bert_base_for_whole_train_result_Spam-Ham_farshad_2_4
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0514
- Accuracy: 0.9913
- F1: 0.9916
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 4096
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.6568 | 2.9250 | 50 | 0.3947 | 0.8794 | 0.8753 |
| 0.2182 | 5.8501 | 100 | 0.0878 | 0.9724 | 0.9730 |
| 0.0482 | 8.7751 | 150 | 0.0529 | 0.9794 | 0.9799 |
| 0.0196 | 11.7002 | 200 | 0.0434 | 0.9855 | 0.9859 |
| 0.0112 | 14.6252 | 250 | 0.0342 | 0.9898 | 0.9902 |
| 0.0067 | 17.5503 | 300 | 0.0452 | 0.9887 | 0.9890 |
| 0.0049 | 20.4753 | 350 | 0.0447 | 0.9898 | 0.9902 |
| 0.0035 | 23.4004 | 400 | 0.0491 | 0.9896 | 0.9899 |
| 0.0039 | 26.3254 | 450 | 0.0577 | 0.9849 | 0.9853 |
| 0.0018 | 29.2505 | 500 | 0.0525 | 0.9893 | 0.9896 |
| 0.0023 | 32.1755 | 550 | 0.0378 | 0.9925 | 0.9927 |
| 0.0017 | 35.1005 | 600 | 0.0462 | 0.9910 | 0.9914 |
| 0.0023 | 38.0256 | 650 | 0.0525 | 0.9884 | 0.9887 |
| 0.0015 | 40.9506 | 700 | 0.0550 | 0.9890 | 0.9893 |
| 0.0017 | 43.8757 | 750 | 0.0421 | 0.9925 | 0.9927 |
| 0.0019 | 46.8007 | 800 | 0.0466 | 0.9907 | 0.9910 |
| 0.0013 | 49.7258 | 850 | 0.0575 | 0.9896 | 0.9898 |
| 0.0014 | 52.6508 | 900 | 0.0396 | 0.9939 | 0.9941 |
| 0.0007 | 55.5759 | 950 | 0.0512 | 0.9916 | 0.9918 |
| 0.0006 | 58.5009 | 1000 | 0.0416 | 0.9945 | 0.9947 |
| 0.0006 | 61.4260 | 1050 | 0.0506 | 0.9919 | 0.9921 |
| 0.0007 | 64.3510 | 1100 | 0.0467 | 0.9933 | 0.9935 |
| 0.0005 | 67.2761 | 1150 | 0.0590 | 0.9907 | 0.9910 |
| 0.0011 | 70.2011 | 1200 | 0.0462 | 0.9916 | 0.9918 |
| 0.0006 | 73.1261 | 1250 | 0.0513 | 0.9925 | 0.9927 |
| 0.0008 | 76.0512 | 1300 | 0.0507 | 0.9916 | 0.9918 |
| 0.0005 | 78.9762 | 1350 | 0.0430 | 0.9939 | 0.9941 |
| 0.0004 | 81.9013 | 1400 | 0.0461 | 0.9927 | 0.9930 |
| 0.0004 | 84.8263 | 1450 | 0.0488 | 0.9919 | 0.9922 |
| 0.0003 | 87.7514 | 1500 | 0.0514 | 0.9913 | 0.9916 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for CatBarks/bert_base_for_whole_train_result_Spam-Ham_farshad_2_4
Base model
google-bert/bert-base-uncased