558,
|
| 661 |
+
"step": 93
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.17999042604116802,
|
| 665 |
+
"grad_norm": 0.8677969574928284,
|
| 666 |
+
"learning_rate": 9.556494942378328e-06,
|
| 667 |
+
"loss": 0.4379,
|
| 668 |
+
"step": 94
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.18190521780756344,
|
| 672 |
+
"grad_norm": 0.8896477222442627,
|
| 673 |
+
"learning_rate": 9.543363955708124e-06,
|
| 674 |
+
"loss": 0.4498,
|
| 675 |
+
"step": 95
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.18382000957395883,
|
| 679 |
+
"grad_norm": 0.7357858419418335,
|
| 680 |
+
"learning_rate": 9.530050700181499e-06,
|
| 681 |
+
"loss": 0.3666,
|
| 682 |
+
"step": 96
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.18573480134035425,
|
| 686 |
+
"grad_norm": 0.7851715683937073,
|
| 687 |
+
"learning_rate": 9.5165557098943e-06,
|
| 688 |
+
"loss": 0.411,
|
| 689 |
+
"step": 97
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.18764959310674964,
|
| 693 |
+
"grad_norm": 0.8098123669624329,
|
| 694 |
+
"learning_rate": 9.502879526233151e-06,
|
| 695 |
+
"loss": 0.4023,
|
| 696 |
+
"step": 98
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.18956438487314506,
|
| 700 |
+
"grad_norm": 0.8245725631713867,
|
| 701 |
+
"learning_rate": 9.48902269785371e-06,
|
| 702 |
+
"loss": 0.423,
|
| 703 |
+
"step": 99
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.19147917663954045,
|
| 707 |
+
"grad_norm": 0.8497715592384338,
|
| 708 |
+
"learning_rate": 9.47498578065867e-06,
|
| 709 |
+
"loss": 0.4125,
|
| 710 |
+
"step": 100
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.19339396840593587,
|
| 714 |
+
"grad_norm": 0.8205481171607971,
|
| 715 |
+
"learning_rate": 9.460769337775461e-06,
|
| 716 |
+
"loss": 0.4312,
|
| 717 |
+
"step": 101
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.19530876017233126,
|
| 721 |
+
"grad_norm": 0.8062931299209595,
|
| 722 |
+
"learning_rate": 9.446373939533642e-06,
|
| 723 |
+
"loss": 0.3961,
|
| 724 |
+
"step": 102
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.19722355193872668,
|
| 728 |
+
"grad_norm": 0.8209528923034668,
|
| 729 |
+
"learning_rate": 9.431800163442043e-06,
|
| 730 |
+
"loss": 0.4121,
|
| 731 |
+
"step": 103
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.19913834370512207,
|
| 735 |
+
"grad_norm": 0.8154571652412415,
|
| 736 |
+
"learning_rate": 9.417048594165572e-06,
|
| 737 |
+
"loss": 0.4475,
|
| 738 |
+
"step": 104
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.20105313547151749,
|
| 742 |
+
"grad_norm": 0.8546404838562012,
|
| 743 |
+
"learning_rate": 9.402119823501787e-06,
|
| 744 |
+
"loss": 0.4293,
|
| 745 |
+
"step": 105
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.20296792723791288,
|
| 749 |
+
"grad_norm": 0.8470130562782288,
|
| 750 |
+
"learning_rate": 9.387014450357128e-06,
|
| 751 |
+
"loss": 0.4139,
|
| 752 |
+
"step": 106
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.2048827190043083,
|
| 756 |
+
"grad_norm": 0.9199275970458984,
|
| 757 |
+
"learning_rate": 9.371733080722911e-06,
|
| 758 |
+
"loss": 0.4825,
|
| 759 |
+
"step": 107
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.20679751077070369,
|
| 763 |
+
"grad_norm": 0.9049551486968994,
|
| 764 |
+
"learning_rate": 9.356276327651006e-06,
|
| 765 |
+
"loss": 0.4378,
|
| 766 |
+
"step": 108
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.2087123025370991,
|
| 770 |
+
"grad_norm": 0.8089979887008667,
|
| 771 |
+
"learning_rate": 9.340644811229243e-06,
|
| 772 |
+
"loss": 0.4027,
|
| 773 |
+
"step": 109
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.2106270943034945,
|
| 777 |
+
"grad_norm": 0.7452864050865173,
|
| 778 |
+
"learning_rate": 9.324839158556542e-06,
|
| 779 |
+
"loss": 0.3795,
|
| 780 |
+
"step": 110
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.2125418860698899,
|
| 784 |
+
"grad_norm": 0.8286869525909424,
|
| 785 |
+
"learning_rate": 9.308860003717748e-06,
|
| 786 |
+
"loss": 0.4137,
|
| 787 |
+
"step": 111
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.2144566778362853,
|
| 791 |
+
"grad_norm": 0.8634768724441528,
|
| 792 |
+
"learning_rate": 9.292707987758202e-06,
|
| 793 |
+
"loss": 0.445,
|
| 794 |
+
"step": 112
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.21637146960268072,
|
| 798 |
+
"grad_norm": 0.8329188227653503,
|
| 799 |
+
"learning_rate": 9.27638375865801e-06,
|
| 800 |
+
"loss": 0.4307,
|
| 801 |
+
"step": 113
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.2182862613690761,
|
| 805 |
+
"grad_norm": 0.8780718445777893,
|
| 806 |
+
"learning_rate": 9.259887971306064e-06,
|
| 807 |
+
"loss": 0.4863,
|
| 808 |
+
"step": 114
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.22020105313547153,
|
| 812 |
+
"grad_norm": 0.9007835388183594,
|
| 813 |
+
"learning_rate": 9.243221287473755e-06,
|
| 814 |
+
"loss": 0.4482,
|
| 815 |
+
"step": 115
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.22211584490186692,
|
| 819 |
+
"grad_norm": 0.8163229823112488,
|
| 820 |
+
"learning_rate": 9.226384375788435e-06,
|
| 821 |
+
"loss": 0.4168,
|
| 822 |
+
"step": 116
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.22403063666826234,
|
| 826 |
+
"grad_norm": 0.8288677334785461,
|
| 827 |
+
"learning_rate": 9.209377911706585e-06,
|
| 828 |
+
"loss": 0.4038,
|
| 829 |
+
"step": 117
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.22594542843465773,
|
| 833 |
+
"grad_norm": 0.8035851716995239,
|
| 834 |
+
"learning_rate": 9.192202577486725e-06,
|
| 835 |
+
"loss": 0.3922,
|
| 836 |
+
"step": 118
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.22786022020105315,
|
| 840 |
+
"grad_norm": 0.8203516006469727,
|
| 841 |
+
"learning_rate": 9.174859062162037e-06,
|
| 842 |
+
"loss": 0.3971,
|
| 843 |
+
"step": 119
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.22977501196744854,
|
| 847 |
+
"grad_norm": 0.8246352076530457,
|
| 848 |
+
"learning_rate": 9.157348061512728e-06,
|
| 849 |
+
"loss": 0.4433,
|
| 850 |
+
"step": 120
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.23168980373384396,
|
| 854 |
+
"grad_norm": 0.8655344247817993,
|
| 855 |
+
"learning_rate": 9.139670278038109e-06,
|
| 856 |
+
"loss": 0.4405,
|
| 857 |
+
"step": 121
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.23360459550023935,
|
| 861 |
+
"grad_norm": 0.7439157366752625,
|
| 862 |
+
"learning_rate": 9.121826420928421e-06,
|
| 863 |
+
"loss": 0.3683,
|
| 864 |
+
"step": 122
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.23551938726663477,
|
| 868 |
+
"grad_norm": 0.817434549331665,
|
| 869 |
+
"learning_rate": 9.103817206036383e-06,
|
| 870 |
+
"loss": 0.4034,
|
| 871 |
+
"step": 123
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.23743417903303016,
|
| 875 |
+
"grad_norm": 0.8455221056938171,
|
| 876 |
+
"learning_rate": 9.085643355848468e-06,
|
| 877 |
+
"loss": 0.4418,
|
| 878 |
+
"step": 124
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.23934897079942558,
|
| 882 |
+
"grad_norm": 0.8356925845146179,
|
| 883 |
+
"learning_rate": 9.06730559945592e-06,
|
| 884 |
+
"loss": 0.4012,
|
| 885 |
+
"step": 125
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.24126376256582097,
|
| 889 |
+
"grad_norm": 0.8181227445602417,
|
| 890 |
+
"learning_rate": 9.048804672525513e-06,
|
| 891 |
+
"loss": 0.4174,
|
| 892 |
+
"step": 126
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.24317855433221638,
|
| 896 |
+
"grad_norm": 0.8010542988777161,
|
| 897 |
+
"learning_rate": 9.030141317270026e-06,
|
| 898 |
+
"loss": 0.3952,
|
| 899 |
+
"step": 127
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.24509334609861178,
|
| 903 |
+
"grad_norm": 0.8500829935073853,
|
| 904 |
+
"learning_rate": 9.011316282418474e-06,
|
| 905 |
+
"loss": 0.4123,
|
| 906 |
+
"step": 128
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.2470081378650072,
|
| 910 |
+
"grad_norm": 0.8971666693687439,
|
| 911 |
+
"learning_rate": 8.992330323186069e-06,
|
| 912 |
+
"loss": 0.4451,
|
| 913 |
+
"step": 129
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.24892292963140258,
|
| 917 |
+
"grad_norm": 0.9065473079681396,
|
| 918 |
+
"learning_rate": 8.973184201243922e-06,
|
| 919 |
+
"loss": 0.4821,
|
| 920 |
+
"step": 130
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.250837721397798,
|
| 924 |
+
"grad_norm": 0.8722876906394958,
|
| 925 |
+
"learning_rate": 8.953878684688492e-06,
|
| 926 |
+
"loss": 0.4204,
|
| 927 |
+
"step": 131
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.2527525131641934,
|
| 931 |
+
"grad_norm": 0.8343362808227539,
|
| 932 |
+
"learning_rate": 8.934414548010764e-06,
|
| 933 |
+
"loss": 0.408,
|
| 934 |
+
"step": 132
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.2546673049305888,
|
| 938 |
+
"grad_norm": 0.8162686824798584,
|
| 939 |
+
"learning_rate": 8.914792572065178e-06,
|
| 940 |
+
"loss": 0.416,
|
| 941 |
+
"step": 133
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.25658209669698423,
|
| 945 |
+
"grad_norm": 0.9116921424865723,
|
| 946 |
+
"learning_rate": 8.89501354403831e-06,
|
| 947 |
+
"loss": 0.4589,
|
| 948 |
+
"step": 134
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.2584968884633796,
|
| 952 |
+
"grad_norm": 0.9577599763870239,
|
| 953 |
+
"learning_rate": 8.875078257417294e-06,
|
| 954 |
+
"loss": 0.4654,
|
| 955 |
+
"step": 135
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.260411680229775,
|
| 959 |
+
"grad_norm": 0.8709072470664978,
|
| 960 |
+
"learning_rate": 8.854987511957974e-06,
|
| 961 |
+
"loss": 0.4395,
|
| 962 |
+
"step": 136
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.26232647199617043,
|
| 966 |
+
"grad_norm": 0.8386030197143555,
|
| 967 |
+
"learning_rate": 8.834742113652835e-06,
|
| 968 |
+
"loss": 0.4281,
|
| 969 |
+
"step": 137
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.26424126376256585,
|
| 973 |
+
"grad_norm": 0.7646230459213257,
|
| 974 |
+
"learning_rate": 8.81434287469866e-06,
|
| 975 |
+
"loss": 0.3804,
|
| 976 |
+
"step": 138
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.2661560555289612,
|
| 980 |
+
"grad_norm": 0.8096075057983398,
|
| 981 |
+
"learning_rate": 8.793790613463956e-06,
|
| 982 |
+
"loss": 0.4112,
|
| 983 |
+
"step": 139
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.26807084729535663,
|
| 987 |
+
"grad_norm": 0.8051929473876953,
|
| 988 |
+
"learning_rate": 8.773086154456106e-06,
|
| 989 |
+
"loss": 0.4172,
|
| 990 |
+
"step": 140
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.26998563906175205,
|
| 994 |
+
"grad_norm": 0.9208196401596069,
|
| 995 |
+
"learning_rate": 8.752230328288314e-06,
|
| 996 |
+
"loss": 0.4768,
|
| 997 |
+
"step": 141
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.27190043082814747,
|
| 1001 |
+
"grad_norm": 0.7890869975090027,
|
| 1002 |
+
"learning_rate": 8.731223971646261e-06,
|
| 1003 |
+
"loss": 0.3915,
|
| 1004 |
+
"step": 142
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.27381522259454283,
|
| 1008 |
+
"grad_norm": 0.786723792552948,
|
| 1009 |
+
"learning_rate": 8.710067927254555e-06,
|
| 1010 |
+
"loss": 0.3844,
|
| 1011 |
+
"step": 143
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.27573001436093825,
|
| 1015 |
+
"grad_norm": 0.791117250919342,
|
| 1016 |
+
"learning_rate": 8.688763043842916e-06,
|
| 1017 |
+
"loss": 0.4065,
|
| 1018 |
+
"step": 144
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.27764480612733367,
|
| 1022 |
+
"grad_norm": 0.8172312378883362,
|
| 1023 |
+
"learning_rate": 8.66731017611213e-06,
|
| 1024 |
+
"loss": 0.4337,
|
| 1025 |
+
"step": 145
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.2795595978937291,
|
| 1029 |
+
"grad_norm": 0.8335762023925781,
|
| 1030 |
+
"learning_rate": 8.645710184699756e-06,
|
| 1031 |
+
"loss": 0.4182,
|
| 1032 |
+
"step": 146
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 0.28147438966012445,
|
| 1036 |
+
"grad_norm": 0.8034957051277161,
|
| 1037 |
+
"learning_rate": 8.6239639361456e-06,
|
| 1038 |
+
"loss": 0.4097,
|
| 1039 |
+
"step": 147
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 0.28338918142651986,
|
| 1043 |
+
"grad_norm": 0.8107390403747559,
|
| 1044 |
+
"learning_rate": 8.602072302856961e-06,
|
| 1045 |
+
"loss": 0.4055,
|
| 1046 |
+
"step": 148
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.2853039731929153,
|
| 1050 |
+
"grad_norm": 0.8442232012748718,
|
| 1051 |
+
"learning_rate": 8.580036163073615e-06,
|
| 1052 |
+
"loss": 0.4307,
|
| 1053 |
+
"step": 149
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.2872187649593107,
|
| 1057 |
+
"grad_norm": 0.8290265202522278,
|
| 1058 |
+
"learning_rate": 8.5578564008326e-06,
|
| 1059 |
+
"loss": 0.3892,
|
| 1060 |
+
"step": 150
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.28913355672570606,
|
| 1064 |
+
"grad_norm": 0.8057438731193542,
|
| 1065 |
+
"learning_rate": 8.535533905932739e-06,
|
| 1066 |
+
"loss": 0.4042,
|
| 1067 |
+
"step": 151
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 0.2910483484921015,
|
| 1071 |
+
"grad_norm": 0.8582248091697693,
|
| 1072 |
+
"learning_rate": 8.513069573898944e-06,
|
| 1073 |
+
"loss": 0.4149,
|
| 1074 |
+
"step": 152
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.2929631402584969,
|
| 1078 |
+
"grad_norm": 0.8402311205863953,
|
| 1079 |
+
"learning_rate": 8.490464305946296e-06,
|
| 1080 |
+
"loss": 0.4243,
|
| 1081 |
+
"step": 153
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 0.2948779320248923,
|
| 1085 |
+
"grad_norm": 0.812869668006897,
|
| 1086 |
+
"learning_rate": 8.467719008943886e-06,
|
| 1087 |
+
"loss": 0.4134,
|
| 1088 |
+
"step": 154
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 0.2967927237912877,
|
| 1092 |
+
"grad_norm": 0.8431028723716736,
|
| 1093 |
+
"learning_rate": 8.444834595378434e-06,
|
| 1094 |
+
"loss": 0.4185,
|
| 1095 |
+
"step": 155
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.2987075155576831,
|
| 1099 |
+
"grad_norm": 0.802760899066925,
|
| 1100 |
+
"learning_rate": 8.421811983317682e-06,
|
| 1101 |
+
"loss": 0.4011,
|
| 1102 |
+
"step": 156
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 0.3006223073240785,
|
| 1106 |
+
"grad_norm": 0.814274251461029,
|
| 1107 |
+
"learning_rate": 8.398652096373566e-06,
|
| 1108 |
+
"loss": 0.4194,
|
| 1109 |
+
"step": 157
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 0.30253709909047394,
|
| 1113 |
+
"grad_norm": 0.8286414742469788,
|
| 1114 |
+
"learning_rate": 8.375355863665155e-06,
|
| 1115 |
+
"loss": 0.4044,
|
| 1116 |
+
"step": 158
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.3044518908568693,
|
| 1120 |
+
"grad_norm": 0.8244617581367493,
|
| 1121 |
+
"learning_rate": 8.351924219781393e-06,
|
| 1122 |
+
"loss": 0.4415,
|
| 1123 |
+
"step": 159
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 0.3063666826232647,
|
| 1127 |
+
"grad_norm": 0.8288456201553345,
|
| 1128 |
+
"learning_rate": 8.328358104743588e-06,
|
| 1129 |
+
"loss": 0.4143,
|
| 1130 |
+
"step": 160
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.30828147438966014,
|
| 1134 |
+
"grad_norm": 0.7895364165306091,
|
| 1135 |
+
"learning_rate": 8.304658463967705e-06,
|
| 1136 |
+
"loss": 0.4122,
|
| 1137 |
+
"step": 161
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.31019626615605556,
|
| 1141 |
+
"grad_norm": 0.7923944592475891,
|
| 1142 |
+
"learning_rate": 8.28082624822645e-06,
|
| 1143 |
+
"loss": 0.3812,
|
| 1144 |
+
"step": 162
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.3121110579224509,
|
| 1148 |
+
"grad_norm": 0.7424578666687012,
|
| 1149 |
+
"learning_rate": 8.256862413611113e-06,
|
| 1150 |
+
"loss": 0.3883,
|
| 1151 |
+
"step": 163
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 0.31402584968884634,
|
| 1155 |
+
"grad_norm": 0.8261198401451111,
|
| 1156 |
+
"learning_rate": 8.232767921493216e-06,
|
| 1157 |
+
"loss": 0.432,
|
| 1158 |
+
"step": 164
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 0.31594064145524176,
|
| 1162 |
+
"grad_norm": 0.8710785508155823,
|
| 1163 |
+
"learning_rate": 8.20854373848595e-06,
|
| 1164 |
+
"loss": 0.4508,
|
| 1165 |
+
"step": 165
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 0.3178554332216372,
|
| 1169 |
+
"grad_norm": 0.7583726048469543,
|
| 1170 |
+
"learning_rate": 8.184190836405394e-06,
|
| 1171 |
+
"loss": 0.3709,
|
| 1172 |
+
"step": 166
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 0.31977022498803254,
|
| 1176 |
+
"grad_norm": 0.7795834541320801,
|
| 1177 |
+
"learning_rate": 8.15971019223152e-06,
|
| 1178 |
+
"loss": 0.4055,
|
| 1179 |
+
"step": 167
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.32168501675442795,
|
| 1183 |
+
"grad_norm": 0.7580612897872925,
|
| 1184 |
+
"learning_rate": 8.135102788069015e-06,
|
| 1185 |
+
"loss": 0.3605,
|
| 1186 |
+
"step": 168
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.3235998085208234,
|
| 1190 |
+
"grad_norm": 0.7536636590957642,
|
| 1191 |
+
"learning_rate": 8.110369611107869e-06,
|
| 1192 |
+
"loss": 0.3656,
|
| 1193 |
+
"step": 169
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 0.3255146002872188,
|
| 1197 |
+
"grad_norm": 0.8029680252075195,
|
| 1198 |
+
"learning_rate": 8.085511653583772e-06,
|
| 1199 |
+
"loss": 0.3819,
|
| 1200 |
+
"step": 170
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 0.32742939205361415,
|
| 1204 |
+
"grad_norm": 0.8548794388771057,
|
| 1205 |
+
"learning_rate": 8.060529912738316e-06,
|
| 1206 |
+
"loss": 0.4449,
|
| 1207 |
+
"step": 171
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.3293441838200096,
|
| 1211 |
+
"grad_norm": 0.877955436706543,
|
| 1212 |
+
"learning_rate": 8.035425390778975e-06,
|
| 1213 |
+
"loss": 0.4504,
|
| 1214 |
+
"step": 172
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.331258975586405,
|
| 1218 |
+
"grad_norm": 0.8173900246620178,
|
| 1219 |
+
"learning_rate": 8.010199094838915e-06,
|
| 1220 |
+
"loss": 0.4211,
|
| 1221 |
+
"step": 173
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.3331737673528004,
|
| 1225 |
+
"grad_norm": 0.8715358972549438,
|
| 1226 |
+
"learning_rate": 7.984852036936578e-06,
|
| 1227 |
+
"loss": 0.3909,
|
| 1228 |
+
"step": 174
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 0.3350885591191958,
|
| 1232 |
+
"grad_norm": 0.8475743532180786,
|
| 1233 |
+
"learning_rate": 7.959385233935087e-06,
|
| 1234 |
+
"loss": 0.4416,
|
| 1235 |
+
"step": 175
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 0.3370033508855912,
|
| 1239 |
+
"grad_norm": 0.7483753561973572,
|
| 1240 |
+
"learning_rate": 7.933799707501448e-06,
|
| 1241 |
+
"loss": 0.351,
|
| 1242 |
+
"step": 176
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.3389181426519866,
|
| 1246 |
+
"grad_norm": 0.8065423965454102,
|
| 1247 |
+
"learning_rate": 7.908096484065569e-06,
|
| 1248 |
+
"loss": 0.4085,
|
| 1249 |
+
"step": 177
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 0.340832934418382,
|
| 1253 |
+
"grad_norm": 0.8215972185134888,
|
| 1254 |
+
"learning_rate": 7.88227659477908e-06,
|
| 1255 |
+
"loss": 0.4132,
|
| 1256 |
+
"step": 178
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.3427477261847774,
|
| 1260 |
+
"grad_norm": 0.7788512706756592,
|
| 1261 |
+
"learning_rate": 7.856341075473963e-06,
|
| 1262 |
+
"loss": 0.3828,
|
| 1263 |
+
"step": 179
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.3446625179511728,
|
| 1267 |
+
"grad_norm": 0.7943012118339539,
|
| 1268 |
+
"learning_rate": 7.830290966620997e-06,
|
| 1269 |
+
"loss": 0.3737,
|
| 1270 |
+
"step": 180
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 0.3465773097175682,
|
| 1274 |
+
"grad_norm": 0.8680888414382935,
|
| 1275 |
+
"learning_rate": 7.804127313288023e-06,
|
| 1276 |
+
"loss": 0.4019,
|
| 1277 |
+
"step": 181
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 0.34849210148396365,
|
| 1281 |
+
"grad_norm": 0.8370754718780518,
|
| 1282 |
+
"learning_rate": 7.777851165098012e-06,
|
| 1283 |
+
"loss": 0.4202,
|
| 1284 |
+
"step": 182
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 0.350406893250359,
|
| 1288 |
+
"grad_norm": 0.7426475882530212,
|
| 1289 |
+
"learning_rate": 7.751463576186957e-06,
|
| 1290 |
+
"loss": 0.378,
|
| 1291 |
+
"step": 183
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 0.3523216850167544,
|
| 1295 |
+
"grad_norm": 0.827038586139679,
|
| 1296 |
+
"learning_rate": 7.72496560516159e-06,
|
| 1297 |
+
"loss": 0.415,
|
| 1298 |
+
"step": 184
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.35423647678314985,
|
| 1302 |
+
"grad_norm": 0.8714759349822998,
|
| 1303 |
+
"learning_rate": 7.6983583150569e-06,
|
| 1304 |
+
"loss": 0.4204,
|
| 1305 |
+
"step": 185
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.35615126854954526,
|
| 1309 |
+
"grad_norm": 0.8127462863922119,
|
| 1310 |
+
"learning_rate": 7.671642773293506e-06,
|
| 1311 |
+
"loss": 0.3904,
|
| 1312 |
+
"step": 186
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 0.3580660603159406,
|
| 1316 |
+
"grad_norm": 0.8972522020339966,
|
| 1317 |
+
"learning_rate": 7.644820051634813e-06,
|
| 1318 |
+
"loss": 0.4168,
|
| 1319 |
+
"step": 187
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 0.35998085208233604,
|
| 1323 |
+
"grad_norm": 0.9051675200462341,
|
| 1324 |
+
"learning_rate": 7.617891226144034e-06,
|
| 1325 |
+
"loss": 0.4742,
|
| 1326 |
+
"step": 188
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 0.36189564384873146,
|
| 1330 |
+
"grad_norm": 0.8041402101516724,
|
| 1331 |
+
"learning_rate": 7.59085737714101e-06,
|
| 1332 |
+
"loss": 0.3916,
|
| 1333 |
+
"step": 189
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 0.3638104356151269,
|
| 1337 |
+
"grad_norm": 0.9296969175338745,
|
| 1338 |
+
"learning_rate": 7.563719589158874e-06,
|
| 1339 |
+
"loss": 0.4198,
|
| 1340 |
+
"step": 190
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 0.36572522738152224,
|
| 1344 |
+
"grad_norm": 0.8441433310508728,
|
| 1345 |
+
"learning_rate": 7.536478950900537e-06,
|
| 1346 |
+
"loss": 0.4094,
|
| 1347 |
+
"step": 191
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.36764001914791766,
|
| 1351 |
+
"grad_norm": 0.8146634101867676,
|
| 1352 |
+
"learning_rate": 7.509136555195025e-06,
|
| 1353 |
+
"loss": 0.398,
|
| 1354 |
+
"step": 192
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.3695548109143131,
|
| 1358 |
+
"grad_norm": 0.8095076680183411,
|
| 1359 |
+
"learning_rate": 7.481693498953621e-06,
|
| 1360 |
+
"loss": 0.4121,
|
| 1361 |
+
"step": 193
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 0.3714696026807085,
|
| 1365 |
+
"grad_norm": 0.8033435344696045,
|
| 1366 |
+
"learning_rate": 7.4541508831258695e-06,
|
| 1367 |
+
"loss": 0.3912,
|
| 1368 |
+
"step": 194
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.37338439444710386,
|
| 1372 |
+
"grad_norm": 0.7945087552070618,
|
| 1373 |
+
"learning_rate": 7.4265098126554065e-06,
|
| 1374 |
+
"loss": 0.3784,
|
| 1375 |
+
"step": 195
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 0.3752991862134993,
|
| 1379 |
+
"grad_norm": 0.858241081237793,
|
| 1380 |
+
"learning_rate": 7.3987713964356335e-06,
|
| 1381 |
+
"loss": 0.451,
|
| 1382 |
+
"step": 196
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 0.3772139779798947,
|
| 1386 |
+
"grad_norm": 0.9208387136459351,
|
| 1387 |
+
"learning_rate": 7.370936747265226e-06,
|
| 1388 |
+
"loss": 0.4539,
|
| 1389 |
+
"step": 197
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.3791287697462901,
|
| 1393 |
+
"grad_norm": 0.775140643119812,
|
| 1394 |
+
"learning_rate": 7.3430069818035e-06,
|
| 1395 |
+
"loss": 0.3956,
|
| 1396 |
+
"step": 198
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 0.3810435615126855,
|
| 1400 |
+
"grad_norm": 0.7926008105278015,
|
| 1401 |
+
"learning_rate": 7.314983220525604e-06,
|
| 1402 |
+
"loss": 0.4044,
|
| 1403 |
+
"step": 199
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 0.3829583532790809,
|
| 1407 |
+
"grad_norm": 0.7891693711280823,
|
| 1408 |
+
"learning_rate": 7.286866587677576e-06,
|
| 1409 |
+
"loss": 0.3881,
|
| 1410 |
+
"step": 200
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.3848731450454763,
|
| 1414 |
+
"grad_norm": 0.8547941446304321,
|
| 1415 |
+
"learning_rate": 7.2586582112312355e-06,
|
| 1416 |
+
"loss": 0.4289,
|
| 1417 |
+
"step": 201
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 0.38678793681187174,
|
| 1421 |
+
"grad_norm": 0.7894405722618103,
|
| 1422 |
+
"learning_rate": 7.230359222838939e-06,
|
| 1423 |
+
"loss": 0.3886,
|
| 1424 |
+
"step": 202
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 0.3887027285782671,
|
| 1428 |
+
"grad_norm": 0.9024775624275208,
|
| 1429 |
+
"learning_rate": 7.201970757788172e-06,
|
| 1430 |
+
"loss": 0.4586,
|
| 1431 |
+
"step": 203
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.3906175203446625,
|
| 1435 |
+
"grad_norm": 0.7940675616264343,
|
| 1436 |
+
"learning_rate": 7.173493954956012e-06,
|
| 1437 |
+
"loss": 0.3905,
|
| 1438 |
+
"step": 204
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 0.39253231211105793,
|
| 1442 |
+
"grad_norm": 0.8231476545333862,
|
| 1443 |
+
"learning_rate": 7.144929956763438e-06,
|
| 1444 |
+
"loss": 0.4044,
|
| 1445 |
+
"step": 205
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 0.39444710387745335,
|
| 1449 |
+
"grad_norm": 0.9094031453132629,
|
| 1450 |
+
"learning_rate": 7.116279909129492e-06,
|
| 1451 |
+
"loss": 0.4502,
|
| 1452 |
+
"step": 206
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 0.3963618956438487,
|
| 1456 |
+
"grad_norm": 0.843540608882904,
|
| 1457 |
+
"learning_rate": 7.087544961425317e-06,
|
| 1458 |
+
"loss": 0.4037,
|
| 1459 |
+
"step": 207
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 0.39827668741024413,
|
| 1463 |
+
"grad_norm": 0.8074728846549988,
|
| 1464 |
+
"learning_rate": 7.058726266428042e-06,
|
| 1465 |
+
"loss": 0.405,
|
| 1466 |
+
"step": 208
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.40019147917663955,
|
| 1470 |
+
"grad_norm": 0.7620254755020142,
|
| 1471 |
+
"learning_rate": 7.029824980274536e-06,
|
| 1472 |
+
"loss": 0.3727,
|
| 1473 |
+
"step": 209
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.40210627094303497,
|
| 1477 |
+
"grad_norm": 0.8311992883682251,
|
| 1478 |
+
"learning_rate": 7.0008422624150285e-06,
|
| 1479 |
+
"loss": 0.4172,
|
| 1480 |
+
"step": 210
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 0.40402106270943033,
|
| 1484 |
+
"grad_norm": 0.8231189846992493,
|
| 1485 |
+
"learning_rate": 6.971779275566593e-06,
|
| 1486 |
+
"loss": 0.4162,
|
| 1487 |
+
"step": 211
|
| 1488 |
+
},
|
| 1489 |
+
{
|
| 1490 |
+
"epoch": 0.40593585447582575,
|
| 1491 |
+
"grad_norm": 0.8115664720535278,
|
| 1492 |
+
"learning_rate": 6.9426371856665005e-06,
|
| 1493 |
+
"loss": 0.4206,
|
| 1494 |
+
"step": 212
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 0.40785064624222117,
|
| 1498 |
+
"grad_norm": 0.8393989205360413,
|
| 1499 |
+
"learning_rate": 6.913417161825449e-06,
|
| 1500 |
+
"loss": 0.4252,
|
| 1501 |
+
"step": 213
|
| 1502 |
+
},
|
| 1503 |
+
{
|
| 1504 |
+
"epoch": 0.4097654380086166,
|
| 1505 |
+
"grad_norm": 0.8263347148895264,
|
| 1506 |
+
"learning_rate": 6.884120376280658e-06,
|
| 1507 |
+
"loss": 0.3983,
|
| 1508 |
+
"step": 214
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 0.41168022977501195,
|
| 1512 |
+
"grad_norm": 0.834690272808075,
|
| 1513 |
+
"learning_rate": 6.85474800434884e-06,
|
| 1514 |
+
"loss": 0.4285,
|
| 1515 |
+
"step": 215
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 0.41359502154140737,
|
| 1519 |
+
"grad_norm": 0.7867841124534607,
|
| 1520 |
+
"learning_rate": 6.8253012243790565e-06,
|
| 1521 |
+
"loss": 0.4065,
|
| 1522 |
+
"step": 216
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 0.4155098133078028,
|
| 1526 |
+
"grad_norm": 0.848772406578064,
|
| 1527 |
+
"learning_rate": 6.795781217705436e-06,
|
| 1528 |
+
"loss": 0.4529,
|
| 1529 |
+
"step": 217
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"epoch": 0.4174246050741982,
|
| 1533 |
+
"grad_norm": 0.7745128870010376,
|
| 1534 |
+
"learning_rate": 6.76618916859979e-06,
|
| 1535 |
+
"loss": 0.3631,
|
| 1536 |
+
"step": 218
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 0.41933939684059357,
|
| 1540 |
+
"grad_norm": 0.7742826342582703,
|
| 1541 |
+
"learning_rate": 6.736526264224101e-06,
|
| 1542 |
+
"loss": 0.3886,
|
| 1543 |
+
"step": 219
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"epoch": 0.421254188606989,
|
| 1547 |
+
"grad_norm": 0.8211061358451843,
|
| 1548 |
+
"learning_rate": 6.706793694582892e-06,
|
| 1549 |
+
"loss": 0.3824,
|
| 1550 |
+
"step": 220
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 0.4231689803733844,
|
| 1554 |
+
"grad_norm": 0.824216902256012,
|
| 1555 |
+
"learning_rate": 6.676992652475487e-06,
|
| 1556 |
+
"loss": 0.4104,
|
| 1557 |
+
"step": 221
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 0.4250837721397798,
|
| 1561 |
+
"grad_norm": 0.7848684191703796,
|
| 1562 |
+
"learning_rate": 6.647124333448165e-06,
|
| 1563 |
+
"loss": 0.3711,
|
| 1564 |
+
"step": 222
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"epoch": 0.4269985639061752,
|
| 1568 |
+
"grad_norm": 0.8798813819885254,
|
| 1569 |
+
"learning_rate": 6.617189935746191e-06,
|
| 1570 |
+
"loss": 0.4083,
|
| 1571 |
+
"step": 223
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 0.4289133556725706,
|
| 1575 |
+
"grad_norm": 0.8364046216011047,
|
| 1576 |
+
"learning_rate": 6.587190660265752e-06,
|
| 1577 |
+
"loss": 0.4248,
|
| 1578 |
+
"step": 224
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.430828147438966,
|
| 1582 |
+
"grad_norm": 0.8487688899040222,
|
| 1583 |
+
"learning_rate": 6.55712771050577e-06,
|
| 1584 |
+
"loss": 0.4148,
|
| 1585 |
+
"step": 225
|
| 1586 |
+
},
|
| 1587 |
+
{
|
| 1588 |
+
"epoch": 0.43274293920536144,
|
| 1589 |
+
"grad_norm": 0.7809548377990723,
|
| 1590 |
+
"learning_rate": 6.52700229251963e-06,
|
| 1591 |
+
"loss": 0.393,
|
| 1592 |
+
"step": 226
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 0.4346577309717568,
|
| 1596 |
+
"grad_norm": 0.9122399091720581,
|
| 1597 |
+
"learning_rate": 6.496815614866792e-06,
|
| 1598 |
+
"loss": 0.4037,
|
| 1599 |
+
"step": 227
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.4365725227381522,
|
| 1603 |
+
"grad_norm": 0.8720874786376953,
|
| 1604 |
+
"learning_rate": 6.466568888564303e-06,
|
| 1605 |
+
"loss": 0.4581,
|
| 1606 |
+
"step": 228
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 0.43848731450454764,
|
| 1610 |
+
"grad_norm": 0.8561883568763733,
|
| 1611 |
+
"learning_rate": 6.436263327038225e-06,
|
| 1612 |
+
"loss": 0.4046,
|
| 1613 |
+
"step": 229
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 0.44040210627094306,
|
| 1617 |
+
"grad_norm": 0.8326470255851746,
|
| 1618 |
+
"learning_rate": 6.405900146074941e-06,
|
| 1619 |
+
"loss": 0.3882,
|
| 1620 |
+
"step": 230
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.4423168980373384,
|
| 1624 |
+
"grad_norm": 0.8377370238304138,
|
| 1625 |
+
"learning_rate": 6.375480563772391e-06,
|
| 1626 |
+
"loss": 0.4368,
|
| 1627 |
+
"step": 231
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 0.44423168980373384,
|
| 1631 |
+
"grad_norm": 0.7525307536125183,
|
| 1632 |
+
"learning_rate": 6.3450058004912004e-06,
|
| 1633 |
+
"loss": 0.3646,
|
| 1634 |
+
"step": 232
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.44614648157012926,
|
| 1638 |
+
"grad_norm": 0.8400733470916748,
|
| 1639 |
+
"learning_rate": 6.314477078805724e-06,
|
| 1640 |
+
"loss": 0.4002,
|
| 1641 |
+
"step": 233
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.4480612733365247,
|
| 1645 |
+
"grad_norm": 0.7522779107093811,
|
| 1646 |
+
"learning_rate": 6.283895623454997e-06,
|
| 1647 |
+
"loss": 0.3865,
|
| 1648 |
+
"step": 234
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 0.44997606510292004,
|
| 1652 |
+
"grad_norm": 0.8109682202339172,
|
| 1653 |
+
"learning_rate": 6.2532626612936035e-06,
|
| 1654 |
+
"loss": 0.4089,
|
| 1655 |
+
"step": 235
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 0.45189085686931546,
|
| 1659 |
+
"grad_norm": 0.8554459810256958,
|
| 1660 |
+
"learning_rate": 6.2225794212424565e-06,
|
| 1661 |
+
"loss": 0.4401,
|
| 1662 |
+
"step": 236
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 0.4538056486357109,
|
| 1666 |
+
"grad_norm": 0.8335216641426086,
|
| 1667 |
+
"learning_rate": 6.191847134239496e-06,
|
| 1668 |
+
"loss": 0.3995,
|
| 1669 |
+
"step": 237
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 0.4557204404021063,
|
| 1673 |
+
"grad_norm": 0.8365229964256287,
|
| 1674 |
+
"learning_rate": 6.161067033190311e-06,
|
| 1675 |
+
"loss": 0.402,
|
| 1676 |
+
"step": 238
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 0.45763523216850166,
|
| 1680 |
+
"grad_norm": 0.7727139592170715,
|
| 1681 |
+
"learning_rate": 6.130240352918675e-06,
|
| 1682 |
+
"loss": 0.3976,
|
| 1683 |
+
"step": 239
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.4595500239348971,
|
| 1687 |
+
"grad_norm": 0.8664788603782654,
|
| 1688 |
+
"learning_rate": 6.0993683301170046e-06,
|
| 1689 |
+
"loss": 0.4347,
|
| 1690 |
+
"step": 240
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 0.4614648157012925,
|
| 1694 |
+
"grad_norm": 0.7788071632385254,
|
| 1695 |
+
"learning_rate": 6.068452203296754e-06,
|
| 1696 |
+
"loss": 0.3849,
|
| 1697 |
+
"step": 241
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 0.4633796074676879,
|
| 1701 |
+
"grad_norm": 0.7709981203079224,
|
| 1702 |
+
"learning_rate": 6.0374932127387234e-06,
|
| 1703 |
+
"loss": 0.394,
|
| 1704 |
+
"step": 242
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 0.4652943992340833,
|
| 1708 |
+
"grad_norm": 0.8584897518157959,
|
| 1709 |
+
"learning_rate": 6.006492600443301e-06,
|
| 1710 |
+
"loss": 0.4013,
|
| 1711 |
+
"step": 243
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 0.4672091910004787,
|
| 1715 |
+
"grad_norm": 0.8466057777404785,
|
| 1716 |
+
"learning_rate": 5.975451610080643e-06,
|
| 1717 |
+
"loss": 0.382,
|
| 1718 |
+
"step": 244
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 0.4691239827668741,
|
| 1722 |
+
"grad_norm": 0.8147895336151123,
|
| 1723 |
+
"learning_rate": 5.944371486940772e-06,
|
| 1724 |
+
"loss": 0.3925,
|
| 1725 |
+
"step": 245
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 0.47103877453326953,
|
| 1729 |
+
"grad_norm": 0.9486895203590393,
|
| 1730 |
+
"learning_rate": 5.913253477883629e-06,
|
| 1731 |
+
"loss": 0.438,
|
| 1732 |
+
"step": 246
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 0.4729535662996649,
|
| 1736 |
+
"grad_norm": 0.8018326163291931,
|
| 1737 |
+
"learning_rate": 5.882098831289044e-06,
|
| 1738 |
+
"loss": 0.3902,
|
| 1739 |
+
"step": 247
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 0.4748683580660603,
|
| 1743 |
+
"grad_norm": 0.7979179620742798,
|
| 1744 |
+
"learning_rate": 5.850908797006656e-06,
|
| 1745 |
+
"loss": 0.4001,
|
| 1746 |
+
"step": 248
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 0.47678314983245573,
|
| 1750 |
+
"grad_norm": 0.8484137058258057,
|
| 1751 |
+
"learning_rate": 5.819684626305776e-06,
|
| 1752 |
+
"loss": 0.4393,
|
| 1753 |
+
"step": 249
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 0.47869794159885115,
|
| 1757 |
+
"grad_norm": 0.812910795211792,
|
| 1758 |
+
"learning_rate": 5.788427571825186e-06,
|
| 1759 |
+
"loss": 0.3939,
|
| 1760 |
+
"step": 250
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 0.4806127333652465,
|
| 1764 |
+
"grad_norm": 0.8852983117103577,
|
| 1765 |
+
"learning_rate": 5.757138887522884e-06,
|
| 1766 |
+
"loss": 0.4113,
|
| 1767 |
+
"step": 251
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 0.48252752513164193,
|
| 1771 |
+
"grad_norm": 0.8375086188316345,
|
| 1772 |
+
"learning_rate": 5.725819828625782e-06,
|
| 1773 |
+
"loss": 0.4132,
|
| 1774 |
+
"step": 252
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 0.48444231689803735,
|
| 1778 |
+
"grad_norm": 0.7939973473548889,
|
| 1779 |
+
"learning_rate": 5.694471651579346e-06,
|
| 1780 |
+
"loss": 0.4003,
|
| 1781 |
+
"step": 253
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 0.48635710866443277,
|
| 1785 |
+
"grad_norm": 0.7971997857093811,
|
| 1786 |
+
"learning_rate": 5.663095613997196e-06,
|
| 1787 |
+
"loss": 0.3868,
|
| 1788 |
+
"step": 254
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 0.48827190043082813,
|
| 1792 |
+
"grad_norm": 0.778202474117279,
|
| 1793 |
+
"learning_rate": 5.631692974610647e-06,
|
| 1794 |
+
"loss": 0.3761,
|
| 1795 |
+
"step": 255
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 0.49018669219722355,
|
| 1799 |
+
"grad_norm": 0.8734095692634583,
|
| 1800 |
+
"learning_rate": 5.600264993218215e-06,
|
| 1801 |
+
"loss": 0.4105,
|
| 1802 |
+
"step": 256
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 0.49210148396361897,
|
| 1806 |
+
"grad_norm": 0.8606191873550415,
|
| 1807 |
+
"learning_rate": 5.568812930635076e-06,
|
| 1808 |
+
"loss": 0.396,
|
| 1809 |
+
"step": 257
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 0.4940162757300144,
|
| 1813 |
+
"grad_norm": 0.8600229024887085,
|
| 1814 |
+
"learning_rate": 5.537338048642487e-06,
|
| 1815 |
+
"loss": 0.4379,
|
| 1816 |
+
"step": 258
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 0.49593106749640975,
|
| 1820 |
+
"grad_norm": 0.8452302813529968,
|
| 1821 |
+
"learning_rate": 5.505841609937162e-06,
|
| 1822 |
+
"loss": 0.3802,
|
| 1823 |
+
"step": 259
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 0.49784585926280517,
|
| 1827 |
+
"grad_norm": 0.7426350712776184,
|
| 1828 |
+
"learning_rate": 5.474324878080623e-06,
|
| 1829 |
+
"loss": 0.335,
|
| 1830 |
+
"step": 260
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 0.4997606510292006,
|
| 1834 |
+
"grad_norm": 0.8211168050765991,
|
| 1835 |
+
"learning_rate": 5.4427891174485014e-06,
|
| 1836 |
+
"loss": 0.387,
|
| 1837 |
+
"step": 261
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 0.501675442795596,
|
| 1841 |
+
"grad_norm": 0.855265200138092,
|
| 1842 |
+
"learning_rate": 5.41123559317982e-06,
|
| 1843 |
+
"loss": 0.4148,
|
| 1844 |
+
"step": 262
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 0.5035902345619914,
|
| 1848 |
+
"grad_norm": 0.8395704030990601,
|
| 1849 |
+
"learning_rate": 5.379665571126232e-06,
|
| 1850 |
+
"loss": 0.3774,
|
| 1851 |
+
"step": 263
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 0.5055050263283868,
|
| 1855 |
+
"grad_norm": 0.7473710775375366,
|
| 1856 |
+
"learning_rate": 5.348080317801244e-06,
|
| 1857 |
+
"loss": 0.3672,
|
| 1858 |
+
"step": 264
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 0.5074198180947822,
|
| 1862 |
+
"grad_norm": 0.9001408815383911,
|
| 1863 |
+
"learning_rate": 5.316481100329408e-06,
|
| 1864 |
+
"loss": 0.4314,
|
| 1865 |
+
"step": 265
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 0.5093346098611776,
|
| 1869 |
+
"grad_norm": 0.8201159834861755,
|
| 1870 |
+
"learning_rate": 5.284869186395478e-06,
|
| 1871 |
+
"loss": 0.4166,
|
| 1872 |
+
"step": 266
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 0.511249401627573,
|
| 1876 |
+
"grad_norm": 0.8213218450546265,
|
| 1877 |
+
"learning_rate": 5.253245844193564e-06,
|
| 1878 |
+
"loss": 0.4087,
|
| 1879 |
+
"step": 267
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 0.5131641933939685,
|
| 1883 |
+
"grad_norm": 0.8229288458824158,
|
| 1884 |
+
"learning_rate": 5.22161234237625e-06,
|
| 1885 |
+
"loss": 0.4013,
|
| 1886 |
+
"step": 268
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 0.5150789851603638,
|
| 1890 |
+
"grad_norm": 0.8140142560005188,
|
| 1891 |
+
"learning_rate": 5.189969950003697e-06,
|
| 1892 |
+
"loss": 0.4021,
|
| 1893 |
+
"step": 269
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 0.5169937769267592,
|
| 1897 |
+
"grad_norm": 0.8901419043540955,
|
| 1898 |
+
"learning_rate": 5.158319936492736e-06,
|
| 1899 |
+
"loss": 0.427,
|
| 1900 |
+
"step": 270
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 0.5189085686931546,
|
| 1904 |
+
"grad_norm": 0.7799863219261169,
|
| 1905 |
+
"learning_rate": 5.12666357156594e-06,
|
| 1906 |
+
"loss": 0.3872,
|
| 1907 |
+
"step": 271
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 0.52082336045955,
|
| 1911 |
+
"grad_norm": 0.8645293712615967,
|
| 1912 |
+
"learning_rate": 5.0950021252006845e-06,
|
| 1913 |
+
"loss": 0.4287,
|
| 1914 |
+
"step": 272
|
| 1915 |
+
},
|
| 1916 |
+
{
|
| 1917 |
+
"epoch": 0.5227381522259454,
|
| 1918 |
+
"grad_norm": 0.8488345146179199,
|
| 1919 |
+
"learning_rate": 5.063336867578201e-06,
|
| 1920 |
+
"loss": 0.4402,
|
| 1921 |
+
"step": 273
|
| 1922 |
+
},
|
| 1923 |
+
{
|
| 1924 |
+
"epoch": 0.5246529439923409,
|
| 1925 |
+
"grad_norm": 0.8312931060791016,
|
| 1926 |
+
"learning_rate": 5.0316690690326175e-06,
|
| 1927 |
+
"loss": 0.3858,
|
| 1928 |
+
"step": 274
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 0.5265677357587363,
|
| 1932 |
+
"grad_norm": 0.8159146308898926,
|
| 1933 |
+
"learning_rate": 5e-06,
|
| 1934 |
+
"loss": 0.3707,
|
| 1935 |
+
"step": 275
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 0.5284825275251317,
|
| 1939 |
+
"grad_norm": 0.8223234415054321,
|
| 1940 |
+
"learning_rate": 4.9683309309673825e-06,
|
| 1941 |
+
"loss": 0.3836,
|
| 1942 |
+
"step": 276
|
| 1943 |
+
},
|
| 1944 |
+
{
|
| 1945 |
+
"epoch": 0.530397319291527,
|
| 1946 |
+
"grad_norm": 0.7489441633224487,
|
| 1947 |
+
"learning_rate": 4.936663132421801e-06,
|
| 1948 |
+
"loss": 0.3666,
|
| 1949 |
+
"step": 277
|
| 1950 |
+
},
|
| 1951 |
+
{
|
| 1952 |
+
"epoch": 0.5323121110579224,
|
| 1953 |
+
"grad_norm": 0.7627151012420654,
|
| 1954 |
+
"learning_rate": 4.904997874799316e-06,
|
| 1955 |
+
"loss": 0.3829,
|
| 1956 |
+
"step": 278
|
| 1957 |
+
},
|
| 1958 |
+
{
|
| 1959 |
+
"epoch": 0.5342269028243178,
|
| 1960 |
+
"grad_norm": 0.8040624856948853,
|
| 1961 |
+
"learning_rate": 4.873336428434062e-06,
|
| 1962 |
+
"loss": 0.3864,
|
| 1963 |
+
"step": 279
|
| 1964 |
+
},
|
| 1965 |
+
{
|
| 1966 |
+
"epoch": 0.5361416945907133,
|
| 1967 |
+
"grad_norm": 0.8104556798934937,
|
| 1968 |
+
"learning_rate": 4.841680063507265e-06,
|
| 1969 |
+
"loss": 0.4226,
|
| 1970 |
+
"step": 280
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 0.5380564863571087,
|
| 1974 |
+
"grad_norm": 0.8425339460372925,
|
| 1975 |
+
"learning_rate": 4.8100300499963045e-06,
|
| 1976 |
+
"loss": 0.4126,
|
| 1977 |
+
"step": 281
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 0.5399712781235041,
|
| 1981 |
+
"grad_norm": 0.7799105644226074,
|
| 1982 |
+
"learning_rate": 4.778387657623751e-06,
|
| 1983 |
+
"loss": 0.3768,
|
| 1984 |
+
"step": 282
|
| 1985 |
+
},
|
| 1986 |
+
{
|
| 1987 |
+
"epoch": 0.5418860698898995,
|
| 1988 |
+
"grad_norm": 0.8573192954063416,
|
| 1989 |
+
"learning_rate": 4.746754155806437e-06,
|
| 1990 |
+
"loss": 0.451,
|
| 1991 |
+
"step": 283
|
| 1992 |
+
},
|
| 1993 |
+
{
|
| 1994 |
+
"epoch": 0.5438008616562949,
|
| 1995 |
+
"grad_norm": 0.8153167366981506,
|
| 1996 |
+
"learning_rate": 4.715130813604522e-06,
|
| 1997 |
+
"loss": 0.3968,
|
| 1998 |
+
"step": 284
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"epoch": 0.5457156534226902,
|
| 2002 |
+
"grad_norm": 0.8407420516014099,
|
| 2003 |
+
"learning_rate": 4.683518899670594e-06,
|
| 2004 |
+
"loss": 0.392,
|
| 2005 |
+
"step": 285
|
| 2006 |
+
},
|
| 2007 |
+
{
|
| 2008 |
+
"epoch": 0.5476304451890857,
|
| 2009 |
+
"grad_norm": 0.8508596420288086,
|
| 2010 |
+
"learning_rate": 4.651919682198756e-06,
|
| 2011 |
+
"loss": 0.3945,
|
| 2012 |
+
"step": 286
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 0.5495452369554811,
|
| 2016 |
+
"grad_norm": 0.8226655721664429,
|
| 2017 |
+
"learning_rate": 4.62033442887377e-06,
|
| 2018 |
+
"loss": 0.3993,
|
| 2019 |
+
"step": 287
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 0.5514600287218765,
|
| 2023 |
+
"grad_norm": 0.8097487688064575,
|
| 2024 |
+
"learning_rate": 4.588764406820181e-06,
|
| 2025 |
+
"loss": 0.4303,
|
| 2026 |
+
"step": 288
|
| 2027 |
+
},
|
| 2028 |
+
{
|
| 2029 |
+
"epoch": 0.5533748204882719,
|
| 2030 |
+
"grad_norm": 0.7493626475334167,
|
| 2031 |
+
"learning_rate": 4.5572108825515e-06,
|
| 2032 |
+
"loss": 0.362,
|
| 2033 |
+
"step": 289
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 0.5552896122546673,
|
| 2037 |
+
"grad_norm": 0.7713648676872253,
|
| 2038 |
+
"learning_rate": 4.5256751219193784e-06,
|
| 2039 |
+
"loss": 0.3906,
|
| 2040 |
+
"step": 290
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 0.5572044040210627,
|
| 2044 |
+
"grad_norm": 0.8310909867286682,
|
| 2045 |
+
"learning_rate": 4.49415839006284e-06,
|
| 2046 |
+
"loss": 0.4041,
|
| 2047 |
+
"step": 291
|
| 2048 |
+
},
|
| 2049 |
+
{
|
| 2050 |
+
"epoch": 0.5591191957874582,
|
| 2051 |
+
"grad_norm": 0.8170990943908691,
|
| 2052 |
+
"learning_rate": 4.462661951357515e-06,
|
| 2053 |
+
"loss": 0.4054,
|
| 2054 |
+
"step": 292
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 0.5610339875538535,
|
| 2058 |
+
"grad_norm": 0.862368643283844,
|
| 2059 |
+
"learning_rate": 4.431187069364927e-06,
|
| 2060 |
+
"loss": 0.4107,
|
| 2061 |
+
"step": 293
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 0.5629487793202489,
|
| 2065 |
+
"grad_norm": 0.8069734573364258,
|
| 2066 |
+
"learning_rate": 4.3997350067817866e-06,
|
| 2067 |
+
"loss": 0.3939,
|
| 2068 |
+
"step": 294
|
| 2069 |
+
},
|
| 2070 |
+
{
|
| 2071 |
+
"epoch": 0.5648635710866443,
|
| 2072 |
+
"grad_norm": 0.8641298413276672,
|
| 2073 |
+
"learning_rate": 4.368307025389355e-06,
|
| 2074 |
+
"loss": 0.4182,
|
| 2075 |
+
"step": 295
|
| 2076 |
+
},
|
| 2077 |
+
{
|
| 2078 |
+
"epoch": 0.5667783628530397,
|
| 2079 |
+
"grad_norm": 0.8040350079536438,
|
| 2080 |
+
"learning_rate": 4.336904386002805e-06,
|
| 2081 |
+
"loss": 0.3863,
|
| 2082 |
+
"step": 296
|
| 2083 |
+
},
|
| 2084 |
+
{
|
| 2085 |
+
"epoch": 0.5686931546194351,
|
| 2086 |
+
"grad_norm": 0.8322636485099792,
|
| 2087 |
+
"learning_rate": 4.3055283484206565e-06,
|
| 2088 |
+
"loss": 0.4228,
|
| 2089 |
+
"step": 297
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"epoch": 0.5706079463858306,
|
| 2093 |
+
"grad_norm": 0.7918723821640015,
|
| 2094 |
+
"learning_rate": 4.27418017137422e-06,
|
| 2095 |
+
"loss": 0.3749,
|
| 2096 |
+
"step": 298
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 0.572522738152226,
|
| 2100 |
+
"grad_norm": 0.7878877520561218,
|
| 2101 |
+
"learning_rate": 4.2428611124771184e-06,
|
| 2102 |
+
"loss": 0.3716,
|
| 2103 |
+
"step": 299
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 0.5744375299186214,
|
| 2107 |
+
"grad_norm": 0.7795090675354004,
|
| 2108 |
+
"learning_rate": 4.211572428174816e-06,
|
| 2109 |
+
"loss": 0.3614,
|
| 2110 |
+
"step": 300
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 0.5763523216850167,
|
| 2114 |
+
"grad_norm": 0.8057751655578613,
|
| 2115 |
+
"learning_rate": 4.180315373694225e-06,
|
| 2116 |
+
"loss": 0.4015,
|
| 2117 |
+
"step": 301
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 0.5782671134514121,
|
| 2121 |
+
"grad_norm": 0.8051212430000305,
|
| 2122 |
+
"learning_rate": 4.149091202993345e-06,
|
| 2123 |
+
"loss": 0.3588,
|
| 2124 |
+
"step": 302
|
| 2125 |
+
},
|
| 2126 |
+
{
|
| 2127 |
+
"epoch": 0.5801819052178075,
|
| 2128 |
+
"grad_norm": 0.8171245455741882,
|
| 2129 |
+
"learning_rate": 4.11790116871096e-06,
|
| 2130 |
+
"loss": 0.417,
|
| 2131 |
+
"step": 303
|
| 2132 |
+
},
|
| 2133 |
+
{
|
| 2134 |
+
"epoch": 0.582096696984203,
|
| 2135 |
+
"grad_norm": 0.8987613320350647,
|
| 2136 |
+
"learning_rate": 4.086746522116372e-06,
|
| 2137 |
+
"loss": 0.4536,
|
| 2138 |
+
"step": 304
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 0.5840114887505984,
|
| 2142 |
+
"grad_norm": 0.7471241354942322,
|
| 2143 |
+
"learning_rate": 4.055628513059231e-06,
|
| 2144 |
+
"loss": 0.3866,
|
| 2145 |
+
"step": 305
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 0.5859262805169938,
|
| 2149 |
+
"grad_norm": 0.828220009803772,
|
| 2150 |
+
"learning_rate": 4.02454838991936e-06,
|
| 2151 |
+
"loss": 0.3778,
|
| 2152 |
+
"step": 306
|
| 2153 |
+
},
|
| 2154 |
+
{
|
| 2155 |
+
"epoch": 0.5878410722833892,
|
| 2156 |
+
"grad_norm": 0.8547297120094299,
|
| 2157 |
+
"learning_rate": 3.993507399556699e-06,
|
| 2158 |
+
"loss": 0.4308,
|
| 2159 |
+
"step": 307
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 0.5897558640497846,
|
| 2163 |
+
"grad_norm": 0.8033933043479919,
|
| 2164 |
+
"learning_rate": 3.962506787261278e-06,
|
| 2165 |
+
"loss": 0.3993,
|
| 2166 |
+
"step": 308
|
| 2167 |
+
},
|
| 2168 |
+
{
|
| 2169 |
+
"epoch": 0.59167065581618,
|
| 2170 |
+
"grad_norm": 0.7902593612670898,
|
| 2171 |
+
"learning_rate": 3.931547796703245e-06,
|
| 2172 |
+
"loss": 0.3794,
|
| 2173 |
+
"step": 309
|
| 2174 |
+
},
|
| 2175 |
+
{
|
| 2176 |
+
"epoch": 0.5935854475825754,
|
| 2177 |
+
"grad_norm": 0.8059898018836975,
|
| 2178 |
+
"learning_rate": 3.900631669882996e-06,
|
| 2179 |
+
"loss": 0.3936,
|
| 2180 |
+
"step": 310
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 0.5955002393489708,
|
| 2184 |
+
"grad_norm": 0.8180558681488037,
|
| 2185 |
+
"learning_rate": 3.869759647081326e-06,
|
| 2186 |
+
"loss": 0.3695,
|
| 2187 |
+
"step": 311
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 0.5974150311153662,
|
| 2191 |
+
"grad_norm": 0.7877086400985718,
|
| 2192 |
+
"learning_rate": 3.83893296680969e-06,
|
| 2193 |
+
"loss": 0.3838,
|
| 2194 |
+
"step": 312
|
| 2195 |
+
},
|
| 2196 |
+
{
|
| 2197 |
+
"epoch": 0.5993298228817616,
|
| 2198 |
+
"grad_norm": 0.7896502614021301,
|
| 2199 |
+
"learning_rate": 3.8081528657605045e-06,
|
| 2200 |
+
"loss": 0.376,
|
| 2201 |
+
"step": 313
|
| 2202 |
+
},
|
| 2203 |
+
{
|
| 2204 |
+
"epoch": 0.601244614648157,
|
| 2205 |
+
"grad_norm": 0.7718030214309692,
|
| 2206 |
+
"learning_rate": 3.7774205787575455e-06,
|
| 2207 |
+
"loss": 0.388,
|
| 2208 |
+
"step": 314
|
| 2209 |
+
},
|
| 2210 |
+
{
|
| 2211 |
+
"epoch": 0.6031594064145525,
|
| 2212 |
+
"grad_norm": 0.8119059205055237,
|
| 2213 |
+
"learning_rate": 3.7467373387063973e-06,
|
| 2214 |
+
"loss": 0.4241,
|
| 2215 |
+
"step": 315
|
| 2216 |
+
}
|
| 2217 |
+
],
|
| 2218 |
+
"logging_steps": 1,
|
| 2219 |
+
"max_steps": 522,
|
| 2220 |
+
"num_input_tokens_seen": 0,
|
| 2221 |
+
"num_train_epochs": 1,
|
| 2222 |
+
"save_steps": 105,
|
| 2223 |
+
"stateful_callbacks": {
|
| 2224 |
+
"TrainerControl": {
|
| 2225 |
+
"args": {
|
| 2226 |
+
"should_epoch_stop": false,
|
| 2227 |
+
"should_evaluate": false,
|
| 2228 |
+
"should_log": false,
|
| 2229 |
+
"should_save": true,
|
| 2230 |
+
"should_training_stop": false
|
| 2231 |
+
},
|
| 2232 |
+
"attributes": {}
|
| 2233 |
+
}
|
| 2234 |
+
},
|
| 2235 |
+
"total_flos": 1.6526141583628698e+17,
|
| 2236 |
+
"train_batch_size": 8,
|
| 2237 |
+
"trial_name": null,
|
| 2238 |
+
"trial_params": null
|
| 2239 |
+
}
|
checkpoint-315/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:103fd3bb469213774a4b43139febd5a468076d3935b2ed67984e8c9a1aaaa004
|
| 3 |
+
size 10936
|
checkpoint-315/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-315/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-420/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
checkpoint-420/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"eos_token_id": 151643,
|
| 7 |
+
"hidden_act": "silu",
|
| 8 |
+
"hidden_size": 1536,
|
| 9 |
+
"initializer_range": 0.02,
|
| 10 |
+
"intermediate_size": 8960,
|
| 11 |
+
"max_position_embeddings": 131072,
|
| 12 |
+
"max_window_layers": 28,
|
| 13 |
+
"model_type": "qwen2",
|
| 14 |
+
"num_attention_heads": 12,
|
| 15 |
+
"num_hidden_layers": 28,
|
| 16 |
+
"num_key_value_heads": 2,
|
| 17 |
+
"rms_norm_eps": 1e-06,
|
| 18 |
+
"rope_scaling": null,
|
| 19 |
+
"rope_theta": 1000000.0,
|
| 20 |
+
"sliding_window": 131072,
|
| 21 |
+
"tie_word_embeddings": true,
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.51.3",
|
| 24 |
+
"use_cache": false,
|
| 25 |
+
"use_mrope": false,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
checkpoint-420/generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 151643,
|
| 5 |
+
"max_new_tokens": 2048,
|
| 6 |
+
"transformers_version": "4.51.3"
|
| 7 |
+
}
|
checkpoint-420/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step420
|
checkpoint-420/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-420/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d15203da896dd6dcfb1f37e4458e20c98514f23d1e162280d299eedb7aa4092
|
| 3 |
+
size 3554214752
|
checkpoint-420/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ad792af33c7cfa8b15298ecc9d976ebdcdeb444ca0e704c7b0657f41ee6547eb
|
| 3 |
+
size 14512
|
checkpoint-420/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:722c924fceffd85f8ab1a5445f1ea1e6c502644b6a42e2ff6b5a9a76ea26e1fe
|
| 3 |
+
size 14512
|
checkpoint-420/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8053bdf2e6680f6d7e7620f3d7ecd8cf15c34074cc261de25bfc326ba659e816
|
| 3 |
+
size 1064
|
checkpoint-420/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
checkpoint-420/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
| 3 |
+
size 11421896
|
checkpoint-420/tokenizer_config.json
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|endoftext|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"split_special_tokens": false,
|
| 206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 207 |
+
"unk_token": null
|
| 208 |
+
}
|
checkpoint-420/trainer_state.json
ADDED
|
@@ -0,0 +1,2974 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 0.8042125418860699,
|
| 6 |
+
"eval_steps": 500,
|
| 7 |
+
"global_step": 420,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.0019147917663954045,
|
| 14 |
+
"grad_norm": 2.9491562843322754,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 0.6229,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.003829583532790809,
|
| 21 |
+
"grad_norm": 3.0646867752075195,
|
| 22 |
+
"learning_rate": 3.846153846153847e-07,
|
| 23 |
+
"loss": 0.6119,
|
| 24 |
+
"step": 2
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"epoch": 0.0057443752991862135,
|
| 28 |
+
"grad_norm": 3.0737922191619873,
|
| 29 |
+
"learning_rate": 7.692307692307694e-07,
|
| 30 |
+
"loss": 0.6582,
|
| 31 |
+
"step": 3
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"epoch": 0.007659167065581618,
|
| 35 |
+
"grad_norm": 2.9172728061676025,
|
| 36 |
+
"learning_rate": 1.153846153846154e-06,
|
| 37 |
+
"loss": 0.6209,
|
| 38 |
+
"step": 4
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"epoch": 0.009573958831977022,
|
| 42 |
+
"grad_norm": 2.668588161468506,
|
| 43 |
+
"learning_rate": 1.5384615384615387e-06,
|
| 44 |
+
"loss": 0.5589,
|
| 45 |
+
"step": 5
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.011488750598372427,
|
| 49 |
+
"grad_norm": 3.2810585498809814,
|
| 50 |
+
"learning_rate": 1.9230769230769234e-06,
|
| 51 |
+
"loss": 0.5968,
|
| 52 |
+
"step": 6
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"epoch": 0.013403542364767831,
|
| 56 |
+
"grad_norm": 2.434365749359131,
|
| 57 |
+
"learning_rate": 2.307692307692308e-06,
|
| 58 |
+
"loss": 0.5636,
|
| 59 |
+
"step": 7
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.015318334131163236,
|
| 63 |
+
"grad_norm": 2.060615301132202,
|
| 64 |
+
"learning_rate": 2.6923076923076923e-06,
|
| 65 |
+
"loss": 0.5661,
|
| 66 |
+
"step": 8
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.01723312589755864,
|
| 70 |
+
"grad_norm": 1.8817814588546753,
|
| 71 |
+
"learning_rate": 3.0769230769230774e-06,
|
| 72 |
+
"loss": 0.5817,
|
| 73 |
+
"step": 9
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.019147917663954045,
|
| 77 |
+
"grad_norm": 1.766438603401184,
|
| 78 |
+
"learning_rate": 3.4615384615384617e-06,
|
| 79 |
+
"loss": 0.5529,
|
| 80 |
+
"step": 10
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.02106270943034945,
|
| 84 |
+
"grad_norm": 1.5240556001663208,
|
| 85 |
+
"learning_rate": 3.846153846153847e-06,
|
| 86 |
+
"loss": 0.5207,
|
| 87 |
+
"step": 11
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.022977501196744854,
|
| 91 |
+
"grad_norm": 1.5381622314453125,
|
| 92 |
+
"learning_rate": 4.230769230769231e-06,
|
| 93 |
+
"loss": 0.5171,
|
| 94 |
+
"step": 12
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.02489229296314026,
|
| 98 |
+
"grad_norm": 1.4144328832626343,
|
| 99 |
+
"learning_rate": 4.615384615384616e-06,
|
| 100 |
+
"loss": 0.5612,
|
| 101 |
+
"step": 13
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.026807084729535663,
|
| 105 |
+
"grad_norm": 1.282257318496704,
|
| 106 |
+
"learning_rate": 5e-06,
|
| 107 |
+
"loss": 0.493,
|
| 108 |
+
"step": 14
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.028721876495931067,
|
| 112 |
+
"grad_norm": 1.3273121118545532,
|
| 113 |
+
"learning_rate": 5.384615384615385e-06,
|
| 114 |
+
"loss": 0.4723,
|
| 115 |
+
"step": 15
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.030636668262326472,
|
| 119 |
+
"grad_norm": 1.1829627752304077,
|
| 120 |
+
"learning_rate": 5.769230769230769e-06,
|
| 121 |
+
"loss": 0.4675,
|
| 122 |
+
"step": 16
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.032551460028721876,
|
| 126 |
+
"grad_norm": 1.0885576009750366,
|
| 127 |
+
"learning_rate": 6.153846153846155e-06,
|
| 128 |
+
"loss": 0.4275,
|
| 129 |
+
"step": 17
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.03446625179511728,
|
| 133 |
+
"grad_norm": 0.9974104762077332,
|
| 134 |
+
"learning_rate": 6.538461538461539e-06,
|
| 135 |
+
"loss": 0.4709,
|
| 136 |
+
"step": 18
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.036381043561512685,
|
| 140 |
+
"grad_norm": 1.0769761800765991,
|
| 141 |
+
"learning_rate": 6.923076923076923e-06,
|
| 142 |
+
"loss": 0.4916,
|
| 143 |
+
"step": 19
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"epoch": 0.03829583532790809,
|
| 147 |
+
"grad_norm": 0.967096745967865,
|
| 148 |
+
"learning_rate": 7.307692307692308e-06,
|
| 149 |
+
"loss": 0.4785,
|
| 150 |
+
"step": 20
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.040210627094303494,
|
| 154 |
+
"grad_norm": 1.0460747480392456,
|
| 155 |
+
"learning_rate": 7.692307692307694e-06,
|
| 156 |
+
"loss": 0.4653,
|
| 157 |
+
"step": 21
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"epoch": 0.0421254188606989,
|
| 161 |
+
"grad_norm": 1.0114920139312744,
|
| 162 |
+
"learning_rate": 8.076923076923077e-06,
|
| 163 |
+
"loss": 0.4648,
|
| 164 |
+
"step": 22
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"epoch": 0.0440402106270943,
|
| 168 |
+
"grad_norm": 1.1619290113449097,
|
| 169 |
+
"learning_rate": 8.461538461538462e-06,
|
| 170 |
+
"loss": 0.4833,
|
| 171 |
+
"step": 23
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.04595500239348971,
|
| 175 |
+
"grad_norm": 0.9872665405273438,
|
| 176 |
+
"learning_rate": 8.846153846153847e-06,
|
| 177 |
+
"loss": 0.4545,
|
| 178 |
+
"step": 24
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"epoch": 0.04786979415988511,
|
| 182 |
+
"grad_norm": 0.9702840447425842,
|
| 183 |
+
"learning_rate": 9.230769230769232e-06,
|
| 184 |
+
"loss": 0.4651,
|
| 185 |
+
"step": 25
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.04978458592628052,
|
| 189 |
+
"grad_norm": 0.9493695497512817,
|
| 190 |
+
"learning_rate": 9.615384615384616e-06,
|
| 191 |
+
"loss": 0.477,
|
| 192 |
+
"step": 26
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"epoch": 0.05169937769267592,
|
| 196 |
+
"grad_norm": 0.9152507185935974,
|
| 197 |
+
"learning_rate": 1e-05,
|
| 198 |
+
"loss": 0.4499,
|
| 199 |
+
"step": 27
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.053614169459071326,
|
| 203 |
+
"grad_norm": 1.0640617609024048,
|
| 204 |
+
"learning_rate": 9.999899706000774e-06,
|
| 205 |
+
"loss": 0.4853,
|
| 206 |
+
"step": 28
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"epoch": 0.05552896122546673,
|
| 210 |
+
"grad_norm": 0.9641034603118896,
|
| 211 |
+
"learning_rate": 9.999598828026644e-06,
|
| 212 |
+
"loss": 0.475,
|
| 213 |
+
"step": 29
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.057443752991862135,
|
| 217 |
+
"grad_norm": 0.8927161693572998,
|
| 218 |
+
"learning_rate": 9.999097378148116e-06,
|
| 219 |
+
"loss": 0.4448,
|
| 220 |
+
"step": 30
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.05935854475825754,
|
| 224 |
+
"grad_norm": 0.881844699382782,
|
| 225 |
+
"learning_rate": 9.998395376482152e-06,
|
| 226 |
+
"loss": 0.4327,
|
| 227 |
+
"step": 31
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 0.061273336524652944,
|
| 231 |
+
"grad_norm": 0.8794113993644714,
|
| 232 |
+
"learning_rate": 9.99749285119138e-06,
|
| 233 |
+
"loss": 0.4294,
|
| 234 |
+
"step": 32
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"epoch": 0.06318812829104835,
|
| 238 |
+
"grad_norm": 0.9898825287818909,
|
| 239 |
+
"learning_rate": 9.996389838482942e-06,
|
| 240 |
+
"loss": 0.5294,
|
| 241 |
+
"step": 33
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 0.06510292005744375,
|
| 245 |
+
"grad_norm": 0.9184749126434326,
|
| 246 |
+
"learning_rate": 9.995086382607064e-06,
|
| 247 |
+
"loss": 0.4774,
|
| 248 |
+
"step": 34
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 0.06701771182383916,
|
| 252 |
+
"grad_norm": 0.9067336320877075,
|
| 253 |
+
"learning_rate": 9.993582535855265e-06,
|
| 254 |
+
"loss": 0.4569,
|
| 255 |
+
"step": 35
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.06893250359023456,
|
| 259 |
+
"grad_norm": 0.8807307481765747,
|
| 260 |
+
"learning_rate": 9.991878358558267e-06,
|
| 261 |
+
"loss": 0.478,
|
| 262 |
+
"step": 36
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.07084729535662997,
|
| 266 |
+
"grad_norm": 0.9359887838363647,
|
| 267 |
+
"learning_rate": 9.989973919083576e-06,
|
| 268 |
+
"loss": 0.4659,
|
| 269 |
+
"step": 37
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"epoch": 0.07276208712302537,
|
| 273 |
+
"grad_norm": 0.9008484482765198,
|
| 274 |
+
"learning_rate": 9.987869293832727e-06,
|
| 275 |
+
"loss": 0.4659,
|
| 276 |
+
"step": 38
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"epoch": 0.07467687888942078,
|
| 280 |
+
"grad_norm": 0.8065485954284668,
|
| 281 |
+
"learning_rate": 9.985564567238237e-06,
|
| 282 |
+
"loss": 0.4441,
|
| 283 |
+
"step": 39
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"epoch": 0.07659167065581618,
|
| 287 |
+
"grad_norm": 0.9766021966934204,
|
| 288 |
+
"learning_rate": 9.983059831760205e-06,
|
| 289 |
+
"loss": 0.4834,
|
| 290 |
+
"step": 40
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.07850646242221158,
|
| 294 |
+
"grad_norm": 0.8222993016242981,
|
| 295 |
+
"learning_rate": 9.980355187882606e-06,
|
| 296 |
+
"loss": 0.443,
|
| 297 |
+
"step": 41
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.08042125418860699,
|
| 301 |
+
"grad_norm": 0.8215630054473877,
|
| 302 |
+
"learning_rate": 9.977450744109258e-06,
|
| 303 |
+
"loss": 0.4219,
|
| 304 |
+
"step": 42
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"epoch": 0.0823360459550024,
|
| 308 |
+
"grad_norm": 0.8324375748634338,
|
| 309 |
+
"learning_rate": 9.974346616959476e-06,
|
| 310 |
+
"loss": 0.4362,
|
| 311 |
+
"step": 43
|
| 312 |
+
},
|
| 313 |
+
{
|
| 314 |
+
"epoch": 0.0842508377213978,
|
| 315 |
+
"grad_norm": 0.9242782592773438,
|
| 316 |
+
"learning_rate": 9.97104293096339e-06,
|
| 317 |
+
"loss": 0.4738,
|
| 318 |
+
"step": 44
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"epoch": 0.0861656294877932,
|
| 322 |
+
"grad_norm": 0.9275208711624146,
|
| 323 |
+
"learning_rate": 9.967539818656953e-06,
|
| 324 |
+
"loss": 0.4571,
|
| 325 |
+
"step": 45
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.0880804212541886,
|
| 329 |
+
"grad_norm": 0.876868724822998,
|
| 330 |
+
"learning_rate": 9.96383742057662e-06,
|
| 331 |
+
"loss": 0.5172,
|
| 332 |
+
"step": 46
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.08999521302058401,
|
| 336 |
+
"grad_norm": 0.8446276783943176,
|
| 337 |
+
"learning_rate": 9.959935885253715e-06,
|
| 338 |
+
"loss": 0.4457,
|
| 339 |
+
"step": 47
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.09191000478697942,
|
| 343 |
+
"grad_norm": 0.8077015280723572,
|
| 344 |
+
"learning_rate": 9.955835369208475e-06,
|
| 345 |
+
"loss": 0.4234,
|
| 346 |
+
"step": 48
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.09382479655337482,
|
| 350 |
+
"grad_norm": 0.7882896065711975,
|
| 351 |
+
"learning_rate": 9.951536036943753e-06,
|
| 352 |
+
"loss": 0.4264,
|
| 353 |
+
"step": 49
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.09573958831977022,
|
| 357 |
+
"grad_norm": 0.8539751768112183,
|
| 358 |
+
"learning_rate": 9.94703806093845e-06,
|
| 359 |
+
"loss": 0.461,
|
| 360 |
+
"step": 50
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.09765438008616563,
|
| 364 |
+
"grad_norm": 0.8285911679267883,
|
| 365 |
+
"learning_rate": 9.942341621640558e-06,
|
| 366 |
+
"loss": 0.4379,
|
| 367 |
+
"step": 51
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.09956917185256103,
|
| 371 |
+
"grad_norm": 0.8029133081436157,
|
| 372 |
+
"learning_rate": 9.937446907459954e-06,
|
| 373 |
+
"loss": 0.4565,
|
| 374 |
+
"step": 52
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.10148396361895644,
|
| 378 |
+
"grad_norm": 0.7964851260185242,
|
| 379 |
+
"learning_rate": 9.932354114760819e-06,
|
| 380 |
+
"loss": 0.4262,
|
| 381 |
+
"step": 53
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.10339875538535184,
|
| 385 |
+
"grad_norm": 0.9846324920654297,
|
| 386 |
+
"learning_rate": 9.92706344785377e-06,
|
| 387 |
+
"loss": 0.5302,
|
| 388 |
+
"step": 54
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.10531354715174725,
|
| 392 |
+
"grad_norm": 0.7648650407791138,
|
| 393 |
+
"learning_rate": 9.921575118987672e-06,
|
| 394 |
+
"loss": 0.4066,
|
| 395 |
+
"step": 55
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.10722833891814265,
|
| 399 |
+
"grad_norm": 0.83173668384552,
|
| 400 |
+
"learning_rate": 9.915889348341098e-06,
|
| 401 |
+
"loss": 0.4438,
|
| 402 |
+
"step": 56
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"epoch": 0.10914313068453806,
|
| 406 |
+
"grad_norm": 0.7968882322311401,
|
| 407 |
+
"learning_rate": 9.910006364013522e-06,
|
| 408 |
+
"loss": 0.407,
|
| 409 |
+
"step": 57
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"epoch": 0.11105792245093346,
|
| 413 |
+
"grad_norm": 0.8423118591308594,
|
| 414 |
+
"learning_rate": 9.903926402016153e-06,
|
| 415 |
+
"loss": 0.4174,
|
| 416 |
+
"step": 58
|
| 417 |
+
},
|
| 418 |
+
{
|
| 419 |
+
"epoch": 0.11297271421732887,
|
| 420 |
+
"grad_norm": 0.9054727554321289,
|
| 421 |
+
"learning_rate": 9.897649706262474e-06,
|
| 422 |
+
"loss": 0.4764,
|
| 423 |
+
"step": 59
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.11488750598372427,
|
| 427 |
+
"grad_norm": 0.8318431973457336,
|
| 428 |
+
"learning_rate": 9.891176528558451e-06,
|
| 429 |
+
"loss": 0.4326,
|
| 430 |
+
"step": 60
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.11680229775011967,
|
| 434 |
+
"grad_norm": 0.8409565687179565,
|
| 435 |
+
"learning_rate": 9.884507128592435e-06,
|
| 436 |
+
"loss": 0.4451,
|
| 437 |
+
"step": 61
|
| 438 |
+
},
|
| 439 |
+
{
|
| 440 |
+
"epoch": 0.11871708951651508,
|
| 441 |
+
"grad_norm": 0.8471431136131287,
|
| 442 |
+
"learning_rate": 9.877641773924748e-06,
|
| 443 |
+
"loss": 0.4217,
|
| 444 |
+
"step": 62
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.12063188128291048,
|
| 448 |
+
"grad_norm": 0.8495103120803833,
|
| 449 |
+
"learning_rate": 9.870580739976936e-06,
|
| 450 |
+
"loss": 0.421,
|
| 451 |
+
"step": 63
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.12254667304930589,
|
| 455 |
+
"grad_norm": 0.8164567947387695,
|
| 456 |
+
"learning_rate": 9.863324310020735e-06,
|
| 457 |
+
"loss": 0.4266,
|
| 458 |
+
"step": 64
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.12446146481570129,
|
| 462 |
+
"grad_norm": 0.8732247948646545,
|
| 463 |
+
"learning_rate": 9.855872775166696e-06,
|
| 464 |
+
"loss": 0.4661,
|
| 465 |
+
"step": 65
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.1263762565820967,
|
| 469 |
+
"grad_norm": 0.8157728910446167,
|
| 470 |
+
"learning_rate": 9.848226434352513e-06,
|
| 471 |
+
"loss": 0.4401,
|
| 472 |
+
"step": 66
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.12829104834849211,
|
| 476 |
+
"grad_norm": 0.8860891461372375,
|
| 477 |
+
"learning_rate": 9.840385594331022e-06,
|
| 478 |
+
"loss": 0.4748,
|
| 479 |
+
"step": 67
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.1302058401148875,
|
| 483 |
+
"grad_norm": 0.8987312316894531,
|
| 484 |
+
"learning_rate": 9.83235056965791e-06,
|
| 485 |
+
"loss": 0.4881,
|
| 486 |
+
"step": 68
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.13212063188128292,
|
| 490 |
+
"grad_norm": 0.8786044716835022,
|
| 491 |
+
"learning_rate": 9.824121682679072e-06,
|
| 492 |
+
"loss": 0.4417,
|
| 493 |
+
"step": 69
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.13403542364767831,
|
| 497 |
+
"grad_norm": 0.8325650691986084,
|
| 498 |
+
"learning_rate": 9.815699263517712e-06,
|
| 499 |
+
"loss": 0.4377,
|
| 500 |
+
"step": 70
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.13595021541407373,
|
| 504 |
+
"grad_norm": 0.8149142861366272,
|
| 505 |
+
"learning_rate": 9.807083650061063e-06,
|
| 506 |
+
"loss": 0.4496,
|
| 507 |
+
"step": 71
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.13786500718046912,
|
| 511 |
+
"grad_norm": 0.8394611477851868,
|
| 512 |
+
"learning_rate": 9.798275187946859e-06,
|
| 513 |
+
"loss": 0.4394,
|
| 514 |
+
"step": 72
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.13977979894686454,
|
| 518 |
+
"grad_norm": 0.7746449112892151,
|
| 519 |
+
"learning_rate": 9.789274230549456e-06,
|
| 520 |
+
"loss": 0.4039,
|
| 521 |
+
"step": 73
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"epoch": 0.14169459071325993,
|
| 525 |
+
"grad_norm": 0.7592336535453796,
|
| 526 |
+
"learning_rate": 9.780081138965663e-06,
|
| 527 |
+
"loss": 0.3788,
|
| 528 |
+
"step": 74
|
| 529 |
+
},
|
| 530 |
+
{
|
| 531 |
+
"epoch": 0.14360938247965535,
|
| 532 |
+
"grad_norm": 0.9066088199615479,
|
| 533 |
+
"learning_rate": 9.770696282000245e-06,
|
| 534 |
+
"loss": 0.4541,
|
| 535 |
+
"step": 75
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"epoch": 0.14552417424605074,
|
| 539 |
+
"grad_norm": 0.8512394428253174,
|
| 540 |
+
"learning_rate": 9.761120036151138e-06,
|
| 541 |
+
"loss": 0.4217,
|
| 542 |
+
"step": 76
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"epoch": 0.14743896601244616,
|
| 546 |
+
"grad_norm": 0.795378565788269,
|
| 547 |
+
"learning_rate": 9.751352785594337e-06,
|
| 548 |
+
"loss": 0.4014,
|
| 549 |
+
"step": 77
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.14935375777884155,
|
| 553 |
+
"grad_norm": 0.9467825293540955,
|
| 554 |
+
"learning_rate": 9.741394922168495e-06,
|
| 555 |
+
"loss": 0.4855,
|
| 556 |
+
"step": 78
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"epoch": 0.15126854954523697,
|
| 560 |
+
"grad_norm": 0.7824875712394714,
|
| 561 |
+
"learning_rate": 9.731246845359187e-06,
|
| 562 |
+
"loss": 0.4088,
|
| 563 |
+
"step": 79
|
| 564 |
+
},
|
| 565 |
+
{
|
| 566 |
+
"epoch": 0.15318334131163236,
|
| 567 |
+
"grad_norm": 0.7557615637779236,
|
| 568 |
+
"learning_rate": 9.720908962282893e-06,
|
| 569 |
+
"loss": 0.4023,
|
| 570 |
+
"step": 80
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.15509813307802778,
|
| 574 |
+
"grad_norm": 0.8093947768211365,
|
| 575 |
+
"learning_rate": 9.710381687670675e-06,
|
| 576 |
+
"loss": 0.4345,
|
| 577 |
+
"step": 81
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.15701292484442317,
|
| 581 |
+
"grad_norm": 0.8901275396347046,
|
| 582 |
+
"learning_rate": 9.699665443851518e-06,
|
| 583 |
+
"loss": 0.4444,
|
| 584 |
+
"step": 82
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"epoch": 0.1589277166108186,
|
| 588 |
+
"grad_norm": 0.7518415451049805,
|
| 589 |
+
"learning_rate": 9.688760660735403e-06,
|
| 590 |
+
"loss": 0.4024,
|
| 591 |
+
"step": 83
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.16084250837721398,
|
| 595 |
+
"grad_norm": 0.7495772242546082,
|
| 596 |
+
"learning_rate": 9.677667775796052e-06,
|
| 597 |
+
"loss": 0.4005,
|
| 598 |
+
"step": 84
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"epoch": 0.1627573001436094,
|
| 602 |
+
"grad_norm": 0.8903560638427734,
|
| 603 |
+
"learning_rate": 9.666387234053385e-06,
|
| 604 |
+
"loss": 0.4495,
|
| 605 |
+
"step": 85
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"epoch": 0.1646720919100048,
|
| 609 |
+
"grad_norm": 0.8854427933692932,
|
| 610 |
+
"learning_rate": 9.654919488055656e-06,
|
| 611 |
+
"loss": 0.4381,
|
| 612 |
+
"step": 86
|
| 613 |
+
},
|
| 614 |
+
{
|
| 615 |
+
"epoch": 0.1665868836764002,
|
| 616 |
+
"grad_norm": 0.8393151164054871,
|
| 617 |
+
"learning_rate": 9.643264997861312e-06,
|
| 618 |
+
"loss": 0.4177,
|
| 619 |
+
"step": 87
|
| 620 |
+
},
|
| 621 |
+
{
|
| 622 |
+
"epoch": 0.1685016754427956,
|
| 623 |
+
"grad_norm": 0.8448845148086548,
|
| 624 |
+
"learning_rate": 9.631424231020523e-06,
|
| 625 |
+
"loss": 0.4437,
|
| 626 |
+
"step": 88
|
| 627 |
+
},
|
| 628 |
+
{
|
| 629 |
+
"epoch": 0.170416467209191,
|
| 630 |
+
"grad_norm": 0.8987253904342651,
|
| 631 |
+
"learning_rate": 9.619397662556434e-06,
|
| 632 |
+
"loss": 0.4479,
|
| 633 |
+
"step": 89
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.1723312589755864,
|
| 637 |
+
"grad_norm": 0.9512760639190674,
|
| 638 |
+
"learning_rate": 9.607185774946106e-06,
|
| 639 |
+
"loss": 0.5188,
|
| 640 |
+
"step": 90
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.17424605074198182,
|
| 644 |
+
"grad_norm": 0.9057194590568542,
|
| 645 |
+
"learning_rate": 9.594789058101154e-06,
|
| 646 |
+
"loss": 0.4448,
|
| 647 |
+
"step": 91
|
| 648 |
+
},
|
| 649 |
+
{
|
| 650 |
+
"epoch": 0.1761608425083772,
|
| 651 |
+
"grad_norm": 0.8147549033164978,
|
| 652 |
+
"learning_rate": 9.582208009348104e-06,
|
| 653 |
+
"loss": 0.4106,
|
| 654 |
+
"step": 92
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"epoch": 0.17807563427477263,
|
| 658 |
+
"grad_norm": 0.8666926622390747,
|
| 659 |
+
"learning_rate": 9.569443133408434e-06,
|
| 660 |
+
"loss": 0.4558,
|
| 661 |
+
"step": 93
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"epoch": 0.17999042604116802,
|
| 665 |
+
"grad_norm": 0.8677969574928284,
|
| 666 |
+
"learning_rate": 9.556494942378328e-06,
|
| 667 |
+
"loss": 0.4379,
|
| 668 |
+
"step": 94
|
| 669 |
+
},
|
| 670 |
+
{
|
| 671 |
+
"epoch": 0.18190521780756344,
|
| 672 |
+
"grad_norm": 0.8896477222442627,
|
| 673 |
+
"learning_rate": 9.543363955708124e-06,
|
| 674 |
+
"loss": 0.4498,
|
| 675 |
+
"step": 95
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.18382000957395883,
|
| 679 |
+
"grad_norm": 0.7357858419418335,
|
| 680 |
+
"learning_rate": 9.530050700181499e-06,
|
| 681 |
+
"loss": 0.3666,
|
| 682 |
+
"step": 96
|
| 683 |
+
},
|
| 684 |
+
{
|
| 685 |
+
"epoch": 0.18573480134035425,
|
| 686 |
+
"grad_norm": 0.7851715683937073,
|
| 687 |
+
"learning_rate": 9.5165557098943e-06,
|
| 688 |
+
"loss": 0.411,
|
| 689 |
+
"step": 97
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"epoch": 0.18764959310674964,
|
| 693 |
+
"grad_norm": 0.8098123669624329,
|
| 694 |
+
"learning_rate": 9.502879526233151e-06,
|
| 695 |
+
"loss": 0.4023,
|
| 696 |
+
"step": 98
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"epoch": 0.18956438487314506,
|
| 700 |
+
"grad_norm": 0.8245725631713867,
|
| 701 |
+
"learning_rate": 9.48902269785371e-06,
|
| 702 |
+
"loss": 0.423,
|
| 703 |
+
"step": 99
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.19147917663954045,
|
| 707 |
+
"grad_norm": 0.8497715592384338,
|
| 708 |
+
"learning_rate": 9.47498578065867e-06,
|
| 709 |
+
"loss": 0.4125,
|
| 710 |
+
"step": 100
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.19339396840593587,
|
| 714 |
+
"grad_norm": 0.8205481171607971,
|
| 715 |
+
"learning_rate": 9.460769337775461e-06,
|
| 716 |
+
"loss": 0.4312,
|
| 717 |
+
"step": 101
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.19530876017233126,
|
| 721 |
+
"grad_norm": 0.8062931299209595,
|
| 722 |
+
"learning_rate": 9.446373939533642e-06,
|
| 723 |
+
"loss": 0.3961,
|
| 724 |
+
"step": 102
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"epoch": 0.19722355193872668,
|
| 728 |
+
"grad_norm": 0.8209528923034668,
|
| 729 |
+
"learning_rate": 9.431800163442043e-06,
|
| 730 |
+
"loss": 0.4121,
|
| 731 |
+
"step": 103
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"epoch": 0.19913834370512207,
|
| 735 |
+
"grad_norm": 0.8154571652412415,
|
| 736 |
+
"learning_rate": 9.417048594165572e-06,
|
| 737 |
+
"loss": 0.4475,
|
| 738 |
+
"step": 104
|
| 739 |
+
},
|
| 740 |
+
{
|
| 741 |
+
"epoch": 0.20105313547151749,
|
| 742 |
+
"grad_norm": 0.8546404838562012,
|
| 743 |
+
"learning_rate": 9.402119823501787e-06,
|
| 744 |
+
"loss": 0.4293,
|
| 745 |
+
"step": 105
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"epoch": 0.20296792723791288,
|
| 749 |
+
"grad_norm": 0.8470130562782288,
|
| 750 |
+
"learning_rate": 9.387014450357128e-06,
|
| 751 |
+
"loss": 0.4139,
|
| 752 |
+
"step": 106
|
| 753 |
+
},
|
| 754 |
+
{
|
| 755 |
+
"epoch": 0.2048827190043083,
|
| 756 |
+
"grad_norm": 0.9199275970458984,
|
| 757 |
+
"learning_rate": 9.371733080722911e-06,
|
| 758 |
+
"loss": 0.4825,
|
| 759 |
+
"step": 107
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.20679751077070369,
|
| 763 |
+
"grad_norm": 0.9049551486968994,
|
| 764 |
+
"learning_rate": 9.356276327651006e-06,
|
| 765 |
+
"loss": 0.4378,
|
| 766 |
+
"step": 108
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.2087123025370991,
|
| 770 |
+
"grad_norm": 0.8089979887008667,
|
| 771 |
+
"learning_rate": 9.340644811229243e-06,
|
| 772 |
+
"loss": 0.4027,
|
| 773 |
+
"step": 109
|
| 774 |
+
},
|
| 775 |
+
{
|
| 776 |
+
"epoch": 0.2106270943034945,
|
| 777 |
+
"grad_norm": 0.7452864050865173,
|
| 778 |
+
"learning_rate": 9.324839158556542e-06,
|
| 779 |
+
"loss": 0.3795,
|
| 780 |
+
"step": 110
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.2125418860698899,
|
| 784 |
+
"grad_norm": 0.8286869525909424,
|
| 785 |
+
"learning_rate": 9.308860003717748e-06,
|
| 786 |
+
"loss": 0.4137,
|
| 787 |
+
"step": 111
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"epoch": 0.2144566778362853,
|
| 791 |
+
"grad_norm": 0.8634768724441528,
|
| 792 |
+
"learning_rate": 9.292707987758202e-06,
|
| 793 |
+
"loss": 0.445,
|
| 794 |
+
"step": 112
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"epoch": 0.21637146960268072,
|
| 798 |
+
"grad_norm": 0.8329188227653503,
|
| 799 |
+
"learning_rate": 9.27638375865801e-06,
|
| 800 |
+
"loss": 0.4307,
|
| 801 |
+
"step": 113
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.2182862613690761,
|
| 805 |
+
"grad_norm": 0.8780718445777893,
|
| 806 |
+
"learning_rate": 9.259887971306064e-06,
|
| 807 |
+
"loss": 0.4863,
|
| 808 |
+
"step": 114
|
| 809 |
+
},
|
| 810 |
+
{
|
| 811 |
+
"epoch": 0.22020105313547153,
|
| 812 |
+
"grad_norm": 0.9007835388183594,
|
| 813 |
+
"learning_rate": 9.243221287473755e-06,
|
| 814 |
+
"loss": 0.4482,
|
| 815 |
+
"step": 115
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"epoch": 0.22211584490186692,
|
| 819 |
+
"grad_norm": 0.8163229823112488,
|
| 820 |
+
"learning_rate": 9.226384375788435e-06,
|
| 821 |
+
"loss": 0.4168,
|
| 822 |
+
"step": 116
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"epoch": 0.22403063666826234,
|
| 826 |
+
"grad_norm": 0.8288677334785461,
|
| 827 |
+
"learning_rate": 9.209377911706585e-06,
|
| 828 |
+
"loss": 0.4038,
|
| 829 |
+
"step": 117
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.22594542843465773,
|
| 833 |
+
"grad_norm": 0.8035851716995239,
|
| 834 |
+
"learning_rate": 9.192202577486725e-06,
|
| 835 |
+
"loss": 0.3922,
|
| 836 |
+
"step": 118
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.22786022020105315,
|
| 840 |
+
"grad_norm": 0.8203516006469727,
|
| 841 |
+
"learning_rate": 9.174859062162037e-06,
|
| 842 |
+
"loss": 0.3971,
|
| 843 |
+
"step": 119
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.22977501196744854,
|
| 847 |
+
"grad_norm": 0.8246352076530457,
|
| 848 |
+
"learning_rate": 9.157348061512728e-06,
|
| 849 |
+
"loss": 0.4433,
|
| 850 |
+
"step": 120
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.23168980373384396,
|
| 854 |
+
"grad_norm": 0.8655344247817993,
|
| 855 |
+
"learning_rate": 9.139670278038109e-06,
|
| 856 |
+
"loss": 0.4405,
|
| 857 |
+
"step": 121
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.23360459550023935,
|
| 861 |
+
"grad_norm": 0.7439157366752625,
|
| 862 |
+
"learning_rate": 9.121826420928421e-06,
|
| 863 |
+
"loss": 0.3683,
|
| 864 |
+
"step": 122
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.23551938726663477,
|
| 868 |
+
"grad_norm": 0.817434549331665,
|
| 869 |
+
"learning_rate": 9.103817206036383e-06,
|
| 870 |
+
"loss": 0.4034,
|
| 871 |
+
"step": 123
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.23743417903303016,
|
| 875 |
+
"grad_norm": 0.8455221056938171,
|
| 876 |
+
"learning_rate": 9.085643355848468e-06,
|
| 877 |
+
"loss": 0.4418,
|
| 878 |
+
"step": 124
|
| 879 |
+
},
|
| 880 |
+
{
|
| 881 |
+
"epoch": 0.23934897079942558,
|
| 882 |
+
"grad_norm": 0.8356925845146179,
|
| 883 |
+
"learning_rate": 9.06730559945592e-06,
|
| 884 |
+
"loss": 0.4012,
|
| 885 |
+
"step": 125
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.24126376256582097,
|
| 889 |
+
"grad_norm": 0.8181227445602417,
|
| 890 |
+
"learning_rate": 9.048804672525513e-06,
|
| 891 |
+
"loss": 0.4174,
|
| 892 |
+
"step": 126
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.24317855433221638,
|
| 896 |
+
"grad_norm": 0.8010542988777161,
|
| 897 |
+
"learning_rate": 9.030141317270026e-06,
|
| 898 |
+
"loss": 0.3952,
|
| 899 |
+
"step": 127
|
| 900 |
+
},
|
| 901 |
+
{
|
| 902 |
+
"epoch": 0.24509334609861178,
|
| 903 |
+
"grad_norm": 0.8500829935073853,
|
| 904 |
+
"learning_rate": 9.011316282418474e-06,
|
| 905 |
+
"loss": 0.4123,
|
| 906 |
+
"step": 128
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"epoch": 0.2470081378650072,
|
| 910 |
+
"grad_norm": 0.8971666693687439,
|
| 911 |
+
"learning_rate": 8.992330323186069e-06,
|
| 912 |
+
"loss": 0.4451,
|
| 913 |
+
"step": 129
|
| 914 |
+
},
|
| 915 |
+
{
|
| 916 |
+
"epoch": 0.24892292963140258,
|
| 917 |
+
"grad_norm": 0.9065473079681396,
|
| 918 |
+
"learning_rate": 8.973184201243922e-06,
|
| 919 |
+
"loss": 0.4821,
|
| 920 |
+
"step": 130
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.250837721397798,
|
| 924 |
+
"grad_norm": 0.8722876906394958,
|
| 925 |
+
"learning_rate": 8.953878684688492e-06,
|
| 926 |
+
"loss": 0.4204,
|
| 927 |
+
"step": 131
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.2527525131641934,
|
| 931 |
+
"grad_norm": 0.8343362808227539,
|
| 932 |
+
"learning_rate": 8.934414548010764e-06,
|
| 933 |
+
"loss": 0.408,
|
| 934 |
+
"step": 132
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"epoch": 0.2546673049305888,
|
| 938 |
+
"grad_norm": 0.8162686824798584,
|
| 939 |
+
"learning_rate": 8.914792572065178e-06,
|
| 940 |
+
"loss": 0.416,
|
| 941 |
+
"step": 133
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.25658209669698423,
|
| 945 |
+
"grad_norm": 0.9116921424865723,
|
| 946 |
+
"learning_rate": 8.89501354403831e-06,
|
| 947 |
+
"loss": 0.4589,
|
| 948 |
+
"step": 134
|
| 949 |
+
},
|
| 950 |
+
{
|
| 951 |
+
"epoch": 0.2584968884633796,
|
| 952 |
+
"grad_norm": 0.9577599763870239,
|
| 953 |
+
"learning_rate": 8.875078257417294e-06,
|
| 954 |
+
"loss": 0.4654,
|
| 955 |
+
"step": 135
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.260411680229775,
|
| 959 |
+
"grad_norm": 0.8709072470664978,
|
| 960 |
+
"learning_rate": 8.854987511957974e-06,
|
| 961 |
+
"loss": 0.4395,
|
| 962 |
+
"step": 136
|
| 963 |
+
},
|
| 964 |
+
{
|
| 965 |
+
"epoch": 0.26232647199617043,
|
| 966 |
+
"grad_norm": 0.8386030197143555,
|
| 967 |
+
"learning_rate": 8.834742113652835e-06,
|
| 968 |
+
"loss": 0.4281,
|
| 969 |
+
"step": 137
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.26424126376256585,
|
| 973 |
+
"grad_norm": 0.7646230459213257,
|
| 974 |
+
"learning_rate": 8.81434287469866e-06,
|
| 975 |
+
"loss": 0.3804,
|
| 976 |
+
"step": 138
|
| 977 |
+
},
|
| 978 |
+
{
|
| 979 |
+
"epoch": 0.2661560555289612,
|
| 980 |
+
"grad_norm": 0.8096075057983398,
|
| 981 |
+
"learning_rate": 8.793790613463956e-06,
|
| 982 |
+
"loss": 0.4112,
|
| 983 |
+
"step": 139
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"epoch": 0.26807084729535663,
|
| 987 |
+
"grad_norm": 0.8051929473876953,
|
| 988 |
+
"learning_rate": 8.773086154456106e-06,
|
| 989 |
+
"loss": 0.4172,
|
| 990 |
+
"step": 140
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.26998563906175205,
|
| 994 |
+
"grad_norm": 0.9208196401596069,
|
| 995 |
+
"learning_rate": 8.752230328288314e-06,
|
| 996 |
+
"loss": 0.4768,
|
| 997 |
+
"step": 141
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"epoch": 0.27190043082814747,
|
| 1001 |
+
"grad_norm": 0.7890869975090027,
|
| 1002 |
+
"learning_rate": 8.731223971646261e-06,
|
| 1003 |
+
"loss": 0.3915,
|
| 1004 |
+
"step": 142
|
| 1005 |
+
},
|
| 1006 |
+
{
|
| 1007 |
+
"epoch": 0.27381522259454283,
|
| 1008 |
+
"grad_norm": 0.786723792552948,
|
| 1009 |
+
"learning_rate": 8.710067927254555e-06,
|
| 1010 |
+
"loss": 0.3844,
|
| 1011 |
+
"step": 143
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.27573001436093825,
|
| 1015 |
+
"grad_norm": 0.791117250919342,
|
| 1016 |
+
"learning_rate": 8.688763043842916e-06,
|
| 1017 |
+
"loss": 0.4065,
|
| 1018 |
+
"step": 144
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.27764480612733367,
|
| 1022 |
+
"grad_norm": 0.8172312378883362,
|
| 1023 |
+
"learning_rate": 8.66731017611213e-06,
|
| 1024 |
+
"loss": 0.4337,
|
| 1025 |
+
"step": 145
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"epoch": 0.2795595978937291,
|
| 1029 |
+
"grad_norm": 0.8335762023925781,
|
| 1030 |
+
"learning_rate": 8.645710184699756e-06,
|
| 1031 |
+
"loss": 0.4182,
|
| 1032 |
+
"step": 146
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"epoch": 0.28147438966012445,
|
| 1036 |
+
"grad_norm": 0.8034957051277161,
|
| 1037 |
+
"learning_rate": 8.6239639361456e-06,
|
| 1038 |
+
"loss": 0.4097,
|
| 1039 |
+
"step": 147
|
| 1040 |
+
},
|
| 1041 |
+
{
|
| 1042 |
+
"epoch": 0.28338918142651986,
|
| 1043 |
+
"grad_norm": 0.8107390403747559,
|
| 1044 |
+
"learning_rate": 8.602072302856961e-06,
|
| 1045 |
+
"loss": 0.4055,
|
| 1046 |
+
"step": 148
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"epoch": 0.2853039731929153,
|
| 1050 |
+
"grad_norm": 0.8442232012748718,
|
| 1051 |
+
"learning_rate": 8.580036163073615e-06,
|
| 1052 |
+
"loss": 0.4307,
|
| 1053 |
+
"step": 149
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.2872187649593107,
|
| 1057 |
+
"grad_norm": 0.8290265202522278,
|
| 1058 |
+
"learning_rate": 8.5578564008326e-06,
|
| 1059 |
+
"loss": 0.3892,
|
| 1060 |
+
"step": 150
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.28913355672570606,
|
| 1064 |
+
"grad_norm": 0.8057438731193542,
|
| 1065 |
+
"learning_rate": 8.535533905932739e-06,
|
| 1066 |
+
"loss": 0.4042,
|
| 1067 |
+
"step": 151
|
| 1068 |
+
},
|
| 1069 |
+
{
|
| 1070 |
+
"epoch": 0.2910483484921015,
|
| 1071 |
+
"grad_norm": 0.8582248091697693,
|
| 1072 |
+
"learning_rate": 8.513069573898944e-06,
|
| 1073 |
+
"loss": 0.4149,
|
| 1074 |
+
"step": 152
|
| 1075 |
+
},
|
| 1076 |
+
{
|
| 1077 |
+
"epoch": 0.2929631402584969,
|
| 1078 |
+
"grad_norm": 0.8402311205863953,
|
| 1079 |
+
"learning_rate": 8.490464305946296e-06,
|
| 1080 |
+
"loss": 0.4243,
|
| 1081 |
+
"step": 153
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 0.2948779320248923,
|
| 1085 |
+
"grad_norm": 0.812869668006897,
|
| 1086 |
+
"learning_rate": 8.467719008943886e-06,
|
| 1087 |
+
"loss": 0.4134,
|
| 1088 |
+
"step": 154
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"epoch": 0.2967927237912877,
|
| 1092 |
+
"grad_norm": 0.8431028723716736,
|
| 1093 |
+
"learning_rate": 8.444834595378434e-06,
|
| 1094 |
+
"loss": 0.4185,
|
| 1095 |
+
"step": 155
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.2987075155576831,
|
| 1099 |
+
"grad_norm": 0.802760899066925,
|
| 1100 |
+
"learning_rate": 8.421811983317682e-06,
|
| 1101 |
+
"loss": 0.4011,
|
| 1102 |
+
"step": 156
|
| 1103 |
+
},
|
| 1104 |
+
{
|
| 1105 |
+
"epoch": 0.3006223073240785,
|
| 1106 |
+
"grad_norm": 0.814274251461029,
|
| 1107 |
+
"learning_rate": 8.398652096373566e-06,
|
| 1108 |
+
"loss": 0.4194,
|
| 1109 |
+
"step": 157
|
| 1110 |
+
},
|
| 1111 |
+
{
|
| 1112 |
+
"epoch": 0.30253709909047394,
|
| 1113 |
+
"grad_norm": 0.8286414742469788,
|
| 1114 |
+
"learning_rate": 8.375355863665155e-06,
|
| 1115 |
+
"loss": 0.4044,
|
| 1116 |
+
"step": 158
|
| 1117 |
+
},
|
| 1118 |
+
{
|
| 1119 |
+
"epoch": 0.3044518908568693,
|
| 1120 |
+
"grad_norm": 0.8244617581367493,
|
| 1121 |
+
"learning_rate": 8.351924219781393e-06,
|
| 1122 |
+
"loss": 0.4415,
|
| 1123 |
+
"step": 159
|
| 1124 |
+
},
|
| 1125 |
+
{
|
| 1126 |
+
"epoch": 0.3063666826232647,
|
| 1127 |
+
"grad_norm": 0.8288456201553345,
|
| 1128 |
+
"learning_rate": 8.328358104743588e-06,
|
| 1129 |
+
"loss": 0.4143,
|
| 1130 |
+
"step": 160
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 0.30828147438966014,
|
| 1134 |
+
"grad_norm": 0.7895364165306091,
|
| 1135 |
+
"learning_rate": 8.304658463967705e-06,
|
| 1136 |
+
"loss": 0.4122,
|
| 1137 |
+
"step": 161
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.31019626615605556,
|
| 1141 |
+
"grad_norm": 0.7923944592475891,
|
| 1142 |
+
"learning_rate": 8.28082624822645e-06,
|
| 1143 |
+
"loss": 0.3812,
|
| 1144 |
+
"step": 162
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.3121110579224509,
|
| 1148 |
+
"grad_norm": 0.7424578666687012,
|
| 1149 |
+
"learning_rate": 8.256862413611113e-06,
|
| 1150 |
+
"loss": 0.3883,
|
| 1151 |
+
"step": 163
|
| 1152 |
+
},
|
| 1153 |
+
{
|
| 1154 |
+
"epoch": 0.31402584968884634,
|
| 1155 |
+
"grad_norm": 0.8261198401451111,
|
| 1156 |
+
"learning_rate": 8.232767921493216e-06,
|
| 1157 |
+
"loss": 0.432,
|
| 1158 |
+
"step": 164
|
| 1159 |
+
},
|
| 1160 |
+
{
|
| 1161 |
+
"epoch": 0.31594064145524176,
|
| 1162 |
+
"grad_norm": 0.8710785508155823,
|
| 1163 |
+
"learning_rate": 8.20854373848595e-06,
|
| 1164 |
+
"loss": 0.4508,
|
| 1165 |
+
"step": 165
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"epoch": 0.3178554332216372,
|
| 1169 |
+
"grad_norm": 0.7583726048469543,
|
| 1170 |
+
"learning_rate": 8.184190836405394e-06,
|
| 1171 |
+
"loss": 0.3709,
|
| 1172 |
+
"step": 166
|
| 1173 |
+
},
|
| 1174 |
+
{
|
| 1175 |
+
"epoch": 0.31977022498803254,
|
| 1176 |
+
"grad_norm": 0.7795834541320801,
|
| 1177 |
+
"learning_rate": 8.15971019223152e-06,
|
| 1178 |
+
"loss": 0.4055,
|
| 1179 |
+
"step": 167
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.32168501675442795,
|
| 1183 |
+
"grad_norm": 0.7580612897872925,
|
| 1184 |
+
"learning_rate": 8.135102788069015e-06,
|
| 1185 |
+
"loss": 0.3605,
|
| 1186 |
+
"step": 168
|
| 1187 |
+
},
|
| 1188 |
+
{
|
| 1189 |
+
"epoch": 0.3235998085208234,
|
| 1190 |
+
"grad_norm": 0.7536636590957642,
|
| 1191 |
+
"learning_rate": 8.110369611107869e-06,
|
| 1192 |
+
"loss": 0.3656,
|
| 1193 |
+
"step": 169
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"epoch": 0.3255146002872188,
|
| 1197 |
+
"grad_norm": 0.8029680252075195,
|
| 1198 |
+
"learning_rate": 8.085511653583772e-06,
|
| 1199 |
+
"loss": 0.3819,
|
| 1200 |
+
"step": 170
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 0.32742939205361415,
|
| 1204 |
+
"grad_norm": 0.8548794388771057,
|
| 1205 |
+
"learning_rate": 8.060529912738316e-06,
|
| 1206 |
+
"loss": 0.4449,
|
| 1207 |
+
"step": 171
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.3293441838200096,
|
| 1211 |
+
"grad_norm": 0.877955436706543,
|
| 1212 |
+
"learning_rate": 8.035425390778975e-06,
|
| 1213 |
+
"loss": 0.4504,
|
| 1214 |
+
"step": 172
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.331258975586405,
|
| 1218 |
+
"grad_norm": 0.8173900246620178,
|
| 1219 |
+
"learning_rate": 8.010199094838915e-06,
|
| 1220 |
+
"loss": 0.4211,
|
| 1221 |
+
"step": 173
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.3331737673528004,
|
| 1225 |
+
"grad_norm": 0.8715358972549438,
|
| 1226 |
+
"learning_rate": 7.984852036936578e-06,
|
| 1227 |
+
"loss": 0.3909,
|
| 1228 |
+
"step": 174
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 0.3350885591191958,
|
| 1232 |
+
"grad_norm": 0.8475743532180786,
|
| 1233 |
+
"learning_rate": 7.959385233935087e-06,
|
| 1234 |
+
"loss": 0.4416,
|
| 1235 |
+
"step": 175
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 0.3370033508855912,
|
| 1239 |
+
"grad_norm": 0.7483753561973572,
|
| 1240 |
+
"learning_rate": 7.933799707501448e-06,
|
| 1241 |
+
"loss": 0.351,
|
| 1242 |
+
"step": 176
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.3389181426519866,
|
| 1246 |
+
"grad_norm": 0.8065423965454102,
|
| 1247 |
+
"learning_rate": 7.908096484065569e-06,
|
| 1248 |
+
"loss": 0.4085,
|
| 1249 |
+
"step": 177
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 0.340832934418382,
|
| 1253 |
+
"grad_norm": 0.8215972185134888,
|
| 1254 |
+
"learning_rate": 7.88227659477908e-06,
|
| 1255 |
+
"loss": 0.4132,
|
| 1256 |
+
"step": 178
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.3427477261847774,
|
| 1260 |
+
"grad_norm": 0.7788512706756592,
|
| 1261 |
+
"learning_rate": 7.856341075473963e-06,
|
| 1262 |
+
"loss": 0.3828,
|
| 1263 |
+
"step": 179
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.3446625179511728,
|
| 1267 |
+
"grad_norm": 0.7943012118339539,
|
| 1268 |
+
"learning_rate": 7.830290966620997e-06,
|
| 1269 |
+
"loss": 0.3737,
|
| 1270 |
+
"step": 180
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 0.3465773097175682,
|
| 1274 |
+
"grad_norm": 0.8680888414382935,
|
| 1275 |
+
"learning_rate": 7.804127313288023e-06,
|
| 1276 |
+
"loss": 0.4019,
|
| 1277 |
+
"step": 181
|
| 1278 |
+
},
|
| 1279 |
+
{
|
| 1280 |
+
"epoch": 0.34849210148396365,
|
| 1281 |
+
"grad_norm": 0.8370754718780518,
|
| 1282 |
+
"learning_rate": 7.777851165098012e-06,
|
| 1283 |
+
"loss": 0.4202,
|
| 1284 |
+
"step": 182
|
| 1285 |
+
},
|
| 1286 |
+
{
|
| 1287 |
+
"epoch": 0.350406893250359,
|
| 1288 |
+
"grad_norm": 0.7426475882530212,
|
| 1289 |
+
"learning_rate": 7.751463576186957e-06,
|
| 1290 |
+
"loss": 0.378,
|
| 1291 |
+
"step": 183
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"epoch": 0.3523216850167544,
|
| 1295 |
+
"grad_norm": 0.827038586139679,
|
| 1296 |
+
"learning_rate": 7.72496560516159e-06,
|
| 1297 |
+
"loss": 0.415,
|
| 1298 |
+
"step": 184
|
| 1299 |
+
},
|
| 1300 |
+
{
|
| 1301 |
+
"epoch": 0.35423647678314985,
|
| 1302 |
+
"grad_norm": 0.8714759349822998,
|
| 1303 |
+
"learning_rate": 7.6983583150569e-06,
|
| 1304 |
+
"loss": 0.4204,
|
| 1305 |
+
"step": 185
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.35615126854954526,
|
| 1309 |
+
"grad_norm": 0.8127462863922119,
|
| 1310 |
+
"learning_rate": 7.671642773293506e-06,
|
| 1311 |
+
"loss": 0.3904,
|
| 1312 |
+
"step": 186
|
| 1313 |
+
},
|
| 1314 |
+
{
|
| 1315 |
+
"epoch": 0.3580660603159406,
|
| 1316 |
+
"grad_norm": 0.8972522020339966,
|
| 1317 |
+
"learning_rate": 7.644820051634813e-06,
|
| 1318 |
+
"loss": 0.4168,
|
| 1319 |
+
"step": 187
|
| 1320 |
+
},
|
| 1321 |
+
{
|
| 1322 |
+
"epoch": 0.35998085208233604,
|
| 1323 |
+
"grad_norm": 0.9051675200462341,
|
| 1324 |
+
"learning_rate": 7.617891226144034e-06,
|
| 1325 |
+
"loss": 0.4742,
|
| 1326 |
+
"step": 188
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"epoch": 0.36189564384873146,
|
| 1330 |
+
"grad_norm": 0.8041402101516724,
|
| 1331 |
+
"learning_rate": 7.59085737714101e-06,
|
| 1332 |
+
"loss": 0.3916,
|
| 1333 |
+
"step": 189
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"epoch": 0.3638104356151269,
|
| 1337 |
+
"grad_norm": 0.9296969175338745,
|
| 1338 |
+
"learning_rate": 7.563719589158874e-06,
|
| 1339 |
+
"loss": 0.4198,
|
| 1340 |
+
"step": 190
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 0.36572522738152224,
|
| 1344 |
+
"grad_norm": 0.8441433310508728,
|
| 1345 |
+
"learning_rate": 7.536478950900537e-06,
|
| 1346 |
+
"loss": 0.4094,
|
| 1347 |
+
"step": 191
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.36764001914791766,
|
| 1351 |
+
"grad_norm": 0.8146634101867676,
|
| 1352 |
+
"learning_rate": 7.509136555195025e-06,
|
| 1353 |
+
"loss": 0.398,
|
| 1354 |
+
"step": 192
|
| 1355 |
+
},
|
| 1356 |
+
{
|
| 1357 |
+
"epoch": 0.3695548109143131,
|
| 1358 |
+
"grad_norm": 0.8095076680183411,
|
| 1359 |
+
"learning_rate": 7.481693498953621e-06,
|
| 1360 |
+
"loss": 0.4121,
|
| 1361 |
+
"step": 193
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"epoch": 0.3714696026807085,
|
| 1365 |
+
"grad_norm": 0.8033435344696045,
|
| 1366 |
+
"learning_rate": 7.4541508831258695e-06,
|
| 1367 |
+
"loss": 0.3912,
|
| 1368 |
+
"step": 194
|
| 1369 |
+
},
|
| 1370 |
+
{
|
| 1371 |
+
"epoch": 0.37338439444710386,
|
| 1372 |
+
"grad_norm": 0.7945087552070618,
|
| 1373 |
+
"learning_rate": 7.4265098126554065e-06,
|
| 1374 |
+
"loss": 0.3784,
|
| 1375 |
+
"step": 195
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"epoch": 0.3752991862134993,
|
| 1379 |
+
"grad_norm": 0.858241081237793,
|
| 1380 |
+
"learning_rate": 7.3987713964356335e-06,
|
| 1381 |
+
"loss": 0.451,
|
| 1382 |
+
"step": 196
|
| 1383 |
+
},
|
| 1384 |
+
{
|
| 1385 |
+
"epoch": 0.3772139779798947,
|
| 1386 |
+
"grad_norm": 0.9208387136459351,
|
| 1387 |
+
"learning_rate": 7.370936747265226e-06,
|
| 1388 |
+
"loss": 0.4539,
|
| 1389 |
+
"step": 197
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.3791287697462901,
|
| 1393 |
+
"grad_norm": 0.775140643119812,
|
| 1394 |
+
"learning_rate": 7.3430069818035e-06,
|
| 1395 |
+
"loss": 0.3956,
|
| 1396 |
+
"step": 198
|
| 1397 |
+
},
|
| 1398 |
+
{
|
| 1399 |
+
"epoch": 0.3810435615126855,
|
| 1400 |
+
"grad_norm": 0.7926008105278015,
|
| 1401 |
+
"learning_rate": 7.314983220525604e-06,
|
| 1402 |
+
"loss": 0.4044,
|
| 1403 |
+
"step": 199
|
| 1404 |
+
},
|
| 1405 |
+
{
|
| 1406 |
+
"epoch": 0.3829583532790809,
|
| 1407 |
+
"grad_norm": 0.7891693711280823,
|
| 1408 |
+
"learning_rate": 7.286866587677576e-06,
|
| 1409 |
+
"loss": 0.3881,
|
| 1410 |
+
"step": 200
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 0.3848731450454763,
|
| 1414 |
+
"grad_norm": 0.8547941446304321,
|
| 1415 |
+
"learning_rate": 7.2586582112312355e-06,
|
| 1416 |
+
"loss": 0.4289,
|
| 1417 |
+
"step": 201
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"epoch": 0.38678793681187174,
|
| 1421 |
+
"grad_norm": 0.7894405722618103,
|
| 1422 |
+
"learning_rate": 7.230359222838939e-06,
|
| 1423 |
+
"loss": 0.3886,
|
| 1424 |
+
"step": 202
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"epoch": 0.3887027285782671,
|
| 1428 |
+
"grad_norm": 0.9024775624275208,
|
| 1429 |
+
"learning_rate": 7.201970757788172e-06,
|
| 1430 |
+
"loss": 0.4586,
|
| 1431 |
+
"step": 203
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.3906175203446625,
|
| 1435 |
+
"grad_norm": 0.7940675616264343,
|
| 1436 |
+
"learning_rate": 7.173493954956012e-06,
|
| 1437 |
+
"loss": 0.3905,
|
| 1438 |
+
"step": 204
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"epoch": 0.39253231211105793,
|
| 1442 |
+
"grad_norm": 0.8231476545333862,
|
| 1443 |
+
"learning_rate": 7.144929956763438e-06,
|
| 1444 |
+
"loss": 0.4044,
|
| 1445 |
+
"step": 205
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"epoch": 0.39444710387745335,
|
| 1449 |
+
"grad_norm": 0.9094031453132629,
|
| 1450 |
+
"learning_rate": 7.116279909129492e-06,
|
| 1451 |
+
"loss": 0.4502,
|
| 1452 |
+
"step": 206
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"epoch": 0.3963618956438487,
|
| 1456 |
+
"grad_norm": 0.843540608882904,
|
| 1457 |
+
"learning_rate": 7.087544961425317e-06,
|
| 1458 |
+
"loss": 0.4037,
|
| 1459 |
+
"step": 207
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"epoch": 0.39827668741024413,
|
| 1463 |
+
"grad_norm": 0.8074728846549988,
|
| 1464 |
+
"learning_rate": 7.058726266428042e-06,
|
| 1465 |
+
"loss": 0.405,
|
| 1466 |
+
"step": 208
|
| 1467 |
+
},
|
| 1468 |
+
{
|
| 1469 |
+
"epoch": 0.40019147917663955,
|
| 1470 |
+
"grad_norm": 0.7620254755020142,
|
| 1471 |
+
"learning_rate": 7.029824980274536e-06,
|
| 1472 |
+
"loss": 0.3727,
|
| 1473 |
+
"step": 209
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.40210627094303497,
|
| 1477 |
+
"grad_norm": 0.8311992883682251,
|
| 1478 |
+
"learning_rate": 7.0008422624150285e-06,
|
| 1479 |
+
"loss": 0.4172,
|
| 1480 |
+
"step": 210
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 0.40402106270943033,
|
| 1484 |
+
"grad_norm": 0.8231189846992493,
|
| 1485 |
+
"learning_rate": 6.971779275566593e-06,
|
| 1486 |
+
"loss": 0.4162,
|
| 1487 |
+
"step": 211
|
| 1488 |
+
},
|
| 1489 |
+
{
|
| 1490 |
+
"epoch": 0.40593585447582575,
|
| 1491 |
+
"grad_norm": 0.8115664720535278,
|
| 1492 |
+
"learning_rate": 6.9426371856665005e-06,
|
| 1493 |
+
"loss": 0.4206,
|
| 1494 |
+
"step": 212
|
| 1495 |
+
},
|
| 1496 |
+
{
|
| 1497 |
+
"epoch": 0.40785064624222117,
|
| 1498 |
+
"grad_norm": 0.8393989205360413,
|
| 1499 |
+
"learning_rate": 6.913417161825449e-06,
|
| 1500 |
+
"loss": 0.4252,
|
| 1501 |
+
"step": 213
|
| 1502 |
+
},
|
| 1503 |
+
{
|
| 1504 |
+
"epoch": 0.4097654380086166,
|
| 1505 |
+
"grad_norm": 0.8263347148895264,
|
| 1506 |
+
"learning_rate": 6.884120376280658e-06,
|
| 1507 |
+
"loss": 0.3983,
|
| 1508 |
+
"step": 214
|
| 1509 |
+
},
|
| 1510 |
+
{
|
| 1511 |
+
"epoch": 0.41168022977501195,
|
| 1512 |
+
"grad_norm": 0.834690272808075,
|
| 1513 |
+
"learning_rate": 6.85474800434884e-06,
|
| 1514 |
+
"loss": 0.4285,
|
| 1515 |
+
"step": 215
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 0.41359502154140737,
|
| 1519 |
+
"grad_norm": 0.7867841124534607,
|
| 1520 |
+
"learning_rate": 6.8253012243790565e-06,
|
| 1521 |
+
"loss": 0.4065,
|
| 1522 |
+
"step": 216
|
| 1523 |
+
},
|
| 1524 |
+
{
|
| 1525 |
+
"epoch": 0.4155098133078028,
|
| 1526 |
+
"grad_norm": 0.848772406578064,
|
| 1527 |
+
"learning_rate": 6.795781217705436e-06,
|
| 1528 |
+
"loss": 0.4529,
|
| 1529 |
+
"step": 217
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"epoch": 0.4174246050741982,
|
| 1533 |
+
"grad_norm": 0.7745128870010376,
|
| 1534 |
+
"learning_rate": 6.76618916859979e-06,
|
| 1535 |
+
"loss": 0.3631,
|
| 1536 |
+
"step": 218
|
| 1537 |
+
},
|
| 1538 |
+
{
|
| 1539 |
+
"epoch": 0.41933939684059357,
|
| 1540 |
+
"grad_norm": 0.7742826342582703,
|
| 1541 |
+
"learning_rate": 6.736526264224101e-06,
|
| 1542 |
+
"loss": 0.3886,
|
| 1543 |
+
"step": 219
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"epoch": 0.421254188606989,
|
| 1547 |
+
"grad_norm": 0.8211061358451843,
|
| 1548 |
+
"learning_rate": 6.706793694582892e-06,
|
| 1549 |
+
"loss": 0.3824,
|
| 1550 |
+
"step": 220
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 0.4231689803733844,
|
| 1554 |
+
"grad_norm": 0.824216902256012,
|
| 1555 |
+
"learning_rate": 6.676992652475487e-06,
|
| 1556 |
+
"loss": 0.4104,
|
| 1557 |
+
"step": 221
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 0.4250837721397798,
|
| 1561 |
+
"grad_norm": 0.7848684191703796,
|
| 1562 |
+
"learning_rate": 6.647124333448165e-06,
|
| 1563 |
+
"loss": 0.3711,
|
| 1564 |
+
"step": 222
|
| 1565 |
+
},
|
| 1566 |
+
{
|
| 1567 |
+
"epoch": 0.4269985639061752,
|
| 1568 |
+
"grad_norm": 0.8798813819885254,
|
| 1569 |
+
"learning_rate": 6.617189935746191e-06,
|
| 1570 |
+
"loss": 0.4083,
|
| 1571 |
+
"step": 223
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"epoch": 0.4289133556725706,
|
| 1575 |
+
"grad_norm": 0.8364046216011047,
|
| 1576 |
+
"learning_rate": 6.587190660265752e-06,
|
| 1577 |
+
"loss": 0.4248,
|
| 1578 |
+
"step": 224
|
| 1579 |
+
},
|
| 1580 |
+
{
|
| 1581 |
+
"epoch": 0.430828147438966,
|
| 1582 |
+
"grad_norm": 0.8487688899040222,
|
| 1583 |
+
"learning_rate": 6.55712771050577e-06,
|
| 1584 |
+
"loss": 0.4148,
|
| 1585 |
+
"step": 225
|
| 1586 |
+
},
|
| 1587 |
+
{
|
| 1588 |
+
"epoch": 0.43274293920536144,
|
| 1589 |
+
"grad_norm": 0.7809548377990723,
|
| 1590 |
+
"learning_rate": 6.52700229251963e-06,
|
| 1591 |
+
"loss": 0.393,
|
| 1592 |
+
"step": 226
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 0.4346577309717568,
|
| 1596 |
+
"grad_norm": 0.9122399091720581,
|
| 1597 |
+
"learning_rate": 6.496815614866792e-06,
|
| 1598 |
+
"loss": 0.4037,
|
| 1599 |
+
"step": 227
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.4365725227381522,
|
| 1603 |
+
"grad_norm": 0.8720874786376953,
|
| 1604 |
+
"learning_rate": 6.466568888564303e-06,
|
| 1605 |
+
"loss": 0.4581,
|
| 1606 |
+
"step": 228
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 0.43848731450454764,
|
| 1610 |
+
"grad_norm": 0.8561883568763733,
|
| 1611 |
+
"learning_rate": 6.436263327038225e-06,
|
| 1612 |
+
"loss": 0.4046,
|
| 1613 |
+
"step": 229
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 0.44040210627094306,
|
| 1617 |
+
"grad_norm": 0.8326470255851746,
|
| 1618 |
+
"learning_rate": 6.405900146074941e-06,
|
| 1619 |
+
"loss": 0.3882,
|
| 1620 |
+
"step": 230
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.4423168980373384,
|
| 1624 |
+
"grad_norm": 0.8377370238304138,
|
| 1625 |
+
"learning_rate": 6.375480563772391e-06,
|
| 1626 |
+
"loss": 0.4368,
|
| 1627 |
+
"step": 231
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 0.44423168980373384,
|
| 1631 |
+
"grad_norm": 0.7525307536125183,
|
| 1632 |
+
"learning_rate": 6.3450058004912004e-06,
|
| 1633 |
+
"loss": 0.3646,
|
| 1634 |
+
"step": 232
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.44614648157012926,
|
| 1638 |
+
"grad_norm": 0.8400733470916748,
|
| 1639 |
+
"learning_rate": 6.314477078805724e-06,
|
| 1640 |
+
"loss": 0.4002,
|
| 1641 |
+
"step": 233
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.4480612733365247,
|
| 1645 |
+
"grad_norm": 0.7522779107093811,
|
| 1646 |
+
"learning_rate": 6.283895623454997e-06,
|
| 1647 |
+
"loss": 0.3865,
|
| 1648 |
+
"step": 234
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 0.44997606510292004,
|
| 1652 |
+
"grad_norm": 0.8109682202339172,
|
| 1653 |
+
"learning_rate": 6.2532626612936035e-06,
|
| 1654 |
+
"loss": 0.4089,
|
| 1655 |
+
"step": 235
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 0.45189085686931546,
|
| 1659 |
+
"grad_norm": 0.8554459810256958,
|
| 1660 |
+
"learning_rate": 6.2225794212424565e-06,
|
| 1661 |
+
"loss": 0.4401,
|
| 1662 |
+
"step": 236
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 0.4538056486357109,
|
| 1666 |
+
"grad_norm": 0.8335216641426086,
|
| 1667 |
+
"learning_rate": 6.191847134239496e-06,
|
| 1668 |
+
"loss": 0.3995,
|
| 1669 |
+
"step": 237
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 0.4557204404021063,
|
| 1673 |
+
"grad_norm": 0.8365229964256287,
|
| 1674 |
+
"learning_rate": 6.161067033190311e-06,
|
| 1675 |
+
"loss": 0.402,
|
| 1676 |
+
"step": 238
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 0.45763523216850166,
|
| 1680 |
+
"grad_norm": 0.7727139592170715,
|
| 1681 |
+
"learning_rate": 6.130240352918675e-06,
|
| 1682 |
+
"loss": 0.3976,
|
| 1683 |
+
"step": 239
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.4595500239348971,
|
| 1687 |
+
"grad_norm": 0.8664788603782654,
|
| 1688 |
+
"learning_rate": 6.0993683301170046e-06,
|
| 1689 |
+
"loss": 0.4347,
|
| 1690 |
+
"step": 240
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 0.4614648157012925,
|
| 1694 |
+
"grad_norm": 0.7788071632385254,
|
| 1695 |
+
"learning_rate": 6.068452203296754e-06,
|
| 1696 |
+
"loss": 0.3849,
|
| 1697 |
+
"step": 241
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 0.4633796074676879,
|
| 1701 |
+
"grad_norm": 0.7709981203079224,
|
| 1702 |
+
"learning_rate": 6.0374932127387234e-06,
|
| 1703 |
+
"loss": 0.394,
|
| 1704 |
+
"step": 242
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 0.4652943992340833,
|
| 1708 |
+
"grad_norm": 0.8584897518157959,
|
| 1709 |
+
"learning_rate": 6.006492600443301e-06,
|
| 1710 |
+
"loss": 0.4013,
|
| 1711 |
+
"step": 243
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 0.4672091910004787,
|
| 1715 |
+
"grad_norm": 0.8466057777404785,
|
| 1716 |
+
"learning_rate": 5.975451610080643e-06,
|
| 1717 |
+
"loss": 0.382,
|
| 1718 |
+
"step": 244
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 0.4691239827668741,
|
| 1722 |
+
"grad_norm": 0.8147895336151123,
|
| 1723 |
+
"learning_rate": 5.944371486940772e-06,
|
| 1724 |
+
"loss": 0.3925,
|
| 1725 |
+
"step": 245
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 0.47103877453326953,
|
| 1729 |
+
"grad_norm": 0.9486895203590393,
|
| 1730 |
+
"learning_rate": 5.913253477883629e-06,
|
| 1731 |
+
"loss": 0.438,
|
| 1732 |
+
"step": 246
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 0.4729535662996649,
|
| 1736 |
+
"grad_norm": 0.8018326163291931,
|
| 1737 |
+
"learning_rate": 5.882098831289044e-06,
|
| 1738 |
+
"loss": 0.3902,
|
| 1739 |
+
"step": 247
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 0.4748683580660603,
|
| 1743 |
+
"grad_norm": 0.7979179620742798,
|
| 1744 |
+
"learning_rate": 5.850908797006656e-06,
|
| 1745 |
+
"loss": 0.4001,
|
| 1746 |
+
"step": 248
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 0.47678314983245573,
|
| 1750 |
+
"grad_norm": 0.8484137058258057,
|
| 1751 |
+
"learning_rate": 5.819684626305776e-06,
|
| 1752 |
+
"loss": 0.4393,
|
| 1753 |
+
"step": 249
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 0.47869794159885115,
|
| 1757 |
+
"grad_norm": 0.812910795211792,
|
| 1758 |
+
"learning_rate": 5.788427571825186e-06,
|
| 1759 |
+
"loss": 0.3939,
|
| 1760 |
+
"step": 250
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 0.4806127333652465,
|
| 1764 |
+
"grad_norm": 0.8852983117103577,
|
| 1765 |
+
"learning_rate": 5.757138887522884e-06,
|
| 1766 |
+
"loss": 0.4113,
|
| 1767 |
+
"step": 251
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 0.48252752513164193,
|
| 1771 |
+
"grad_norm": 0.8375086188316345,
|
| 1772 |
+
"learning_rate": 5.725819828625782e-06,
|
| 1773 |
+
"loss": 0.4132,
|
| 1774 |
+
"step": 252
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 0.48444231689803735,
|
| 1778 |
+
"grad_norm": 0.7939973473548889,
|
| 1779 |
+
"learning_rate": 5.694471651579346e-06,
|
| 1780 |
+
"loss": 0.4003,
|
| 1781 |
+
"step": 253
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 0.48635710866443277,
|
| 1785 |
+
"grad_norm": 0.7971997857093811,
|
| 1786 |
+
"learning_rate": 5.663095613997196e-06,
|
| 1787 |
+
"loss": 0.3868,
|
| 1788 |
+
"step": 254
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 0.48827190043082813,
|
| 1792 |
+
"grad_norm": 0.778202474117279,
|
| 1793 |
+
"learning_rate": 5.631692974610647e-06,
|
| 1794 |
+
"loss": 0.3761,
|
| 1795 |
+
"step": 255
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 0.49018669219722355,
|
| 1799 |
+
"grad_norm": 0.8734095692634583,
|
| 1800 |
+
"learning_rate": 5.600264993218215e-06,
|
| 1801 |
+
"loss": 0.4105,
|
| 1802 |
+
"step": 256
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 0.49210148396361897,
|
| 1806 |
+
"grad_norm": 0.8606191873550415,
|
| 1807 |
+
"learning_rate": 5.568812930635076e-06,
|
| 1808 |
+
"loss": 0.396,
|
| 1809 |
+
"step": 257
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 0.4940162757300144,
|
| 1813 |
+
"grad_norm": 0.8600229024887085,
|
| 1814 |
+
"learning_rate": 5.537338048642487e-06,
|
| 1815 |
+
"loss": 0.4379,
|
| 1816 |
+
"step": 258
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 0.49593106749640975,
|
| 1820 |
+
"grad_norm": 0.8452302813529968,
|
| 1821 |
+
"learning_rate": 5.505841609937162e-06,
|
| 1822 |
+
"loss": 0.3802,
|
| 1823 |
+
"step": 259
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 0.49784585926280517,
|
| 1827 |
+
"grad_norm": 0.7426350712776184,
|
| 1828 |
+
"learning_rate": 5.474324878080623e-06,
|
| 1829 |
+
"loss": 0.335,
|
| 1830 |
+
"step": 260
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 0.4997606510292006,
|
| 1834 |
+
"grad_norm": 0.8211168050765991,
|
| 1835 |
+
"learning_rate": 5.4427891174485014e-06,
|
| 1836 |
+
"loss": 0.387,
|
| 1837 |
+
"step": 261
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 0.501675442795596,
|
| 1841 |
+
"grad_norm": 0.855265200138092,
|
| 1842 |
+
"learning_rate": 5.41123559317982e-06,
|
| 1843 |
+
"loss": 0.4148,
|
| 1844 |
+
"step": 262
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 0.5035902345619914,
|
| 1848 |
+
"grad_norm": 0.8395704030990601,
|
| 1849 |
+
"learning_rate": 5.379665571126232e-06,
|
| 1850 |
+
"loss": 0.3774,
|
| 1851 |
+
"step": 263
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 0.5055050263283868,
|
| 1855 |
+
"grad_norm": 0.7473710775375366,
|
| 1856 |
+
"learning_rate": 5.348080317801244e-06,
|
| 1857 |
+
"loss": 0.3672,
|
| 1858 |
+
"step": 264
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 0.5074198180947822,
|
| 1862 |
+
"grad_norm": 0.9001408815383911,
|
| 1863 |
+
"learning_rate": 5.316481100329408e-06,
|
| 1864 |
+
"loss": 0.4314,
|
| 1865 |
+
"step": 265
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 0.5093346098611776,
|
| 1869 |
+
"grad_norm": 0.8201159834861755,
|
| 1870 |
+
"learning_rate": 5.284869186395478e-06,
|
| 1871 |
+
"loss": 0.4166,
|
| 1872 |
+
"step": 266
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 0.511249401627573,
|
| 1876 |
+
"grad_norm": 0.8213218450546265,
|
| 1877 |
+
"learning_rate": 5.253245844193564e-06,
|
| 1878 |
+
"loss": 0.4087,
|
| 1879 |
+
"step": 267
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 0.5131641933939685,
|
| 1883 |
+
"grad_norm": 0.8229288458824158,
|
| 1884 |
+
"learning_rate": 5.22161234237625e-06,
|
| 1885 |
+
"loss": 0.4013,
|
| 1886 |
+
"step": 268
|
| 1887 |
+
},
|
| 1888 |
+
{
|
| 1889 |
+
"epoch": 0.5150789851603638,
|
| 1890 |
+
"grad_norm": 0.8140142560005188,
|
| 1891 |
+
"learning_rate": 5.189969950003697e-06,
|
| 1892 |
+
"loss": 0.4021,
|
| 1893 |
+
"step": 269
|
| 1894 |
+
},
|
| 1895 |
+
{
|
| 1896 |
+
"epoch": 0.5169937769267592,
|
| 1897 |
+
"grad_norm": 0.8901419043540955,
|
| 1898 |
+
"learning_rate": 5.158319936492736e-06,
|
| 1899 |
+
"loss": 0.427,
|
| 1900 |
+
"step": 270
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 0.5189085686931546,
|
| 1904 |
+
"grad_norm": 0.7799863219261169,
|
| 1905 |
+
"learning_rate": 5.12666357156594e-06,
|
| 1906 |
+
"loss": 0.3872,
|
| 1907 |
+
"step": 271
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"epoch": 0.52082336045955,
|
| 1911 |
+
"grad_norm": 0.8645293712615967,
|
| 1912 |
+
"learning_rate": 5.0950021252006845e-06,
|
| 1913 |
+
"loss": 0.4287,
|
| 1914 |
+
"step": 272
|
| 1915 |
+
},
|
| 1916 |
+
{
|
| 1917 |
+
"epoch": 0.5227381522259454,
|
| 1918 |
+
"grad_norm": 0.8488345146179199,
|
| 1919 |
+
"learning_rate": 5.063336867578201e-06,
|
| 1920 |
+
"loss": 0.4402,
|
| 1921 |
+
"step": 273
|
| 1922 |
+
},
|
| 1923 |
+
{
|
| 1924 |
+
"epoch": 0.5246529439923409,
|
| 1925 |
+
"grad_norm": 0.8312931060791016,
|
| 1926 |
+
"learning_rate": 5.0316690690326175e-06,
|
| 1927 |
+
"loss": 0.3858,
|
| 1928 |
+
"step": 274
|
| 1929 |
+
},
|
| 1930 |
+
{
|
| 1931 |
+
"epoch": 0.5265677357587363,
|
| 1932 |
+
"grad_norm": 0.8159146308898926,
|
| 1933 |
+
"learning_rate": 5e-06,
|
| 1934 |
+
"loss": 0.3707,
|
| 1935 |
+
"step": 275
|
| 1936 |
+
},
|
| 1937 |
+
{
|
| 1938 |
+
"epoch": 0.5284825275251317,
|
| 1939 |
+
"grad_norm": 0.8223234415054321,
|
| 1940 |
+
"learning_rate": 4.9683309309673825e-06,
|
| 1941 |
+
"loss": 0.3836,
|
| 1942 |
+
"step": 276
|
| 1943 |
+
},
|
| 1944 |
+
{
|
| 1945 |
+
"epoch": 0.530397319291527,
|
| 1946 |
+
"grad_norm": 0.7489441633224487,
|
| 1947 |
+
"learning_rate": 4.936663132421801e-06,
|
| 1948 |
+
"loss": 0.3666,
|
| 1949 |
+
"step": 277
|
| 1950 |
+
},
|
| 1951 |
+
{
|
| 1952 |
+
"epoch": 0.5323121110579224,
|
| 1953 |
+
"grad_norm": 0.7627151012420654,
|
| 1954 |
+
"learning_rate": 4.904997874799316e-06,
|
| 1955 |
+
"loss": 0.3829,
|
| 1956 |
+
"step": 278
|
| 1957 |
+
},
|
| 1958 |
+
{
|
| 1959 |
+
"epoch": 0.5342269028243178,
|
| 1960 |
+
"grad_norm": 0.8040624856948853,
|
| 1961 |
+
"learning_rate": 4.873336428434062e-06,
|
| 1962 |
+
"loss": 0.3864,
|
| 1963 |
+
"step": 279
|
| 1964 |
+
},
|
| 1965 |
+
{
|
| 1966 |
+
"epoch": 0.5361416945907133,
|
| 1967 |
+
"grad_norm": 0.8104556798934937,
|
| 1968 |
+
"learning_rate": 4.841680063507265e-06,
|
| 1969 |
+
"loss": 0.4226,
|
| 1970 |
+
"step": 280
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 0.5380564863571087,
|
| 1974 |
+
"grad_norm": 0.8425339460372925,
|
| 1975 |
+
"learning_rate": 4.8100300499963045e-06,
|
| 1976 |
+
"loss": 0.4126,
|
| 1977 |
+
"step": 281
|
| 1978 |
+
},
|
| 1979 |
+
{
|
| 1980 |
+
"epoch": 0.5399712781235041,
|
| 1981 |
+
"grad_norm": 0.7799105644226074,
|
| 1982 |
+
"learning_rate": 4.778387657623751e-06,
|
| 1983 |
+
"loss": 0.3768,
|
| 1984 |
+
"step": 282
|
| 1985 |
+
},
|
| 1986 |
+
{
|
| 1987 |
+
"epoch": 0.5418860698898995,
|
| 1988 |
+
"grad_norm": 0.8573192954063416,
|
| 1989 |
+
"learning_rate": 4.746754155806437e-06,
|
| 1990 |
+
"loss": 0.451,
|
| 1991 |
+
"step": 283
|
| 1992 |
+
},
|
| 1993 |
+
{
|
| 1994 |
+
"epoch": 0.5438008616562949,
|
| 1995 |
+
"grad_norm": 0.8153167366981506,
|
| 1996 |
+
"learning_rate": 4.715130813604522e-06,
|
| 1997 |
+
"loss": 0.3968,
|
| 1998 |
+
"step": 284
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"epoch": 0.5457156534226902,
|
| 2002 |
+
"grad_norm": 0.8407420516014099,
|
| 2003 |
+
"learning_rate": 4.683518899670594e-06,
|
| 2004 |
+
"loss": 0.392,
|
| 2005 |
+
"step": 285
|
| 2006 |
+
},
|
| 2007 |
+
{
|
| 2008 |
+
"epoch": 0.5476304451890857,
|
| 2009 |
+
"grad_norm": 0.8508596420288086,
|
| 2010 |
+
"learning_rate": 4.651919682198756e-06,
|
| 2011 |
+
"loss": 0.3945,
|
| 2012 |
+
"step": 286
|
| 2013 |
+
},
|
| 2014 |
+
{
|
| 2015 |
+
"epoch": 0.5495452369554811,
|
| 2016 |
+
"grad_norm": 0.8226655721664429,
|
| 2017 |
+
"learning_rate": 4.62033442887377e-06,
|
| 2018 |
+
"loss": 0.3993,
|
| 2019 |
+
"step": 287
|
| 2020 |
+
},
|
| 2021 |
+
{
|
| 2022 |
+
"epoch": 0.5514600287218765,
|
| 2023 |
+
"grad_norm": 0.8097487688064575,
|
| 2024 |
+
"learning_rate": 4.588764406820181e-06,
|
| 2025 |
+
"loss": 0.4303,
|
| 2026 |
+
"step": 288
|
| 2027 |
+
},
|
| 2028 |
+
{
|
| 2029 |
+
"epoch": 0.5533748204882719,
|
| 2030 |
+
"grad_norm": 0.7493626475334167,
|
| 2031 |
+
"learning_rate": 4.5572108825515e-06,
|
| 2032 |
+
"loss": 0.362,
|
| 2033 |
+
"step": 289
|
| 2034 |
+
},
|
| 2035 |
+
{
|
| 2036 |
+
"epoch": 0.5552896122546673,
|
| 2037 |
+
"grad_norm": 0.7713648676872253,
|
| 2038 |
+
"learning_rate": 4.5256751219193784e-06,
|
| 2039 |
+
"loss": 0.3906,
|
| 2040 |
+
"step": 290
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 0.5572044040210627,
|
| 2044 |
+
"grad_norm": 0.8310909867286682,
|
| 2045 |
+
"learning_rate": 4.49415839006284e-06,
|
| 2046 |
+
"loss": 0.4041,
|
| 2047 |
+
"step": 291
|
| 2048 |
+
},
|
| 2049 |
+
{
|
| 2050 |
+
"epoch": 0.5591191957874582,
|
| 2051 |
+
"grad_norm": 0.8170990943908691,
|
| 2052 |
+
"learning_rate": 4.462661951357515e-06,
|
| 2053 |
+
"loss": 0.4054,
|
| 2054 |
+
"step": 292
|
| 2055 |
+
},
|
| 2056 |
+
{
|
| 2057 |
+
"epoch": 0.5610339875538535,
|
| 2058 |
+
"grad_norm": 0.862368643283844,
|
| 2059 |
+
"learning_rate": 4.431187069364927e-06,
|
| 2060 |
+
"loss": 0.4107,
|
| 2061 |
+
"step": 293
|
| 2062 |
+
},
|
| 2063 |
+
{
|
| 2064 |
+
"epoch": 0.5629487793202489,
|
| 2065 |
+
"grad_norm": 0.8069734573364258,
|
| 2066 |
+
"learning_rate": 4.3997350067817866e-06,
|
| 2067 |
+
"loss": 0.3939,
|
| 2068 |
+
"step": 294
|
| 2069 |
+
},
|
| 2070 |
+
{
|
| 2071 |
+
"epoch": 0.5648635710866443,
|
| 2072 |
+
"grad_norm": 0.8641298413276672,
|
| 2073 |
+
"learning_rate": 4.368307025389355e-06,
|
| 2074 |
+
"loss": 0.4182,
|
| 2075 |
+
"step": 295
|
| 2076 |
+
},
|
| 2077 |
+
{
|
| 2078 |
+
"epoch": 0.5667783628530397,
|
| 2079 |
+
"grad_norm": 0.8040350079536438,
|
| 2080 |
+
"learning_rate": 4.336904386002805e-06,
|
| 2081 |
+
"loss": 0.3863,
|
| 2082 |
+
"step": 296
|
| 2083 |
+
},
|
| 2084 |
+
{
|
| 2085 |
+
"epoch": 0.5686931546194351,
|
| 2086 |
+
"grad_norm": 0.8322636485099792,
|
| 2087 |
+
"learning_rate": 4.3055283484206565e-06,
|
| 2088 |
+
"loss": 0.4228,
|
| 2089 |
+
"step": 297
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"epoch": 0.5706079463858306,
|
| 2093 |
+
"grad_norm": 0.7918723821640015,
|
| 2094 |
+
"learning_rate": 4.27418017137422e-06,
|
| 2095 |
+
"loss": 0.3749,
|
| 2096 |
+
"step": 298
|
| 2097 |
+
},
|
| 2098 |
+
{
|
| 2099 |
+
"epoch": 0.572522738152226,
|
| 2100 |
+
"grad_norm": 0.7878877520561218,
|
| 2101 |
+
"learning_rate": 4.2428611124771184e-06,
|
| 2102 |
+
"loss": 0.3716,
|
| 2103 |
+
"step": 299
|
| 2104 |
+
},
|
| 2105 |
+
{
|
| 2106 |
+
"epoch": 0.5744375299186214,
|
| 2107 |
+
"grad_norm": 0.7795090675354004,
|
| 2108 |
+
"learning_rate": 4.211572428174816e-06,
|
| 2109 |
+
"loss": 0.3614,
|
| 2110 |
+
"step": 300
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 0.5763523216850167,
|
| 2114 |
+
"grad_norm": 0.8057751655578613,
|
| 2115 |
+
"learning_rate": 4.180315373694225e-06,
|
| 2116 |
+
"loss": 0.4015,
|
| 2117 |
+
"step": 301
|
| 2118 |
+
},
|
| 2119 |
+
{
|
| 2120 |
+
"epoch": 0.5782671134514121,
|
| 2121 |
+
"grad_norm": 0.8051212430000305,
|
| 2122 |
+
"learning_rate": 4.149091202993345e-06,
|
| 2123 |
+
"loss": 0.3588,
|
| 2124 |
+
"step": 302
|
| 2125 |
+
},
|
| 2126 |
+
{
|
| 2127 |
+
"epoch": 0.5801819052178075,
|
| 2128 |
+
"grad_norm": 0.8171245455741882,
|
| 2129 |
+
"learning_rate": 4.11790116871096e-06,
|
| 2130 |
+
"loss": 0.417,
|
| 2131 |
+
"step": 303
|
| 2132 |
+
},
|
| 2133 |
+
{
|
| 2134 |
+
"epoch": 0.582096696984203,
|
| 2135 |
+
"grad_norm": 0.8987613320350647,
|
| 2136 |
+
"learning_rate": 4.086746522116372e-06,
|
| 2137 |
+
"loss": 0.4536,
|
| 2138 |
+
"step": 304
|
| 2139 |
+
},
|
| 2140 |
+
{
|
| 2141 |
+
"epoch": 0.5840114887505984,
|
| 2142 |
+
"grad_norm": 0.7471241354942322,
|
| 2143 |
+
"learning_rate": 4.055628513059231e-06,
|
| 2144 |
+
"loss": 0.3866,
|
| 2145 |
+
"step": 305
|
| 2146 |
+
},
|
| 2147 |
+
{
|
| 2148 |
+
"epoch": 0.5859262805169938,
|
| 2149 |
+
"grad_norm": 0.828220009803772,
|
| 2150 |
+
"learning_rate": 4.02454838991936e-06,
|
| 2151 |
+
"loss": 0.3778,
|
| 2152 |
+
"step": 306
|
| 2153 |
+
},
|
| 2154 |
+
{
|
| 2155 |
+
"epoch": 0.5878410722833892,
|
| 2156 |
+
"grad_norm": 0.8547297120094299,
|
| 2157 |
+
"learning_rate": 3.993507399556699e-06,
|
| 2158 |
+
"loss": 0.4308,
|
| 2159 |
+
"step": 307
|
| 2160 |
+
},
|
| 2161 |
+
{
|
| 2162 |
+
"epoch": 0.5897558640497846,
|
| 2163 |
+
"grad_norm": 0.8033933043479919,
|
| 2164 |
+
"learning_rate": 3.962506787261278e-06,
|
| 2165 |
+
"loss": 0.3993,
|
| 2166 |
+
"step": 308
|
| 2167 |
+
},
|
| 2168 |
+
{
|
| 2169 |
+
"epoch": 0.59167065581618,
|
| 2170 |
+
"grad_norm": 0.7902593612670898,
|
| 2171 |
+
"learning_rate": 3.931547796703245e-06,
|
| 2172 |
+
"loss": 0.3794,
|
| 2173 |
+
"step": 309
|
| 2174 |
+
},
|
| 2175 |
+
{
|
| 2176 |
+
"epoch": 0.5935854475825754,
|
| 2177 |
+
"grad_norm": 0.8059898018836975,
|
| 2178 |
+
"learning_rate": 3.900631669882996e-06,
|
| 2179 |
+
"loss": 0.3936,
|
| 2180 |
+
"step": 310
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 0.5955002393489708,
|
| 2184 |
+
"grad_norm": 0.8180558681488037,
|
| 2185 |
+
"learning_rate": 3.869759647081326e-06,
|
| 2186 |
+
"loss": 0.3695,
|
| 2187 |
+
"step": 311
|
| 2188 |
+
},
|
| 2189 |
+
{
|
| 2190 |
+
"epoch": 0.5974150311153662,
|
| 2191 |
+
"grad_norm": 0.7877086400985718,
|
| 2192 |
+
"learning_rate": 3.83893296680969e-06,
|
| 2193 |
+
"loss": 0.3838,
|
| 2194 |
+
"step": 312
|
| 2195 |
+
},
|
| 2196 |
+
{
|
| 2197 |
+
"epoch": 0.5993298228817616,
|
| 2198 |
+
"grad_norm": 0.7896502614021301,
|
| 2199 |
+
"learning_rate": 3.8081528657605045e-06,
|
| 2200 |
+
"loss": 0.376,
|
| 2201 |
+
"step": 313
|
| 2202 |
+
},
|
| 2203 |
+
{
|
| 2204 |
+
"epoch": 0.601244614648157,
|
| 2205 |
+
"grad_norm": 0.7718030214309692,
|
| 2206 |
+
"learning_rate": 3.7774205787575455e-06,
|
| 2207 |
+
"loss": 0.388,
|
| 2208 |
+
"step": 314
|
| 2209 |
+
},
|
| 2210 |
+
{
|
| 2211 |
+
"epoch": 0.6031594064145525,
|
| 2212 |
+
"grad_norm": 0.8119059205055237,
|
| 2213 |
+
"learning_rate": 3.7467373387063973e-06,
|
| 2214 |
+
"loss": 0.4241,
|
| 2215 |
+
"step": 315
|
| 2216 |
+
},
|
| 2217 |
+
{
|
| 2218 |
+
"epoch": 0.6050741981809479,
|
| 2219 |
+
"grad_norm": 0.8423107862472534,
|
| 2220 |
+
"learning_rate": 3.7161043765450044e-06,
|
| 2221 |
+
"loss": 0.4101,
|
| 2222 |
+
"step": 316
|
| 2223 |
+
},
|
| 2224 |
+
{
|
| 2225 |
+
"epoch": 0.6069889899473432,
|
| 2226 |
+
"grad_norm": 0.8189786076545715,
|
| 2227 |
+
"learning_rate": 3.685522921194276e-06,
|
| 2228 |
+
"loss": 0.3777,
|
| 2229 |
+
"step": 317
|
| 2230 |
+
},
|
| 2231 |
+
{
|
| 2232 |
+
"epoch": 0.6089037817137386,
|
| 2233 |
+
"grad_norm": 0.8153043389320374,
|
| 2234 |
+
"learning_rate": 3.6549941995088012e-06,
|
| 2235 |
+
"loss": 0.3983,
|
| 2236 |
+
"step": 318
|
| 2237 |
+
},
|
| 2238 |
+
{
|
| 2239 |
+
"epoch": 0.610818573480134,
|
| 2240 |
+
"grad_norm": 0.827060341835022,
|
| 2241 |
+
"learning_rate": 3.62451943622761e-06,
|
| 2242 |
+
"loss": 0.4257,
|
| 2243 |
+
"step": 319
|
| 2244 |
+
},
|
| 2245 |
+
{
|
| 2246 |
+
"epoch": 0.6127333652465294,
|
| 2247 |
+
"grad_norm": 0.7198632955551147,
|
| 2248 |
+
"learning_rate": 3.5940998539250614e-06,
|
| 2249 |
+
"loss": 0.3542,
|
| 2250 |
+
"step": 320
|
| 2251 |
+
},
|
| 2252 |
+
{
|
| 2253 |
+
"epoch": 0.6146481570129249,
|
| 2254 |
+
"grad_norm": 0.7778761386871338,
|
| 2255 |
+
"learning_rate": 3.5637366729617766e-06,
|
| 2256 |
+
"loss": 0.3735,
|
| 2257 |
+
"step": 321
|
| 2258 |
+
},
|
| 2259 |
+
{
|
| 2260 |
+
"epoch": 0.6165629487793203,
|
| 2261 |
+
"grad_norm": 0.8497153520584106,
|
| 2262 |
+
"learning_rate": 3.5334311114356983e-06,
|
| 2263 |
+
"loss": 0.4195,
|
| 2264 |
+
"step": 322
|
| 2265 |
+
},
|
| 2266 |
+
{
|
| 2267 |
+
"epoch": 0.6184777405457157,
|
| 2268 |
+
"grad_norm": 0.8232434988021851,
|
| 2269 |
+
"learning_rate": 3.5031843851332105e-06,
|
| 2270 |
+
"loss": 0.4169,
|
| 2271 |
+
"step": 323
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"epoch": 0.6203925323121111,
|
| 2275 |
+
"grad_norm": 0.8235202431678772,
|
| 2276 |
+
"learning_rate": 3.472997707480372e-06,
|
| 2277 |
+
"loss": 0.3956,
|
| 2278 |
+
"step": 324
|
| 2279 |
+
},
|
| 2280 |
+
{
|
| 2281 |
+
"epoch": 0.6223073240785064,
|
| 2282 |
+
"grad_norm": 0.8811324834823608,
|
| 2283 |
+
"learning_rate": 3.4428722894942313e-06,
|
| 2284 |
+
"loss": 0.4206,
|
| 2285 |
+
"step": 325
|
| 2286 |
+
},
|
| 2287 |
+
{
|
| 2288 |
+
"epoch": 0.6242221158449018,
|
| 2289 |
+
"grad_norm": 0.8529208898544312,
|
| 2290 |
+
"learning_rate": 3.4128093397342508e-06,
|
| 2291 |
+
"loss": 0.4403,
|
| 2292 |
+
"step": 326
|
| 2293 |
+
},
|
| 2294 |
+
{
|
| 2295 |
+
"epoch": 0.6261369076112973,
|
| 2296 |
+
"grad_norm": 0.7988664507865906,
|
| 2297 |
+
"learning_rate": 3.3828100642538097e-06,
|
| 2298 |
+
"loss": 0.3809,
|
| 2299 |
+
"step": 327
|
| 2300 |
+
},
|
| 2301 |
+
{
|
| 2302 |
+
"epoch": 0.6280516993776927,
|
| 2303 |
+
"grad_norm": 0.7760090231895447,
|
| 2304 |
+
"learning_rate": 3.352875666551838e-06,
|
| 2305 |
+
"loss": 0.3685,
|
| 2306 |
+
"step": 328
|
| 2307 |
+
},
|
| 2308 |
+
{
|
| 2309 |
+
"epoch": 0.6299664911440881,
|
| 2310 |
+
"grad_norm": 0.7803361415863037,
|
| 2311 |
+
"learning_rate": 3.323007347524515e-06,
|
| 2312 |
+
"loss": 0.4008,
|
| 2313 |
+
"step": 329
|
| 2314 |
+
},
|
| 2315 |
+
{
|
| 2316 |
+
"epoch": 0.6318812829104835,
|
| 2317 |
+
"grad_norm": 0.7256073951721191,
|
| 2318 |
+
"learning_rate": 3.2932063054171108e-06,
|
| 2319 |
+
"loss": 0.3853,
|
| 2320 |
+
"step": 330
|
| 2321 |
+
},
|
| 2322 |
+
{
|
| 2323 |
+
"epoch": 0.6337960746768789,
|
| 2324 |
+
"grad_norm": 0.7642714381217957,
|
| 2325 |
+
"learning_rate": 3.2634737357758994e-06,
|
| 2326 |
+
"loss": 0.3815,
|
| 2327 |
+
"step": 331
|
| 2328 |
+
},
|
| 2329 |
+
{
|
| 2330 |
+
"epoch": 0.6357108664432743,
|
| 2331 |
+
"grad_norm": 0.7734025716781616,
|
| 2332 |
+
"learning_rate": 3.2338108314002102e-06,
|
| 2333 |
+
"loss": 0.3819,
|
| 2334 |
+
"step": 332
|
| 2335 |
+
},
|
| 2336 |
+
{
|
| 2337 |
+
"epoch": 0.6376256582096697,
|
| 2338 |
+
"grad_norm": 0.7310645580291748,
|
| 2339 |
+
"learning_rate": 3.204218782294565e-06,
|
| 2340 |
+
"loss": 0.3691,
|
| 2341 |
+
"step": 333
|
| 2342 |
+
},
|
| 2343 |
+
{
|
| 2344 |
+
"epoch": 0.6395404499760651,
|
| 2345 |
+
"grad_norm": 0.7916032671928406,
|
| 2346 |
+
"learning_rate": 3.174698775620947e-06,
|
| 2347 |
+
"loss": 0.396,
|
| 2348 |
+
"step": 334
|
| 2349 |
+
},
|
| 2350 |
+
{
|
| 2351 |
+
"epoch": 0.6414552417424605,
|
| 2352 |
+
"grad_norm": 0.8144755363464355,
|
| 2353 |
+
"learning_rate": 3.145251995651162e-06,
|
| 2354 |
+
"loss": 0.4015,
|
| 2355 |
+
"step": 335
|
| 2356 |
+
},
|
| 2357 |
+
{
|
| 2358 |
+
"epoch": 0.6433700335088559,
|
| 2359 |
+
"grad_norm": 0.7826823592185974,
|
| 2360 |
+
"learning_rate": 3.1158796237193444e-06,
|
| 2361 |
+
"loss": 0.3788,
|
| 2362 |
+
"step": 336
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"epoch": 0.6452848252752513,
|
| 2366 |
+
"grad_norm": 0.7715396285057068,
|
| 2367 |
+
"learning_rate": 3.0865828381745515e-06,
|
| 2368 |
+
"loss": 0.3816,
|
| 2369 |
+
"step": 337
|
| 2370 |
+
},
|
| 2371 |
+
{
|
| 2372 |
+
"epoch": 0.6471996170416467,
|
| 2373 |
+
"grad_norm": 0.769504189491272,
|
| 2374 |
+
"learning_rate": 3.0573628143334986e-06,
|
| 2375 |
+
"loss": 0.362,
|
| 2376 |
+
"step": 338
|
| 2377 |
+
},
|
| 2378 |
+
{
|
| 2379 |
+
"epoch": 0.6491144088080422,
|
| 2380 |
+
"grad_norm": 0.7912290692329407,
|
| 2381 |
+
"learning_rate": 3.0282207244334084e-06,
|
| 2382 |
+
"loss": 0.3713,
|
| 2383 |
+
"step": 339
|
| 2384 |
+
},
|
| 2385 |
+
{
|
| 2386 |
+
"epoch": 0.6510292005744376,
|
| 2387 |
+
"grad_norm": 0.783423662185669,
|
| 2388 |
+
"learning_rate": 2.999157737584971e-06,
|
| 2389 |
+
"loss": 0.3767,
|
| 2390 |
+
"step": 340
|
| 2391 |
+
},
|
| 2392 |
+
{
|
| 2393 |
+
"epoch": 0.6529439923408329,
|
| 2394 |
+
"grad_norm": 0.8199610114097595,
|
| 2395 |
+
"learning_rate": 2.970175019725465e-06,
|
| 2396 |
+
"loss": 0.419,
|
| 2397 |
+
"step": 341
|
| 2398 |
+
},
|
| 2399 |
+
{
|
| 2400 |
+
"epoch": 0.6548587841072283,
|
| 2401 |
+
"grad_norm": 0.910210907459259,
|
| 2402 |
+
"learning_rate": 2.94127373357196e-06,
|
| 2403 |
+
"loss": 0.4371,
|
| 2404 |
+
"step": 342
|
| 2405 |
+
},
|
| 2406 |
+
{
|
| 2407 |
+
"epoch": 0.6567735758736237,
|
| 2408 |
+
"grad_norm": 0.8403528928756714,
|
| 2409 |
+
"learning_rate": 2.912455038574686e-06,
|
| 2410 |
+
"loss": 0.3981,
|
| 2411 |
+
"step": 343
|
| 2412 |
+
},
|
| 2413 |
+
{
|
| 2414 |
+
"epoch": 0.6586883676400191,
|
| 2415 |
+
"grad_norm": 0.8000572323799133,
|
| 2416 |
+
"learning_rate": 2.88372009087051e-06,
|
| 2417 |
+
"loss": 0.4073,
|
| 2418 |
+
"step": 344
|
| 2419 |
+
},
|
| 2420 |
+
{
|
| 2421 |
+
"epoch": 0.6606031594064146,
|
| 2422 |
+
"grad_norm": 0.7659777998924255,
|
| 2423 |
+
"learning_rate": 2.8550700432365647e-06,
|
| 2424 |
+
"loss": 0.3618,
|
| 2425 |
+
"step": 345
|
| 2426 |
+
},
|
| 2427 |
+
{
|
| 2428 |
+
"epoch": 0.66251795117281,
|
| 2429 |
+
"grad_norm": 0.9061356782913208,
|
| 2430 |
+
"learning_rate": 2.8265060450439887e-06,
|
| 2431 |
+
"loss": 0.4449,
|
| 2432 |
+
"step": 346
|
| 2433 |
+
},
|
| 2434 |
+
{
|
| 2435 |
+
"epoch": 0.6644327429392054,
|
| 2436 |
+
"grad_norm": 0.8041026592254639,
|
| 2437 |
+
"learning_rate": 2.7980292422118282e-06,
|
| 2438 |
+
"loss": 0.3792,
|
| 2439 |
+
"step": 347
|
| 2440 |
+
},
|
| 2441 |
+
{
|
| 2442 |
+
"epoch": 0.6663475347056008,
|
| 2443 |
+
"grad_norm": 0.8198460340499878,
|
| 2444 |
+
"learning_rate": 2.769640777161063e-06,
|
| 2445 |
+
"loss": 0.3927,
|
| 2446 |
+
"step": 348
|
| 2447 |
+
},
|
| 2448 |
+
{
|
| 2449 |
+
"epoch": 0.6682623264719961,
|
| 2450 |
+
"grad_norm": 0.8170595765113831,
|
| 2451 |
+
"learning_rate": 2.7413417887687644e-06,
|
| 2452 |
+
"loss": 0.4239,
|
| 2453 |
+
"step": 349
|
| 2454 |
+
},
|
| 2455 |
+
{
|
| 2456 |
+
"epoch": 0.6701771182383915,
|
| 2457 |
+
"grad_norm": 0.8629317283630371,
|
| 2458 |
+
"learning_rate": 2.713133412322424e-06,
|
| 2459 |
+
"loss": 0.3968,
|
| 2460 |
+
"step": 350
|
| 2461 |
+
},
|
| 2462 |
+
{
|
| 2463 |
+
"epoch": 0.672091910004787,
|
| 2464 |
+
"grad_norm": 0.8548991680145264,
|
| 2465 |
+
"learning_rate": 2.6850167794743966e-06,
|
| 2466 |
+
"loss": 0.4241,
|
| 2467 |
+
"step": 351
|
| 2468 |
+
},
|
| 2469 |
+
{
|
| 2470 |
+
"epoch": 0.6740067017711824,
|
| 2471 |
+
"grad_norm": 0.8036125302314758,
|
| 2472 |
+
"learning_rate": 2.6569930181965e-06,
|
| 2473 |
+
"loss": 0.3855,
|
| 2474 |
+
"step": 352
|
| 2475 |
+
},
|
| 2476 |
+
{
|
| 2477 |
+
"epoch": 0.6759214935375778,
|
| 2478 |
+
"grad_norm": 0.7843232750892639,
|
| 2479 |
+
"learning_rate": 2.629063252734775e-06,
|
| 2480 |
+
"loss": 0.3948,
|
| 2481 |
+
"step": 353
|
| 2482 |
+
},
|
| 2483 |
+
{
|
| 2484 |
+
"epoch": 0.6778362853039732,
|
| 2485 |
+
"grad_norm": 0.8223265409469604,
|
| 2486 |
+
"learning_rate": 2.601228603564368e-06,
|
| 2487 |
+
"loss": 0.4085,
|
| 2488 |
+
"step": 354
|
| 2489 |
+
},
|
| 2490 |
+
{
|
| 2491 |
+
"epoch": 0.6797510770703686,
|
| 2492 |
+
"grad_norm": 0.8083503246307373,
|
| 2493 |
+
"learning_rate": 2.573490187344596e-06,
|
| 2494 |
+
"loss": 0.3892,
|
| 2495 |
+
"step": 355
|
| 2496 |
+
},
|
| 2497 |
+
{
|
| 2498 |
+
"epoch": 0.681665868836764,
|
| 2499 |
+
"grad_norm": 0.7658042907714844,
|
| 2500 |
+
"learning_rate": 2.545849116874132e-06,
|
| 2501 |
+
"loss": 0.3449,
|
| 2502 |
+
"step": 356
|
| 2503 |
+
},
|
| 2504 |
+
{
|
| 2505 |
+
"epoch": 0.6835806606031594,
|
| 2506 |
+
"grad_norm": 0.7292419672012329,
|
| 2507 |
+
"learning_rate": 2.5183065010463813e-06,
|
| 2508 |
+
"loss": 0.3653,
|
| 2509 |
+
"step": 357
|
| 2510 |
+
},
|
| 2511 |
+
{
|
| 2512 |
+
"epoch": 0.6854954523695548,
|
| 2513 |
+
"grad_norm": 0.7850830554962158,
|
| 2514 |
+
"learning_rate": 2.490863444804976e-06,
|
| 2515 |
+
"loss": 0.36,
|
| 2516 |
+
"step": 358
|
| 2517 |
+
},
|
| 2518 |
+
{
|
| 2519 |
+
"epoch": 0.6874102441359502,
|
| 2520 |
+
"grad_norm": 0.8714895844459534,
|
| 2521 |
+
"learning_rate": 2.4635210490994648e-06,
|
| 2522 |
+
"loss": 0.4132,
|
| 2523 |
+
"step": 359
|
| 2524 |
+
},
|
| 2525 |
+
{
|
| 2526 |
+
"epoch": 0.6893250359023456,
|
| 2527 |
+
"grad_norm": 0.7666326761245728,
|
| 2528 |
+
"learning_rate": 2.436280410841128e-06,
|
| 2529 |
+
"loss": 0.3703,
|
| 2530 |
+
"step": 360
|
| 2531 |
+
},
|
| 2532 |
+
{
|
| 2533 |
+
"epoch": 0.691239827668741,
|
| 2534 |
+
"grad_norm": 0.8180323839187622,
|
| 2535 |
+
"learning_rate": 2.409142622858992e-06,
|
| 2536 |
+
"loss": 0.3778,
|
| 2537 |
+
"step": 361
|
| 2538 |
+
},
|
| 2539 |
+
{
|
| 2540 |
+
"epoch": 0.6931546194351365,
|
| 2541 |
+
"grad_norm": 0.7984980344772339,
|
| 2542 |
+
"learning_rate": 2.3821087738559674e-06,
|
| 2543 |
+
"loss": 0.3743,
|
| 2544 |
+
"step": 362
|
| 2545 |
+
},
|
| 2546 |
+
{
|
| 2547 |
+
"epoch": 0.6950694112015319,
|
| 2548 |
+
"grad_norm": 0.7796124815940857,
|
| 2549 |
+
"learning_rate": 2.3551799483651894e-06,
|
| 2550 |
+
"loss": 0.3762,
|
| 2551 |
+
"step": 363
|
| 2552 |
+
},
|
| 2553 |
+
{
|
| 2554 |
+
"epoch": 0.6969842029679273,
|
| 2555 |
+
"grad_norm": 0.8916181921958923,
|
| 2556 |
+
"learning_rate": 2.3283572267064963e-06,
|
| 2557 |
+
"loss": 0.4548,
|
| 2558 |
+
"step": 364
|
| 2559 |
+
},
|
| 2560 |
+
{
|
| 2561 |
+
"epoch": 0.6988989947343226,
|
| 2562 |
+
"grad_norm": 0.7768247723579407,
|
| 2563 |
+
"learning_rate": 2.3016416849431023e-06,
|
| 2564 |
+
"loss": 0.4066,
|
| 2565 |
+
"step": 365
|
| 2566 |
+
},
|
| 2567 |
+
{
|
| 2568 |
+
"epoch": 0.700813786500718,
|
| 2569 |
+
"grad_norm": 0.8254181742668152,
|
| 2570 |
+
"learning_rate": 2.275034394838413e-06,
|
| 2571 |
+
"loss": 0.4073,
|
| 2572 |
+
"step": 366
|
| 2573 |
+
},
|
| 2574 |
+
{
|
| 2575 |
+
"epoch": 0.7027285782671134,
|
| 2576 |
+
"grad_norm": 0.8029199838638306,
|
| 2577 |
+
"learning_rate": 2.2485364238130435e-06,
|
| 2578 |
+
"loss": 0.4037,
|
| 2579 |
+
"step": 367
|
| 2580 |
+
},
|
| 2581 |
+
{
|
| 2582 |
+
"epoch": 0.7046433700335089,
|
| 2583 |
+
"grad_norm": 0.7425951361656189,
|
| 2584 |
+
"learning_rate": 2.2221488349019903e-06,
|
| 2585 |
+
"loss": 0.3586,
|
| 2586 |
+
"step": 368
|
| 2587 |
+
},
|
| 2588 |
+
{
|
| 2589 |
+
"epoch": 0.7065581617999043,
|
| 2590 |
+
"grad_norm": 0.815488338470459,
|
| 2591 |
+
"learning_rate": 2.1958726867119785e-06,
|
| 2592 |
+
"loss": 0.4258,
|
| 2593 |
+
"step": 369
|
| 2594 |
+
},
|
| 2595 |
+
{
|
| 2596 |
+
"epoch": 0.7084729535662997,
|
| 2597 |
+
"grad_norm": 0.7922877669334412,
|
| 2598 |
+
"learning_rate": 2.169709033379004e-06,
|
| 2599 |
+
"loss": 0.3949,
|
| 2600 |
+
"step": 370
|
| 2601 |
+
},
|
| 2602 |
+
{
|
| 2603 |
+
"epoch": 0.7103877453326951,
|
| 2604 |
+
"grad_norm": 0.8111118674278259,
|
| 2605 |
+
"learning_rate": 2.1436589245260375e-06,
|
| 2606 |
+
"loss": 0.4117,
|
| 2607 |
+
"step": 371
|
| 2608 |
+
},
|
| 2609 |
+
{
|
| 2610 |
+
"epoch": 0.7123025370990905,
|
| 2611 |
+
"grad_norm": 0.8979730606079102,
|
| 2612 |
+
"learning_rate": 2.1177234052209208e-06,
|
| 2613 |
+
"loss": 0.44,
|
| 2614 |
+
"step": 372
|
| 2615 |
+
},
|
| 2616 |
+
{
|
| 2617 |
+
"epoch": 0.7142173288654858,
|
| 2618 |
+
"grad_norm": 0.8757999539375305,
|
| 2619 |
+
"learning_rate": 2.09190351593443e-06,
|
| 2620 |
+
"loss": 0.4257,
|
| 2621 |
+
"step": 373
|
| 2622 |
+
},
|
| 2623 |
+
{
|
| 2624 |
+
"epoch": 0.7161321206318813,
|
| 2625 |
+
"grad_norm": 0.786949634552002,
|
| 2626 |
+
"learning_rate": 2.066200292498553e-06,
|
| 2627 |
+
"loss": 0.3887,
|
| 2628 |
+
"step": 374
|
| 2629 |
+
},
|
| 2630 |
+
{
|
| 2631 |
+
"epoch": 0.7180469123982767,
|
| 2632 |
+
"grad_norm": 0.7935692071914673,
|
| 2633 |
+
"learning_rate": 2.040614766064913e-06,
|
| 2634 |
+
"loss": 0.3853,
|
| 2635 |
+
"step": 375
|
| 2636 |
+
},
|
| 2637 |
+
{
|
| 2638 |
+
"epoch": 0.7199617041646721,
|
| 2639 |
+
"grad_norm": 0.8078945875167847,
|
| 2640 |
+
"learning_rate": 2.0151479630634225e-06,
|
| 2641 |
+
"loss": 0.4147,
|
| 2642 |
+
"step": 376
|
| 2643 |
+
},
|
| 2644 |
+
{
|
| 2645 |
+
"epoch": 0.7218764959310675,
|
| 2646 |
+
"grad_norm": 0.7771415114402771,
|
| 2647 |
+
"learning_rate": 1.9898009051610847e-06,
|
| 2648 |
+
"loss": 0.3728,
|
| 2649 |
+
"step": 377
|
| 2650 |
+
},
|
| 2651 |
+
{
|
| 2652 |
+
"epoch": 0.7237912876974629,
|
| 2653 |
+
"grad_norm": 0.7808002233505249,
|
| 2654 |
+
"learning_rate": 1.964574609221026e-06,
|
| 2655 |
+
"loss": 0.3938,
|
| 2656 |
+
"step": 378
|
| 2657 |
+
},
|
| 2658 |
+
{
|
| 2659 |
+
"epoch": 0.7257060794638583,
|
| 2660 |
+
"grad_norm": 0.7837493419647217,
|
| 2661 |
+
"learning_rate": 1.9394700872616856e-06,
|
| 2662 |
+
"loss": 0.3605,
|
| 2663 |
+
"step": 379
|
| 2664 |
+
},
|
| 2665 |
+
{
|
| 2666 |
+
"epoch": 0.7276208712302538,
|
| 2667 |
+
"grad_norm": 0.8075767755508423,
|
| 2668 |
+
"learning_rate": 1.914488346416229e-06,
|
| 2669 |
+
"loss": 0.3999,
|
| 2670 |
+
"step": 380
|
| 2671 |
+
},
|
| 2672 |
+
{
|
| 2673 |
+
"epoch": 0.7295356629966491,
|
| 2674 |
+
"grad_norm": 0.8456177115440369,
|
| 2675 |
+
"learning_rate": 1.8896303888921313e-06,
|
| 2676 |
+
"loss": 0.4231,
|
| 2677 |
+
"step": 381
|
| 2678 |
+
},
|
| 2679 |
+
{
|
| 2680 |
+
"epoch": 0.7314504547630445,
|
| 2681 |
+
"grad_norm": 0.732417643070221,
|
| 2682 |
+
"learning_rate": 1.8648972119309854e-06,
|
| 2683 |
+
"loss": 0.364,
|
| 2684 |
+
"step": 382
|
| 2685 |
+
},
|
| 2686 |
+
{
|
| 2687 |
+
"epoch": 0.7333652465294399,
|
| 2688 |
+
"grad_norm": 0.846979558467865,
|
| 2689 |
+
"learning_rate": 1.8402898077684806e-06,
|
| 2690 |
+
"loss": 0.4151,
|
| 2691 |
+
"step": 383
|
| 2692 |
+
},
|
| 2693 |
+
{
|
| 2694 |
+
"epoch": 0.7352800382958353,
|
| 2695 |
+
"grad_norm": 0.8251591324806213,
|
| 2696 |
+
"learning_rate": 1.815809163594609e-06,
|
| 2697 |
+
"loss": 0.4102,
|
| 2698 |
+
"step": 384
|
| 2699 |
+
},
|
| 2700 |
+
{
|
| 2701 |
+
"epoch": 0.7371948300622307,
|
| 2702 |
+
"grad_norm": 0.8559386134147644,
|
| 2703 |
+
"learning_rate": 1.7914562615140507e-06,
|
| 2704 |
+
"loss": 0.4293,
|
| 2705 |
+
"step": 385
|
| 2706 |
+
},
|
| 2707 |
+
{
|
| 2708 |
+
"epoch": 0.7391096218286262,
|
| 2709 |
+
"grad_norm": 0.7774277925491333,
|
| 2710 |
+
"learning_rate": 1.7672320785067871e-06,
|
| 2711 |
+
"loss": 0.3994,
|
| 2712 |
+
"step": 386
|
| 2713 |
+
},
|
| 2714 |
+
{
|
| 2715 |
+
"epoch": 0.7410244135950216,
|
| 2716 |
+
"grad_norm": 0.8519320487976074,
|
| 2717 |
+
"learning_rate": 1.74313758638889e-06,
|
| 2718 |
+
"loss": 0.3664,
|
| 2719 |
+
"step": 387
|
| 2720 |
+
},
|
| 2721 |
+
{
|
| 2722 |
+
"epoch": 0.742939205361417,
|
| 2723 |
+
"grad_norm": 0.8206210732460022,
|
| 2724 |
+
"learning_rate": 1.7191737517735513e-06,
|
| 2725 |
+
"loss": 0.3776,
|
| 2726 |
+
"step": 388
|
| 2727 |
+
},
|
| 2728 |
+
{
|
| 2729 |
+
"epoch": 0.7448539971278123,
|
| 2730 |
+
"grad_norm": 0.7929854393005371,
|
| 2731 |
+
"learning_rate": 1.6953415360322972e-06,
|
| 2732 |
+
"loss": 0.3823,
|
| 2733 |
+
"step": 389
|
| 2734 |
+
},
|
| 2735 |
+
{
|
| 2736 |
+
"epoch": 0.7467687888942077,
|
| 2737 |
+
"grad_norm": 0.7920369505882263,
|
| 2738 |
+
"learning_rate": 1.6716418952564145e-06,
|
| 2739 |
+
"loss": 0.3663,
|
| 2740 |
+
"step": 390
|
| 2741 |
+
},
|
| 2742 |
+
{
|
| 2743 |
+
"epoch": 0.7486835806606031,
|
| 2744 |
+
"grad_norm": 0.7508079409599304,
|
| 2745 |
+
"learning_rate": 1.648075780218607e-06,
|
| 2746 |
+
"loss": 0.3504,
|
| 2747 |
+
"step": 391
|
| 2748 |
+
},
|
| 2749 |
+
{
|
| 2750 |
+
"epoch": 0.7505983724269986,
|
| 2751 |
+
"grad_norm": 0.8192916512489319,
|
| 2752 |
+
"learning_rate": 1.6246441363348453e-06,
|
| 2753 |
+
"loss": 0.3909,
|
| 2754 |
+
"step": 392
|
| 2755 |
+
},
|
| 2756 |
+
{
|
| 2757 |
+
"epoch": 0.752513164193394,
|
| 2758 |
+
"grad_norm": 0.7516458630561829,
|
| 2759 |
+
"learning_rate": 1.6013479036264358e-06,
|
| 2760 |
+
"loss": 0.3731,
|
| 2761 |
+
"step": 393
|
| 2762 |
+
},
|
| 2763 |
+
{
|
| 2764 |
+
"epoch": 0.7544279559597894,
|
| 2765 |
+
"grad_norm": 0.7460734248161316,
|
| 2766 |
+
"learning_rate": 1.57818801668232e-06,
|
| 2767 |
+
"loss": 0.3379,
|
| 2768 |
+
"step": 394
|
| 2769 |
+
},
|
| 2770 |
+
{
|
| 2771 |
+
"epoch": 0.7563427477261848,
|
| 2772 |
+
"grad_norm": 0.8151918053627014,
|
| 2773 |
+
"learning_rate": 1.555165404621567e-06,
|
| 2774 |
+
"loss": 0.4025,
|
| 2775 |
+
"step": 395
|
| 2776 |
+
},
|
| 2777 |
+
{
|
| 2778 |
+
"epoch": 0.7582575394925802,
|
| 2779 |
+
"grad_norm": 0.9436088800430298,
|
| 2780 |
+
"learning_rate": 1.532280991056116e-06,
|
| 2781 |
+
"loss": 0.4521,
|
| 2782 |
+
"step": 396
|
| 2783 |
+
},
|
| 2784 |
+
{
|
| 2785 |
+
"epoch": 0.7601723312589755,
|
| 2786 |
+
"grad_norm": 0.7796757817268372,
|
| 2787 |
+
"learning_rate": 1.5095356940537053e-06,
|
| 2788 |
+
"loss": 0.3882,
|
| 2789 |
+
"step": 397
|
| 2790 |
+
},
|
| 2791 |
+
{
|
| 2792 |
+
"epoch": 0.762087123025371,
|
| 2793 |
+
"grad_norm": 0.8452361226081848,
|
| 2794 |
+
"learning_rate": 1.4869304261010586e-06,
|
| 2795 |
+
"loss": 0.4011,
|
| 2796 |
+
"step": 398
|
| 2797 |
+
},
|
| 2798 |
+
{
|
| 2799 |
+
"epoch": 0.7640019147917664,
|
| 2800 |
+
"grad_norm": 0.8742430806159973,
|
| 2801 |
+
"learning_rate": 1.4644660940672628e-06,
|
| 2802 |
+
"loss": 0.4432,
|
| 2803 |
+
"step": 399
|
| 2804 |
+
},
|
| 2805 |
+
{
|
| 2806 |
+
"epoch": 0.7659167065581618,
|
| 2807 |
+
"grad_norm": 0.7761980891227722,
|
| 2808 |
+
"learning_rate": 1.4421435991674e-06,
|
| 2809 |
+
"loss": 0.3758,
|
| 2810 |
+
"step": 400
|
| 2811 |
+
},
|
| 2812 |
+
{
|
| 2813 |
+
"epoch": 0.7678314983245572,
|
| 2814 |
+
"grad_norm": 0.7524036765098572,
|
| 2815 |
+
"learning_rate": 1.4199638369263858e-06,
|
| 2816 |
+
"loss": 0.3245,
|
| 2817 |
+
"step": 401
|
| 2818 |
+
},
|
| 2819 |
+
{
|
| 2820 |
+
"epoch": 0.7697462900909526,
|
| 2821 |
+
"grad_norm": 0.7230050563812256,
|
| 2822 |
+
"learning_rate": 1.3979276971430406e-06,
|
| 2823 |
+
"loss": 0.3425,
|
| 2824 |
+
"step": 402
|
| 2825 |
+
},
|
| 2826 |
+
{
|
| 2827 |
+
"epoch": 0.771661081857348,
|
| 2828 |
+
"grad_norm": 0.7610206604003906,
|
| 2829 |
+
"learning_rate": 1.3760360638544012e-06,
|
| 2830 |
+
"loss": 0.3937,
|
| 2831 |
+
"step": 403
|
| 2832 |
+
},
|
| 2833 |
+
{
|
| 2834 |
+
"epoch": 0.7735758736237435,
|
| 2835 |
+
"grad_norm": 0.7698909044265747,
|
| 2836 |
+
"learning_rate": 1.3542898153002453e-06,
|
| 2837 |
+
"loss": 0.3779,
|
| 2838 |
+
"step": 404
|
| 2839 |
+
},
|
| 2840 |
+
{
|
| 2841 |
+
"epoch": 0.7754906653901388,
|
| 2842 |
+
"grad_norm": 0.8300687074661255,
|
| 2843 |
+
"learning_rate": 1.3326898238878716e-06,
|
| 2844 |
+
"loss": 0.3935,
|
| 2845 |
+
"step": 405
|
| 2846 |
+
},
|
| 2847 |
+
{
|
| 2848 |
+
"epoch": 0.7774054571565342,
|
| 2849 |
+
"grad_norm": 0.8494259119033813,
|
| 2850 |
+
"learning_rate": 1.3112369561570842e-06,
|
| 2851 |
+
"loss": 0.3942,
|
| 2852 |
+
"step": 406
|
| 2853 |
+
},
|
| 2854 |
+
{
|
| 2855 |
+
"epoch": 0.7793202489229296,
|
| 2856 |
+
"grad_norm": 0.799608051776886,
|
| 2857 |
+
"learning_rate": 1.2899320727454472e-06,
|
| 2858 |
+
"loss": 0.3656,
|
| 2859 |
+
"step": 407
|
| 2860 |
+
},
|
| 2861 |
+
{
|
| 2862 |
+
"epoch": 0.781235040689325,
|
| 2863 |
+
"grad_norm": 0.7479242086410522,
|
| 2864 |
+
"learning_rate": 1.2687760283537414e-06,
|
| 2865 |
+
"loss": 0.3872,
|
| 2866 |
+
"step": 408
|
| 2867 |
+
},
|
| 2868 |
+
{
|
| 2869 |
+
"epoch": 0.7831498324557205,
|
| 2870 |
+
"grad_norm": 0.819091260433197,
|
| 2871 |
+
"learning_rate": 1.2477696717116878e-06,
|
| 2872 |
+
"loss": 0.435,
|
| 2873 |
+
"step": 409
|
| 2874 |
+
},
|
| 2875 |
+
{
|
| 2876 |
+
"epoch": 0.7850646242221159,
|
| 2877 |
+
"grad_norm": 0.7904211282730103,
|
| 2878 |
+
"learning_rate": 1.226913845543895e-06,
|
| 2879 |
+
"loss": 0.3816,
|
| 2880 |
+
"step": 410
|
| 2881 |
+
},
|
| 2882 |
+
{
|
| 2883 |
+
"epoch": 0.7869794159885113,
|
| 2884 |
+
"grad_norm": 0.8518757224082947,
|
| 2885 |
+
"learning_rate": 1.2062093865360458e-06,
|
| 2886 |
+
"loss": 0.4488,
|
| 2887 |
+
"step": 411
|
| 2888 |
+
},
|
| 2889 |
+
{
|
| 2890 |
+
"epoch": 0.7888942077549067,
|
| 2891 |
+
"grad_norm": 0.7703585624694824,
|
| 2892 |
+
"learning_rate": 1.1856571253013393e-06,
|
| 2893 |
+
"loss": 0.3682,
|
| 2894 |
+
"step": 412
|
| 2895 |
+
},
|
| 2896 |
+
{
|
| 2897 |
+
"epoch": 0.790808999521302,
|
| 2898 |
+
"grad_norm": 0.8257085084915161,
|
| 2899 |
+
"learning_rate": 1.1652578863471664e-06,
|
| 2900 |
+
"loss": 0.4066,
|
| 2901 |
+
"step": 413
|
| 2902 |
+
},
|
| 2903 |
+
{
|
| 2904 |
+
"epoch": 0.7927237912876974,
|
| 2905 |
+
"grad_norm": 0.7721326947212219,
|
| 2906 |
+
"learning_rate": 1.145012488042026e-06,
|
| 2907 |
+
"loss": 0.3646,
|
| 2908 |
+
"step": 414
|
| 2909 |
+
},
|
| 2910 |
+
{
|
| 2911 |
+
"epoch": 0.7946385830540929,
|
| 2912 |
+
"grad_norm": 0.9803063869476318,
|
| 2913 |
+
"learning_rate": 1.1249217425827063e-06,
|
| 2914 |
+
"loss": 0.4747,
|
| 2915 |
+
"step": 415
|
| 2916 |
+
},
|
| 2917 |
+
{
|
| 2918 |
+
"epoch": 0.7965533748204883,
|
| 2919 |
+
"grad_norm": 0.8374215364456177,
|
| 2920 |
+
"learning_rate": 1.1049864559616885e-06,
|
| 2921 |
+
"loss": 0.4058,
|
| 2922 |
+
"step": 416
|
| 2923 |
+
},
|
| 2924 |
+
{
|
| 2925 |
+
"epoch": 0.7984681665868837,
|
| 2926 |
+
"grad_norm": 0.7948795557022095,
|
| 2927 |
+
"learning_rate": 1.0852074279348234e-06,
|
| 2928 |
+
"loss": 0.3775,
|
| 2929 |
+
"step": 417
|
| 2930 |
+
},
|
| 2931 |
+
{
|
| 2932 |
+
"epoch": 0.8003829583532791,
|
| 2933 |
+
"grad_norm": 0.7910585403442383,
|
| 2934 |
+
"learning_rate": 1.0655854519892367e-06,
|
| 2935 |
+
"loss": 0.3807,
|
| 2936 |
+
"step": 418
|
| 2937 |
+
},
|
| 2938 |
+
{
|
| 2939 |
+
"epoch": 0.8022977501196745,
|
| 2940 |
+
"grad_norm": 0.793566107749939,
|
| 2941 |
+
"learning_rate": 1.046121315311508e-06,
|
| 2942 |
+
"loss": 0.3939,
|
| 2943 |
+
"step": 419
|
| 2944 |
+
},
|
| 2945 |
+
{
|
| 2946 |
+
"epoch": 0.8042125418860699,
|
| 2947 |
+
"grad_norm": 0.7918801307678223,
|
| 2948 |
+
"learning_rate": 1.0268157987560773e-06,
|
| 2949 |
+
"loss": 0.4003,
|
| 2950 |
+
"step": 420
|
| 2951 |
+
}
|
| 2952 |
+
],
|
| 2953 |
+
"logging_steps": 1,
|
| 2954 |
+
"max_steps": 522,
|
| 2955 |
+
"num_input_tokens_seen": 0,
|
| 2956 |
+
"num_train_epochs": 1,
|
| 2957 |
+
"save_steps": 105,
|
| 2958 |
+
"stateful_callbacks": {
|
| 2959 |
+
"TrainerControl": {
|
| 2960 |
+
"args": {
|
| 2961 |
+
"should_epoch_stop": false,
|
| 2962 |
+
"should_evaluate": false,
|
| 2963 |
+
"should_log": false,
|
| 2964 |
+
"should_save": true,
|
| 2965 |
+
"should_training_stop": false
|
| 2966 |
+
},
|
| 2967 |
+
"attributes": {}
|
| 2968 |
+
}
|
| 2969 |
+
},
|
| 2970 |
+
"total_flos": 2.2094028312097587e+17,
|
| 2971 |
+
"train_batch_size": 8,
|
| 2972 |
+
"trial_name": null,
|
| 2973 |
+
"trial_params": null
|
| 2974 |
+
}
|
checkpoint-420/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:103fd3bb469213774a4b43139febd5a468076d3935b2ed67984e8c9a1aaaa004
|
| 3 |
+
size 10936
|
checkpoint-420/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-420/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
checkpoint-522/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|