Cogent-ai commited on
Commit
707ee6a
·
verified ·
1 Parent(s): 7c25b28

Delete ra_integration_design.py

Browse files
Files changed (1) hide show
  1. ra_integration_design.py +0 -439
ra_integration_design.py DELETED
@@ -1,439 +0,0 @@
1
-
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- from safetensors.torch import save_file as safetensors_save_file
6
- from torchvision import models
7
- import safetensors
8
- import os
9
-
10
- # --- 1. 原始模型架構 (從 reconstruct_original_model.py 複製) ---
11
- class OriginalMoETransformerBlock(nn.Module):
12
- def __init__(self, input_dim, hidden_dim, output_dim, num_experts):
13
- super().__init__()
14
- self.num_experts = num_experts
15
- self.input_dim = input_dim
16
- self.hidden_dim = hidden_dim
17
- self.output_dim = output_dim
18
-
19
- self.experts_w1 = nn.ModuleList([nn.Linear(input_dim, hidden_dim, bias=False) for _ in range(num_experts)])
20
- self.experts_w2 = nn.ModuleList([nn.Linear(hidden_dim, output_dim, bias=False) for _ in range(num_experts)])
21
- self.gate = nn.Linear(input_dim, num_experts, bias=False)
22
-
23
- def forward(self, x):
24
- gate_logits = self.gate(x)
25
- weights = torch.softmax(gate_logits, dim=-1)
26
-
27
- expert_outputs = torch.empty(x.shape[0], self.num_experts, self.output_dim, device=x.device)
28
- for i in range(self.num_experts):
29
- expert_outputs[:, i, :] = self.experts_w2[i](self.experts_w1[i](x))
30
-
31
- output = torch.sum(expert_outputs * weights.unsqueeze(-1), dim=1)
32
-
33
- return output
34
-
35
- class OriginalModelReconstructed(nn.Module):
36
- def __init__(self, vocab_size, embedding_dim, moe_hidden_dim, num_experts):
37
- super().__init__()
38
- self.embeddings = nn.Embedding(vocab_size, embedding_dim)
39
- self.transformer_block_0 = OriginalMoETransformerBlock(embedding_dim, moe_hidden_dim, embedding_dim, num_experts)
40
- self.norm = nn.LayerNorm(embedding_dim)
41
- self.output_layer = nn.Linear(embedding_dim, vocab_size)
42
-
43
- def forward(self, x):
44
- x = self.embeddings(x).squeeze(1)
45
- x = self.transformer_block_0(x)
46
- x = self.norm(x)
47
- x = self.output_layer(x)
48
- return x
49
-
50
- # --- 2. 記憶共生引擎模組 (Person X Memory Symbiosis Engine) ---
51
- class MemorySymbiosisEngine(nn.Module):
52
- def __init__(self, embedding_dim, memory_slots=10, memory_dim=256):
53
- super().__init__()
54
- self.memory_slots = memory_slots
55
- self.memory_dim = memory_dim
56
-
57
- self.memory_keys = nn.Parameter(torch.randn(memory_slots, memory_dim))
58
- self.memory_values = nn.Parameter(torch.randn(memory_slots, embedding_dim))
59
-
60
- self.query_projection = nn.Linear(embedding_dim, memory_dim)
61
- self.memory_read_fusion = nn.Linear(embedding_dim + embedding_dim, embedding_dim)
62
-
63
- def forward(self, current_features, user_profile_embedding=None):
64
- query = self.query_projection(current_features)
65
- attention_scores = torch.matmul(query, self.memory_keys.T)
66
- attention_weights = torch.softmax(attention_scores, dim=-1)
67
- read_memory = torch.matmul(attention_weights, self.memory_values)
68
-
69
- fused_with_memory = torch.cat((current_features, read_memory), dim=-1)
70
- output_features = self.memory_read_fusion(fused_with_memory)
71
-
72
- return output_features
73
-
74
- # --- 3. 真實錨定 (Reality Anchor, RA) 技術模組 ---
75
- class RealityAnchor(nn.Module):
76
- def __init__(self, embedding_dim, fact_memory_size=1000, fact_dim=256, threshold=0.7):
77
- super().__init__()
78
- self.fact_memory_size = fact_memory_size
79
- self.fact_dim = fact_dim
80
- self.threshold = threshold
81
-
82
- # 內置的事實記憶庫:這裡用可學習的張量模擬
83
- # 實際中,這會是一個預訓練的、經過壓縮的知識表示
84
- self.fact_memory_bank = nn.Parameter(torch.randn(fact_memory_size, fact_dim))
85
-
86
- # 事實注意力機制 (Fact-Attention) 的查詢投影
87
- self.fact_query_projection = nn.Linear(embedding_dim, fact_dim)
88
-
89
- # 調整信號生成模塊 (輕量級神經網絡)
90
- self.adjustment_module = nn.Sequential(
91
- nn.Linear(embedding_dim + fact_dim, embedding_dim // 2),
92
- nn.ReLU(),
93
- nn.Linear(embedding_dim // 2, embedding_dim) # 輸出與 embedding_dim 相同維度,用於調整
94
- )
95
-
96
- # 事實一致性評分器 (這裡簡化為一個線性層)
97
- self.consistency_scorer = nn.Linear(fact_dim, 1)
98
-
99
- def forward(self, current_token_embedding, generated_context_embedding):
100
- # current_token_embedding: 當前生成詞元的嵌入 (batch_size, embedding_dim)
101
- # generated_context_embedding: 當前生成上下文的嵌入 (batch_size, embedding_dim)
102
-
103
- # 1. 動態事實檢索與融合 (這裡簡化為基於上下文的檢索)
104
- # 假設 generated_context_embedding 已經包含了足夠的信息來查詢事實
105
- fact_query = self.fact_query_projection(generated_context_embedding) # (batch_size, fact_dim)
106
-
107
- # 近似最近鄰搜索 (這裡簡化為點積相似度)
108
- similarity_scores = torch.matmul(fact_query, self.fact_memory_bank.T) # (batch_size, fact_memory_size)
109
-
110
- # 獲取最相關的事實 (這裡取 top-1)
111
- top_fact_scores, top_fact_indices = torch.topk(similarity_scores, 1, dim=-1)
112
- retrieved_fact = self.fact_memory_bank[top_fact_indices.squeeze(-1)] # (batch_size, fact_dim)
113
-
114
- # 2. 事實一致性評分 (Fact Consistency Scoring)
115
- # 衡量當前詞元嵌入與檢索到的事實的一致性
116
- # 這裡簡化為直接評分檢索到的事實,實際可能需要更複雜的交互
117
- fact_consistency_score = torch.sigmoid(self.consistency_scorer(retrieved_fact)) # (batch_size, 1)
118
-
119
- # 3. 即時調整生成 (Real-Time Generation Adjustment)
120
- adjustment_signal = torch.zeros_like(current_token_embedding) # 初始化調整信號
121
-
122
- # 如果事實一致性分數低於閾值,則觸發調整
123
- # 注意:這裡的閾值判斷是簡化的,實際應用中可能需要更精細的控制
124
- needs_adjustment = (fact_consistency_score < self.threshold).squeeze(-1) # (batch_size,)
125
-
126
- if needs_adjustment.any():
127
- # 組合當前詞元嵌入和檢索到的事實來生成調整信號
128
- combined_for_adjustment = torch.cat((current_token_embedding[needs_adjustment], retrieved_fact[needs_adjustment]), dim=-1)
129
- adjustment_signal[needs_adjustment] = self.adjustment_module(combined_for_adjustment)
130
-
131
- # 將調整信號應用於當前詞元嵌入
132
- adjusted_token_embedding = current_token_embedding + adjustment_signal
133
-
134
- return adjusted_token_embedding, fact_consistency_score
135
-
136
-
137
- # --- 4. 多維度生成協調器 (Multidimensional Generation Orchestrator, MGO) 技術模組 ---
138
- class MultidimensionalGenerationOrchestrator(nn.Module):
139
- def __init__(self, embedding_dim, vocab_size, max_output_length=50, num_intent_types=5):
140
- super().__init__()
141
- self.embedding_dim = embedding_dim
142
- self.vocab_size = vocab_size
143
- self.max_output_length = max_output_length
144
- self.num_intent_types = num_intent_types
145
-
146
- # 1. 生成意圖解析與分解 (Generation Intent Parsing and Decomposition)
147
- # 這裡簡化為一個線性層來預測意圖類型
148
- self.intent_parser = nn.Linear(embedding_dim, num_intent_types)
149
- self.intent_embedding = nn.Embedding(num_intent_types, embedding_dim) # 意圖嵌入
150
-
151
- # 2. 多維度生成規劃 (Multidimensional Generation Planning)
152
- # 這裡簡化為根據意圖調整生成參數
153
- self.planning_layer = nn.Linear(embedding_dim, 4) # 輸出控制:豐富度、連貫性、長度、風格
154
-
155
- # 3. 自適應生成引導 (Adaptive Generation Guidance)
156
- self.guidance_controller = nn.Linear(embedding_dim * 2 + 4, embedding_dim) # 融合上下文、意圖、規劃參數
157
- self.length_controller = nn.Linear(embedding_dim, 1) # 預測生成終止概率
158
-
159
- def forward(self, context_embedding, current_output_length=0, target_intent_idx=None):
160
- # context_embedding: 融合了所有特徵的上下文嵌入 (batch_size, embedding_dim)
161
-
162
- # 1. 生成意圖解析 (簡化:如果未指定,則從上下文預測)
163
- if target_intent_idx is None:
164
- intent_logits = self.intent_parser(context_embedding)
165
- target_intent_idx = torch.argmax(intent_logits, dim=-1) # (batch_size,)
166
-
167
- intent_embedding = self.intent_embedding(target_intent_idx) # (batch_size, embedding_dim)
168
-
169
- # 2. 多維度生成規劃
170
- planning_params = torch.sigmoid(self.planning_layer(intent_embedding)) # (batch_size, 4)
171
- # planning_params: [content_richness, semantic_coherence, length_target_ratio, style_adaptability]
172
-
173
- # 3. 自適應生成引導
174
- # 組合上下文、意圖嵌入和規劃參數
175
- combined_guidance_input = torch.cat([
176
- context_embedding,
177
- intent_embedding,
178
- planning_params
179
- ], dim=-1)
180
- guidance_signal = self.guidance_controller(combined_guidance_input) # (batch_size, embedding_dim)
181
-
182
- # 長度控制
183
- length_control_signal = torch.sigmoid(self.length_controller(context_embedding)) # (batch_size, 1)
184
- # 這個信號可以被用來調整生成終止的概率
185
-
186
- # 這裡返回引導信號和規劃參數,供外部模型使用來調整生成過程
187
- return guidance_signal, planning_params, length_control_signal
188
-
189
- # --- 5. 智能體生態框架接口 (Agent Matrix Intelligent Agent Ecosystem Framework) ---
190
- class AgentMatrixInterface(nn.Module):
191
- def __init__(self, model_core):
192
- super().__init__()
193
- self.model_core = model_core
194
- self.task_mapping = {
195
- "analyze_image_text": self._analyze_image_text,
196
- "retrieve_memory": self._retrieve_memory,
197
- "generate_response": self._generate_response,
198
- "generate_anchored_response": self._generate_anchored_response # 新增 RA 命令
199
- }
200
-
201
- def _analyze_image_text(self, text_input, image_input):
202
- return self.model_core(text_input, image_input, return_fused_features=True)
203
-
204
- def _retrieve_memory(self, query_text_input, query_image_input=None):
205
- text_features = self.model_core.embeddings(query_text_input)
206
- if text_features.dim() == 3:
207
- text_features = text_features.squeeze(1)
208
-
209
- if query_image_input is not None:
210
- image_features = self.model_core.vision_encoder(query_image_input)
211
- image_features = image_features.view(image_features.size(0), -1)
212
- image_features = self.model_core.vision_projection(image_features)
213
- current_features = self.model_core.initial_fusion_layer(torch.cat((text_features, image_features), dim=1))
214
- else:
215
- current_features = text_features
216
-
217
- return self.model_core.memory_engine(current_features)
218
-
219
- def _generate_response(self, text_input, image_input):
220
- # 這裡調用原始的 forward 方法,不啟用 RA
221
- return self.model_core(text_input, image_input, use_ra=False)
222
-
223
- def _generate_anchored_response(self, text_input, image_input):
224
- # 這裡調用啟用 RA 的 forward 方法
225
- return self.model_core(text_input, image_input, use_ra=True)
226
-
227
- def forward(self, command, **kwargs):
228
- if command in self.task_mapping:
229
- if command.startswith("generate"):
230
- # 生成相關的命令現在返回多個值
231
- if command == "generate_anchored_response":
232
- logits, consistency_score, planning_params, length_control_signal = self.task_mapping[command](**kwargs)
233
- return logits, consistency_score, planning_params, length_control_signal
234
- else:
235
- logits, planning_params, length_control_signal = self.task_mapping[command](**kwargs)
236
- return logits, planning_params, length_control_signal
237
- else:
238
- return self.task_mapping[command](**kwargs)
239
- else:
240
- raise ValueError(f"Unknown command: {command}")
241
-
242
- # --- 5. 整合後的完整模型架構 (包含 RA) ---
243
- class FullyIntegratedModelWithRA(nn.Module):
244
- def __init__(self, original_model_path, vocab_size, embedding_dim, moe_hidden_dim, num_experts, visual_feature_dim=256,
245
- memory_slots=10, memory_dim=256, fact_memory_size=1000, fact_dim=256, ra_threshold=0.7):
246
- super().__init__()
247
-
248
- state_dict = {}
249
- if original_model_path and os.path.exists(original_model_path):
250
- with safetensors.safe_open(original_model_path, framework="pt", device="cpu") as f:
251
- for key in f.keys():
252
- state_dict[key] = f.get_tensor(key)
253
-
254
- original_vocab_size = 5000 # 假設原始模型的詞彙量
255
- original_embedding_dim = 64 # 假設原始模型的 embedding_dim
256
-
257
- # 判斷是否需要重新初始化 OriginalMoETransformerBlock 和 LayerNorm
258
- # 如果 embedding_dim 或 moe_hidden_dim 改變,則不載入原始權重,讓其重新初始化
259
- if embedding_dim != original_embedding_dim or moe_hidden_dim != 192: # 假設原始 moe_hidden_dim 是 192
260
- print("Embedding_dim or moe_hidden_dim changed. OriginalMoETransformerBlock and LayerNorm will be reinitialized.")
261
- self.original_model_core = OriginalModelReconstructed(vocab_size, embedding_dim, moe_hidden_dim, num_experts)
262
- # 這些層將是可訓練的
263
- else:
264
- self.original_model_core = OriginalModelReconstructed(original_vocab_size, original_embedding_dim, moe_hidden_dim, num_experts)
265
- # 載入原始權重到核心模型 (如果存在)
266
- if state_dict:
267
- print("Loading original model weights...")
268
- self.original_model_core.norm.weight.data = state_dict["gamma"]
269
- self.original_model_core.norm.bias.data = state_dict["beta"]
270
- for i in range(num_experts):
271
- self.original_model_core.transformer_block_0.experts_w1[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w1.weight"][i].T
272
- self.original_model_core.transformer_block_0.experts_w2[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w2.weight"][i].T
273
- self.original_model_core.transformer_block_0.gate.weight.data = state_dict["transformer_block.0.moe.gate.weight"].T
274
- print("Original model weights loaded.")
275
-
276
- for param in self.original_model_core.transformer_block_0.parameters():
277
- param.requires_grad = False
278
- for param in self.original_model_core.norm.parameters():
279
- param.requires_grad = False
280
-
281
- self.embeddings = nn.Embedding(vocab_size, embedding_dim)
282
- self.output_layer = nn.Linear(embedding_dim, vocab_size)
283
-
284
- self.vision_encoder = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)
285
- self.vision_encoder = nn.Sequential(*list(self.vision_encoder.children())[:-1])
286
- self.vision_projection = nn.Linear(512, visual_feature_dim)
287
-
288
- for param in self.vision_encoder.parameters():
289
- param.requires_grad = False
290
-
291
- self.initial_fusion_layer = nn.Linear(visual_feature_dim + embedding_dim, embedding_dim)
292
-
293
- self.memory_engine = MemorySymbiosisEngine(embedding_dim, memory_slots, memory_dim)
294
-
295
- # 引入 Reality Anchor 模組
296
- self.reality_anchor = RealityAnchor(embedding_dim, fact_memory_size, fact_dim, ra_threshold)
297
-
298
- # 引入 Multidimensional Generation Orchestrator (MGO) 模組
299
- self.mgo = MultidimensionalGenerationOrchestrator(embedding_dim, vocab_size)
300
-
301
- def forward(self, text_input, image_input, user_profile_embedding=None, use_ra=False, return_fused_features=False):
302
- text_features = self.embeddings(text_input)
303
- if text_features.dim() == 3:
304
- text_features = text_features.squeeze(1)
305
-
306
- image_features = self.vision_encoder(image_input)
307
- image_features = image_features.view(image_features.size(0), -1)
308
- image_features = self.vision_projection(image_features)
309
-
310
- fused_initial_features = self.initial_fusion_layer(torch.cat((text_features, image_features), dim=1))
311
-
312
- if return_fused_features:
313
- return fused_initial_features
314
-
315
- memory_enhanced_features = self.memory_engine(fused_initial_features, user_profile_embedding)
316
-
317
- # 應用 Reality Anchor (RA) 技術
318
- if use_ra:
319
- # 在這裡,我們假設 memory_enhanced_features 作為生成上下文的嵌入
320
- # 並將其作為 current_token_embedding 傳遞給 RA 進行調 # 實際應用中, RA 可能會更細粒度地作用於每個生成的 token
321
- adjusted_features, consistency_score = self.reality_anchor(memory_enhanced_features, memory_enhanced_features) # 簡化: 上下文和當前 token 相同
322
- x = self.original_model_core.transformer_block_0(adjusted_features)
323
- else:
324
- x = self.original_model_core.transformer_block_0(memory_enhanced_features)
325
-
326
- x = self.original_model_core.norm(x)
327
- final_features = x # 將 x 賦值給 final_features, 以便 MGO 處理
328
-
329
- # 應用 Multidimensional Generation Orchestrator (MGO) 技術
330
- guidance_signal, planning_params, length_control_signal = self.mgo(final_features, current_output_length=0, target_intent_idx=None)
331
- final_features = final_features + guidance_signal # 疊加引導信號
332
-
333
- output = self.output_layer(final_features)
334
-
335
- if use_ra:
336
- return output, consistency_score, planning_params, length_control_signal
337
- else:
338
- return output, planning_params, length_control_signal
339
-
340
- if __name__ == "__main__":
341
- original_model_path = "/home/ubuntu/upload/moe_model.safetensors"
342
-
343
- vocab_size = 10000 # 詞彙量保持不變
344
- embedding_dim = 128 # 增加嵌入維度以增加參數
345
- moe_hidden_dim = 384 # 增加 MoE 隱藏維度以增加參數
346
- num_experts = 16
347
- visual_feature_dim = 256
348
- memory_slots = 10
349
- memory_dim = 256
350
- fact_memory_size = 1000
351
- fact_dim = 256
352
- ra_threshold = 0.7
353
-
354
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
355
-
356
- # 初始化整合模型 (包含 RA)
357
- integrated_model_ra = FullyIntegratedModelWithRA(
358
- original_model_path=original_model_path,
359
- vocab_size=vocab_size,
360
- embedding_dim=embedding_dim,
361
- moe_hidden_dim=moe_hidden_dim,
362
- num_experts=num_experts,
363
- visual_feature_dim=visual_feature_dim,
364
- memory_slots=memory_slots,
365
- memory_dim=memory_dim,
366
- fact_memory_size=fact_memory_size,
367
- fact_dim=fact_dim,
368
- ra_threshold=ra_threshold
369
- ).to(device)
370
- integrated_model_ra.eval() # 設置為評估模式
371
-
372
- print("Fully Integrated Model with RA initialized successfully.")
373
-
374
- # 計算總參數數量
375
- total_trainable_params = sum(p.numel() for p in integrated_model_ra.parameters() if p.requires_grad)
376
- print(f"Total trainable parameters: {total_trainable_params / 1_000_000:.2f}M")
377
- total_all_params = sum(p.numel() for p in integrated_model_ra.parameters())
378
- print(f"Total all parameters (including frozen): {total_all_params / 1_000_000:.2f}M")
379
-
380
- # --- 模擬 Agent Matrix 框架交互 (包含 RA 命令) ---
381
- agent_interface_ra = AgentMatrixInterface(integrated_model_ra)
382
- print("Agent Matrix Interface with RA initialized.")
383
-
384
- # 模擬輸入
385
- dummy_text_input = torch.tensor([[100]], dtype=torch.long).to(device) # Batch size 1, 1 token
386
- dummy_image_input = torch.randn(1, 3, 224, 224).to(device) # Batch size 1, 3 channels, 224x224
387
-
388
- print("\n--- Simulating Agent Matrix Commands (with RA) ---")
389
-
390
- # 模擬 'analyze_image_text' 命令
391
- try:
392
- print("Executing command: analyze_image_text")
393
- fused_features = agent_interface_ra(command="analyze_image_text", text_input=dummy_text_input, image_input=dummy_image_input)
394
- print(f"Analyzed features shape: {fused_features.shape}")
395
- except Exception as e:
396
- print(f"Error executing analyze_image_text: {e}")
397
-
398
- # 模擬 'generate_response' 命令 (不啟用 RA)
399
- try:
400
- print("Executing command: generate_response (without RA)")
401
- output_logits, planning_params, length_control_signal = agent_interface_ra(command="generate_response", text_input=dummy_text_input, image_input=dummy_image_input)
402
- print(f"Generated response logits shape: {output_logits.shape}")
403
- print(f"MGO Planning Params: {planning_params.tolist()}")
404
- print(f"MGO Length Control Signal: {length_control_signal.item():.4f}")
405
- except Exception as e:
406
- print(f"Error executing generate_response (without RA): {e}")
407
-
408
- # 模擬 'generate_anchored_response' 命令 (啟用 RA)
409
- try:
410
- print("Executing command: generate_anchored_response (with RA)")
411
- output_logits_ra, consistency_score, planning_params_ra, length_control_signal_ra = agent_interface_ra(command="generate_anchored_response", text_input=dummy_text_input, image_input=dummy_image_input)
412
- print(f"Generated anchored response logits shape: {output_logits_ra.shape}")
413
- print(f"Fact consistency score: {consistency_score.item():.4f}")
414
- print(f"MGO Planning Params (RA): {planning_params_ra.tolist()}")
415
- print(f"MGO Length Control Signal (RA): {length_control_signal_ra.item():.4f}")
416
- except Exception as e:
417
- print(f"Error executing generate_anchored_response (with RA): {e}")
418
-
419
- # 模擬 'retrieve_memory' 命令
420
- try:
421
- print("Executing command: retrieve_memory")
422
- retrieved_memory = agent_interface_ra(command="retrieve_memory", query_text_input=dummy_text_input, query_image_input=dummy_image_input)
423
- print(f"Retrieved memory shape: {retrieved_memory.shape}")
424
- except Exception as e:
425
- print(f"Error executing retrieve_memory: {e}")
426
-
427
- # 保存整合後的模型 (包含 RA)
428
- state_dict_to_save_ra = integrated_model_ra.state_dict()
429
- keys_to_remove_ra = [key for key in state_dict_to_save_ra.keys() if 'vision_encoder' in key]
430
- for key in keys_to_remove_ra:
431
- del state_dict_to_save_ra[key]
432
-
433
- for key in state_dict_to_save_ra:
434
- if isinstance(state_dict_to_save_ra[key], torch.Tensor):
435
- state_dict_to_save_ra[key] = state_dict_to_save_ra[key].contiguous()
436
-
437
- safetensors_save_file(state_dict_to_save_ra, "fully_integrated_model_with_ra_mgo.safetensors")
438
- print("Fully integrated model with RA and MGO saved to fully_integrated_model_with_ra_mgo.safetensors")
439
-