--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer datasets: - mc4 model-index: - name: laft_hau_phi results: [] --- # Paper and Citation Paper: [Prompt, Translate, Fine-Tune, Re-Initialize, or Instruction-Tune? Adapting LLMs for In-Context Learning in Low-Resource Languages ](https://arxiv.org/abs/2506.19187) ``` @misc{toukmaji2025prompttranslatefinetunereinitialize, title={Prompt, Translate, Fine-Tune, Re-Initialize, or Instruction-Tune? Adapting LLMs for In-Context Learning in Low-Resource Languages}, author={Christopher Toukmaji and Jeffrey Flanigan}, year={2025}, eprint={2506.19187}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2506.19187}, } ``` # laft_hau_phi This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the mc4 ha dataset. It achieves the following results on the evaluation set: - Loss: 2.4573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2000 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.8519 | 1.0 | 24415 | 2.9492 | | 1.7621 | 2.0 | 48830 | 2.8050 | | 2.496 | 3.0 | 73245 | 2.6414 | | 2.1467 | 4.0 | 97660 | 2.4562 | | 2.8327 | 5.0 | 122075 | 2.3538 | | 1.9926 | 6.0 | 146490 | 2.4573 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1