File size: 29,869 Bytes
b4fd8c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What was Iron Mountain's physical records retention rate approximately
    15 years after entry into their facilities?
  sentences:
  - Garmin Connect and Garmin Connect Mobile are web and mobile platforms where users
    can track and analyze their fitness, activities and workouts, and wellness data.
  - More than 50% of physical records that entered Iron Mountain's facilities approximately
    15 years ago are still there today.
  - In the first quarter of 2023, the divestiture of the company’s Longwall business
    was finalized, resulting in an unfavorable impact to operating profit of $586
    million, primarily a non-cash item driven by the release of accumulated foreign
    currency translation.
- source_sentence: How much did the company's currently payable U.S. taxes amount
    to in 2023?
  sentences:
  - In 2023, the currently payable U.S. taxes amounted to $2,705 million.
  - The Company expects to realize at least $500 million of incremental run-rate cost
    savings in addition to integration synergies.
  - During fiscal year 2023, we returned $210 million through our quarterly cash dividend
    program which was initiated in November 2020.
- source_sentence: What was the percentage decline in GMS for the year ended December
    31, 2023 compared to 2022?
  sentences:
  - The Gross Merchandise Sales (GMS) decreased by 1.2% in 2023 compared to 2022.
  - If, in the future, foreign exchange or capital control restrictions were to be
    imposed and become applicable to us, such restrictions could potentially reduce
    the amounts that we would be able to receive from our Macao, Hong Kong and mainland
    China subsidiaries.
  - Net cash provided by operating activities decreased by $2.0 billion in fiscal
    2022 compared to fiscal 2021.
- source_sentence: What was the operating income for the year 2023?
  sentences:
  - Effective January 1, 2021, CSC changed the designation of its corporate headquarters
    from San Francisco, California to Westlake, Texas.
  - The operating income for the year 2023 was reported as -$74.3 million.
  - Table 12 shows that the total risk-weighted assets under Basel 3 for credit risk
    at Bank of America amounted to $1,580 billion as of December 31, 2023.
- source_sentence: What was the total amount of tax incurred, collected, and remitted
    by AT&T in 2023?
  sentences:
  - For example, in response to regulatory developments in Europe, we announced plans
    to change the legal basis for behavioral advertising on Facebook and Instagram
    in the EU, EEA, and Switzerland from "legitimate interests" to "consent," and
    in November 2023 we began offering users in the region a "subscription for no
    ads" alternative.
  - Professional services expenses decreased $8 million in 2023 from 2022 primarily
    due to lower consulting expenses related to bringing certain mortgage technology-related
    costs in-house, partially offset by higher legal expenses primarily related to
    the Black Knight acquisition.
  - Total taxes incurred, collected and remitted by AT&T during 2023 were $16,877.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6771428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8328571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8614285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9085714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6771428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2776190476190476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17228571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09085714285714284
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6771428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8328571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8614285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9085714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7950953946105658
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7584574829931973
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7618150097795325
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6785714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8257142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8642857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9014285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6785714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2752380952380952
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17285714285714282
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09014285714285714
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6785714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8257142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8642857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9014285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7927053640201507
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7574620181405893
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7614007843308703
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.68
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.81
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8528571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8971428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.68
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17057142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0897142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.68
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.81
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8528571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8971428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7889658321825918
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7541865079365075
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7582635867273656
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6614285714285715
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8385714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8914285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6614285714285715
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26666666666666666
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16771428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08914285714285713
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6614285714285715
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8385714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8914285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7751876221972102
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7381241496598633
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7423110490736153
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6257142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.78
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8214285714285714
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8728571428571429
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6257142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16428571428571426
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08728571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6257142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.78
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8214285714285714
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8728571428571429
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.750742644383485
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7114563492063489
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7163043069454876
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Chuangmail/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'What was the total amount of tax incurred, collected, and remitted by AT&T in 2023?',
    'Total taxes incurred, collected and remitted by AT&T during 2023 were $16,877.',
    'Professional services expenses decreased $8 million in 2023 from 2022 primarily due to lower consulting expenses related to bringing certain mortgage technology-related costs in-house, partially offset by higher legal expenses primarily related to the Black Knight acquisition.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6771     |
| cosine_accuracy@3   | 0.8329     |
| cosine_accuracy@5   | 0.8614     |
| cosine_accuracy@10  | 0.9086     |
| cosine_precision@1  | 0.6771     |
| cosine_precision@3  | 0.2776     |
| cosine_precision@5  | 0.1723     |
| cosine_precision@10 | 0.0909     |
| cosine_recall@1     | 0.6771     |
| cosine_recall@3     | 0.8329     |
| cosine_recall@5     | 0.8614     |
| cosine_recall@10    | 0.9086     |
| cosine_ndcg@10      | 0.7951     |
| cosine_mrr@10       | 0.7585     |
| **cosine_map@100**  | **0.7618** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6786     |
| cosine_accuracy@3   | 0.8257     |
| cosine_accuracy@5   | 0.8643     |
| cosine_accuracy@10  | 0.9014     |
| cosine_precision@1  | 0.6786     |
| cosine_precision@3  | 0.2752     |
| cosine_precision@5  | 0.1729     |
| cosine_precision@10 | 0.0901     |
| cosine_recall@1     | 0.6786     |
| cosine_recall@3     | 0.8257     |
| cosine_recall@5     | 0.8643     |
| cosine_recall@10    | 0.9014     |
| cosine_ndcg@10      | 0.7927     |
| cosine_mrr@10       | 0.7575     |
| **cosine_map@100**  | **0.7614** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.68       |
| cosine_accuracy@3   | 0.81       |
| cosine_accuracy@5   | 0.8529     |
| cosine_accuracy@10  | 0.8971     |
| cosine_precision@1  | 0.68       |
| cosine_precision@3  | 0.27       |
| cosine_precision@5  | 0.1706     |
| cosine_precision@10 | 0.0897     |
| cosine_recall@1     | 0.68       |
| cosine_recall@3     | 0.81       |
| cosine_recall@5     | 0.8529     |
| cosine_recall@10    | 0.8971     |
| cosine_ndcg@10      | 0.789      |
| cosine_mrr@10       | 0.7542     |
| **cosine_map@100**  | **0.7583** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6614     |
| cosine_accuracy@3   | 0.8        |
| cosine_accuracy@5   | 0.8386     |
| cosine_accuracy@10  | 0.8914     |
| cosine_precision@1  | 0.6614     |
| cosine_precision@3  | 0.2667     |
| cosine_precision@5  | 0.1677     |
| cosine_precision@10 | 0.0891     |
| cosine_recall@1     | 0.6614     |
| cosine_recall@3     | 0.8        |
| cosine_recall@5     | 0.8386     |
| cosine_recall@10    | 0.8914     |
| cosine_ndcg@10      | 0.7752     |
| cosine_mrr@10       | 0.7381     |
| **cosine_map@100**  | **0.7423** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6257     |
| cosine_accuracy@3   | 0.78       |
| cosine_accuracy@5   | 0.8214     |
| cosine_accuracy@10  | 0.8729     |
| cosine_precision@1  | 0.6257     |
| cosine_precision@3  | 0.26       |
| cosine_precision@5  | 0.1643     |
| cosine_precision@10 | 0.0873     |
| cosine_recall@1     | 0.6257     |
| cosine_recall@3     | 0.78       |
| cosine_recall@5     | 0.8214     |
| cosine_recall@10    | 0.8729     |
| cosine_ndcg@10      | 0.7507     |
| cosine_mrr@10       | 0.7115     |
| **cosine_map@100**  | **0.7163** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,300 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 2 tokens</li><li>mean: 20.39 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 46.37 tokens</li><li>max: 326 tokens</li></ul> |
* Samples:
  | anchor                                                                                             | positive                                                                                                                                                                                                                                                                                             |
  |:---------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What are the key factors HP considers when making adjustments to inventory valuation?</code> | <code>HP makes adjustments to inventory valuation based on considerations of changes in demand, technological changes, supply constraints, product life cycle, component cost trends, product pricing, and quality issues.</code>                                                                    |
  | <code>What types of products does AbbVie's portfolio include?</code>                               | <code>AbbVie is a global, diversified research-based biopharmaceutical company with a comprehensive product portfolio that has leadership positions across immunology, oncology, aesthetics, neuroscience, and eye care.</code>                                                                      |
  | <code>What does IBM’s 2023 Annual Report to Stockholders include?</code>                           | <code>IBM's 2023 Annual Report to Stockholders includes their financial statements and supplementary data, which span from pages 44 to 121 and are incorporated by reference in the Form 10-K. Additionally, the financial statement schedule can be found on page S-1 of the same Form 10-K.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122     | 10     | 1.6191        | -                      | -                      | -                      | -                     | -                      |
| 0.9746     | 12     | -             | 0.7267                 | 0.7355                 | 0.7447                 | 0.6939                | 0.7453                 |
| 1.6244     | 20     | 0.6415        | -                      | -                      | -                      | -                     | -                      |
| 1.9492     | 24     | -             | 0.7358                 | 0.7509                 | 0.7548                 | 0.7075                | 0.7554                 |
| 2.4365     | 30     | 0.4638        | -                      | -                      | -                      | -                     | -                      |
| 2.9239     | 36     | -             | 0.7398                 | 0.7573                 | 0.7607                 | 0.7124                | 0.7601                 |
| 3.2487     | 40     | 0.4083        | -                      | -                      | -                      | -                     | -                      |
| **3.8985** | **48** | **-**         | **0.7423**             | **0.7583**             | **0.7614**             | **0.7163**            | **0.7618**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->