Delete ra_integration_design.py
Browse files- ra_integration_design.py +0 -439
ra_integration_design.py
DELETED
|
@@ -1,439 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
from safetensors.torch import save_file as safetensors_save_file
|
| 6 |
-
from torchvision import models
|
| 7 |
-
import safetensors
|
| 8 |
-
import os
|
| 9 |
-
|
| 10 |
-
# --- 1. 原始模型架構 (從 reconstruct_original_model.py 複製) ---
|
| 11 |
-
class OriginalMoETransformerBlock(nn.Module):
|
| 12 |
-
def __init__(self, input_dim, hidden_dim, output_dim, num_experts):
|
| 13 |
-
super().__init__()
|
| 14 |
-
self.num_experts = num_experts
|
| 15 |
-
self.input_dim = input_dim
|
| 16 |
-
self.hidden_dim = hidden_dim
|
| 17 |
-
self.output_dim = output_dim
|
| 18 |
-
|
| 19 |
-
self.experts_w1 = nn.ModuleList([nn.Linear(input_dim, hidden_dim, bias=False) for _ in range(num_experts)])
|
| 20 |
-
self.experts_w2 = nn.ModuleList([nn.Linear(hidden_dim, output_dim, bias=False) for _ in range(num_experts)])
|
| 21 |
-
self.gate = nn.Linear(input_dim, num_experts, bias=False)
|
| 22 |
-
|
| 23 |
-
def forward(self, x):
|
| 24 |
-
gate_logits = self.gate(x)
|
| 25 |
-
weights = torch.softmax(gate_logits, dim=-1)
|
| 26 |
-
|
| 27 |
-
expert_outputs = torch.empty(x.shape[0], self.num_experts, self.output_dim, device=x.device)
|
| 28 |
-
for i in range(self.num_experts):
|
| 29 |
-
expert_outputs[:, i, :] = self.experts_w2[i](self.experts_w1[i](x))
|
| 30 |
-
|
| 31 |
-
output = torch.sum(expert_outputs * weights.unsqueeze(-1), dim=1)
|
| 32 |
-
|
| 33 |
-
return output
|
| 34 |
-
|
| 35 |
-
class OriginalModelReconstructed(nn.Module):
|
| 36 |
-
def __init__(self, vocab_size, embedding_dim, moe_hidden_dim, num_experts):
|
| 37 |
-
super().__init__()
|
| 38 |
-
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
|
| 39 |
-
self.transformer_block_0 = OriginalMoETransformerBlock(embedding_dim, moe_hidden_dim, embedding_dim, num_experts)
|
| 40 |
-
self.norm = nn.LayerNorm(embedding_dim)
|
| 41 |
-
self.output_layer = nn.Linear(embedding_dim, vocab_size)
|
| 42 |
-
|
| 43 |
-
def forward(self, x):
|
| 44 |
-
x = self.embeddings(x).squeeze(1)
|
| 45 |
-
x = self.transformer_block_0(x)
|
| 46 |
-
x = self.norm(x)
|
| 47 |
-
x = self.output_layer(x)
|
| 48 |
-
return x
|
| 49 |
-
|
| 50 |
-
# --- 2. 記憶共生引擎模組 (Person X Memory Symbiosis Engine) ---
|
| 51 |
-
class MemorySymbiosisEngine(nn.Module):
|
| 52 |
-
def __init__(self, embedding_dim, memory_slots=10, memory_dim=256):
|
| 53 |
-
super().__init__()
|
| 54 |
-
self.memory_slots = memory_slots
|
| 55 |
-
self.memory_dim = memory_dim
|
| 56 |
-
|
| 57 |
-
self.memory_keys = nn.Parameter(torch.randn(memory_slots, memory_dim))
|
| 58 |
-
self.memory_values = nn.Parameter(torch.randn(memory_slots, embedding_dim))
|
| 59 |
-
|
| 60 |
-
self.query_projection = nn.Linear(embedding_dim, memory_dim)
|
| 61 |
-
self.memory_read_fusion = nn.Linear(embedding_dim + embedding_dim, embedding_dim)
|
| 62 |
-
|
| 63 |
-
def forward(self, current_features, user_profile_embedding=None):
|
| 64 |
-
query = self.query_projection(current_features)
|
| 65 |
-
attention_scores = torch.matmul(query, self.memory_keys.T)
|
| 66 |
-
attention_weights = torch.softmax(attention_scores, dim=-1)
|
| 67 |
-
read_memory = torch.matmul(attention_weights, self.memory_values)
|
| 68 |
-
|
| 69 |
-
fused_with_memory = torch.cat((current_features, read_memory), dim=-1)
|
| 70 |
-
output_features = self.memory_read_fusion(fused_with_memory)
|
| 71 |
-
|
| 72 |
-
return output_features
|
| 73 |
-
|
| 74 |
-
# --- 3. 真實錨定 (Reality Anchor, RA) 技術模組 ---
|
| 75 |
-
class RealityAnchor(nn.Module):
|
| 76 |
-
def __init__(self, embedding_dim, fact_memory_size=1000, fact_dim=256, threshold=0.7):
|
| 77 |
-
super().__init__()
|
| 78 |
-
self.fact_memory_size = fact_memory_size
|
| 79 |
-
self.fact_dim = fact_dim
|
| 80 |
-
self.threshold = threshold
|
| 81 |
-
|
| 82 |
-
# 內置的事實記憶庫:這裡用可學習的張量模擬
|
| 83 |
-
# 實際中,這會是一個預訓練的、經過壓縮的知識表示
|
| 84 |
-
self.fact_memory_bank = nn.Parameter(torch.randn(fact_memory_size, fact_dim))
|
| 85 |
-
|
| 86 |
-
# 事實注意力機制 (Fact-Attention) 的查詢投影
|
| 87 |
-
self.fact_query_projection = nn.Linear(embedding_dim, fact_dim)
|
| 88 |
-
|
| 89 |
-
# 調整信號生成模塊 (輕量級神經網絡)
|
| 90 |
-
self.adjustment_module = nn.Sequential(
|
| 91 |
-
nn.Linear(embedding_dim + fact_dim, embedding_dim // 2),
|
| 92 |
-
nn.ReLU(),
|
| 93 |
-
nn.Linear(embedding_dim // 2, embedding_dim) # 輸出與 embedding_dim 相同維度,用於調整
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
# 事實一致性評分器 (這裡簡化為一個線性層)
|
| 97 |
-
self.consistency_scorer = nn.Linear(fact_dim, 1)
|
| 98 |
-
|
| 99 |
-
def forward(self, current_token_embedding, generated_context_embedding):
|
| 100 |
-
# current_token_embedding: 當前生成詞元的嵌入 (batch_size, embedding_dim)
|
| 101 |
-
# generated_context_embedding: 當前生成上下文的嵌入 (batch_size, embedding_dim)
|
| 102 |
-
|
| 103 |
-
# 1. 動態事實檢索與融合 (這裡簡化為基於上下文的檢索)
|
| 104 |
-
# 假設 generated_context_embedding 已經包含了足夠的信息來查詢事實
|
| 105 |
-
fact_query = self.fact_query_projection(generated_context_embedding) # (batch_size, fact_dim)
|
| 106 |
-
|
| 107 |
-
# 近似最近鄰搜索 (這裡簡化為點積相似度)
|
| 108 |
-
similarity_scores = torch.matmul(fact_query, self.fact_memory_bank.T) # (batch_size, fact_memory_size)
|
| 109 |
-
|
| 110 |
-
# 獲取最相關的事實 (這裡取 top-1)
|
| 111 |
-
top_fact_scores, top_fact_indices = torch.topk(similarity_scores, 1, dim=-1)
|
| 112 |
-
retrieved_fact = self.fact_memory_bank[top_fact_indices.squeeze(-1)] # (batch_size, fact_dim)
|
| 113 |
-
|
| 114 |
-
# 2. 事實一致性評分 (Fact Consistency Scoring)
|
| 115 |
-
# 衡量當前詞元嵌入與檢索到的事實的一致性
|
| 116 |
-
# 這裡簡化為直接評分檢索到的事實,實際可能需要更複雜的交互
|
| 117 |
-
fact_consistency_score = torch.sigmoid(self.consistency_scorer(retrieved_fact)) # (batch_size, 1)
|
| 118 |
-
|
| 119 |
-
# 3. 即時調整生成 (Real-Time Generation Adjustment)
|
| 120 |
-
adjustment_signal = torch.zeros_like(current_token_embedding) # 初始化調整信號
|
| 121 |
-
|
| 122 |
-
# 如果事實一致性分數低於閾值,則觸發調整
|
| 123 |
-
# 注意:這裡的閾值判斷是簡化的,實際應用中可能需要更精細的控制
|
| 124 |
-
needs_adjustment = (fact_consistency_score < self.threshold).squeeze(-1) # (batch_size,)
|
| 125 |
-
|
| 126 |
-
if needs_adjustment.any():
|
| 127 |
-
# 組合當前詞元嵌入和檢索到的事實來生成調整信號
|
| 128 |
-
combined_for_adjustment = torch.cat((current_token_embedding[needs_adjustment], retrieved_fact[needs_adjustment]), dim=-1)
|
| 129 |
-
adjustment_signal[needs_adjustment] = self.adjustment_module(combined_for_adjustment)
|
| 130 |
-
|
| 131 |
-
# 將調整信號應用於當前詞元嵌入
|
| 132 |
-
adjusted_token_embedding = current_token_embedding + adjustment_signal
|
| 133 |
-
|
| 134 |
-
return adjusted_token_embedding, fact_consistency_score
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
# --- 4. 多維度生成協調器 (Multidimensional Generation Orchestrator, MGO) 技術模組 ---
|
| 138 |
-
class MultidimensionalGenerationOrchestrator(nn.Module):
|
| 139 |
-
def __init__(self, embedding_dim, vocab_size, max_output_length=50, num_intent_types=5):
|
| 140 |
-
super().__init__()
|
| 141 |
-
self.embedding_dim = embedding_dim
|
| 142 |
-
self.vocab_size = vocab_size
|
| 143 |
-
self.max_output_length = max_output_length
|
| 144 |
-
self.num_intent_types = num_intent_types
|
| 145 |
-
|
| 146 |
-
# 1. 生成意圖解析與分解 (Generation Intent Parsing and Decomposition)
|
| 147 |
-
# 這裡簡化為一個線性層來預測意圖類型
|
| 148 |
-
self.intent_parser = nn.Linear(embedding_dim, num_intent_types)
|
| 149 |
-
self.intent_embedding = nn.Embedding(num_intent_types, embedding_dim) # 意圖嵌入
|
| 150 |
-
|
| 151 |
-
# 2. 多維度生成規劃 (Multidimensional Generation Planning)
|
| 152 |
-
# 這裡簡化為根據意圖調整生成參數
|
| 153 |
-
self.planning_layer = nn.Linear(embedding_dim, 4) # 輸出控制:豐富度、連貫性、長度、風格
|
| 154 |
-
|
| 155 |
-
# 3. 自適應生成引導 (Adaptive Generation Guidance)
|
| 156 |
-
self.guidance_controller = nn.Linear(embedding_dim * 2 + 4, embedding_dim) # 融合上下文、意圖、規劃參數
|
| 157 |
-
self.length_controller = nn.Linear(embedding_dim, 1) # 預測生成終止概率
|
| 158 |
-
|
| 159 |
-
def forward(self, context_embedding, current_output_length=0, target_intent_idx=None):
|
| 160 |
-
# context_embedding: 融合了所有特徵的上下文嵌入 (batch_size, embedding_dim)
|
| 161 |
-
|
| 162 |
-
# 1. 生成意圖解析 (簡化:如果未指定,則從上下文預測)
|
| 163 |
-
if target_intent_idx is None:
|
| 164 |
-
intent_logits = self.intent_parser(context_embedding)
|
| 165 |
-
target_intent_idx = torch.argmax(intent_logits, dim=-1) # (batch_size,)
|
| 166 |
-
|
| 167 |
-
intent_embedding = self.intent_embedding(target_intent_idx) # (batch_size, embedding_dim)
|
| 168 |
-
|
| 169 |
-
# 2. 多維度生成規劃
|
| 170 |
-
planning_params = torch.sigmoid(self.planning_layer(intent_embedding)) # (batch_size, 4)
|
| 171 |
-
# planning_params: [content_richness, semantic_coherence, length_target_ratio, style_adaptability]
|
| 172 |
-
|
| 173 |
-
# 3. 自適應生成引導
|
| 174 |
-
# 組合上下文、意圖嵌入和規劃參數
|
| 175 |
-
combined_guidance_input = torch.cat([
|
| 176 |
-
context_embedding,
|
| 177 |
-
intent_embedding,
|
| 178 |
-
planning_params
|
| 179 |
-
], dim=-1)
|
| 180 |
-
guidance_signal = self.guidance_controller(combined_guidance_input) # (batch_size, embedding_dim)
|
| 181 |
-
|
| 182 |
-
# 長度控制
|
| 183 |
-
length_control_signal = torch.sigmoid(self.length_controller(context_embedding)) # (batch_size, 1)
|
| 184 |
-
# 這個信號可以被用來調整生成終止的概率
|
| 185 |
-
|
| 186 |
-
# 這裡返回引導信號和規劃參數,供外部模型使用來調整生成過程
|
| 187 |
-
return guidance_signal, planning_params, length_control_signal
|
| 188 |
-
|
| 189 |
-
# --- 5. 智能體生態框架接口 (Agent Matrix Intelligent Agent Ecosystem Framework) ---
|
| 190 |
-
class AgentMatrixInterface(nn.Module):
|
| 191 |
-
def __init__(self, model_core):
|
| 192 |
-
super().__init__()
|
| 193 |
-
self.model_core = model_core
|
| 194 |
-
self.task_mapping = {
|
| 195 |
-
"analyze_image_text": self._analyze_image_text,
|
| 196 |
-
"retrieve_memory": self._retrieve_memory,
|
| 197 |
-
"generate_response": self._generate_response,
|
| 198 |
-
"generate_anchored_response": self._generate_anchored_response # 新增 RA 命令
|
| 199 |
-
}
|
| 200 |
-
|
| 201 |
-
def _analyze_image_text(self, text_input, image_input):
|
| 202 |
-
return self.model_core(text_input, image_input, return_fused_features=True)
|
| 203 |
-
|
| 204 |
-
def _retrieve_memory(self, query_text_input, query_image_input=None):
|
| 205 |
-
text_features = self.model_core.embeddings(query_text_input)
|
| 206 |
-
if text_features.dim() == 3:
|
| 207 |
-
text_features = text_features.squeeze(1)
|
| 208 |
-
|
| 209 |
-
if query_image_input is not None:
|
| 210 |
-
image_features = self.model_core.vision_encoder(query_image_input)
|
| 211 |
-
image_features = image_features.view(image_features.size(0), -1)
|
| 212 |
-
image_features = self.model_core.vision_projection(image_features)
|
| 213 |
-
current_features = self.model_core.initial_fusion_layer(torch.cat((text_features, image_features), dim=1))
|
| 214 |
-
else:
|
| 215 |
-
current_features = text_features
|
| 216 |
-
|
| 217 |
-
return self.model_core.memory_engine(current_features)
|
| 218 |
-
|
| 219 |
-
def _generate_response(self, text_input, image_input):
|
| 220 |
-
# 這裡調用原始的 forward 方法,不啟用 RA
|
| 221 |
-
return self.model_core(text_input, image_input, use_ra=False)
|
| 222 |
-
|
| 223 |
-
def _generate_anchored_response(self, text_input, image_input):
|
| 224 |
-
# 這裡調用啟用 RA 的 forward 方法
|
| 225 |
-
return self.model_core(text_input, image_input, use_ra=True)
|
| 226 |
-
|
| 227 |
-
def forward(self, command, **kwargs):
|
| 228 |
-
if command in self.task_mapping:
|
| 229 |
-
if command.startswith("generate"):
|
| 230 |
-
# 生成相關的命令現在返回多個值
|
| 231 |
-
if command == "generate_anchored_response":
|
| 232 |
-
logits, consistency_score, planning_params, length_control_signal = self.task_mapping[command](**kwargs)
|
| 233 |
-
return logits, consistency_score, planning_params, length_control_signal
|
| 234 |
-
else:
|
| 235 |
-
logits, planning_params, length_control_signal = self.task_mapping[command](**kwargs)
|
| 236 |
-
return logits, planning_params, length_control_signal
|
| 237 |
-
else:
|
| 238 |
-
return self.task_mapping[command](**kwargs)
|
| 239 |
-
else:
|
| 240 |
-
raise ValueError(f"Unknown command: {command}")
|
| 241 |
-
|
| 242 |
-
# --- 5. 整合後的完整模型架構 (包含 RA) ---
|
| 243 |
-
class FullyIntegratedModelWithRA(nn.Module):
|
| 244 |
-
def __init__(self, original_model_path, vocab_size, embedding_dim, moe_hidden_dim, num_experts, visual_feature_dim=256,
|
| 245 |
-
memory_slots=10, memory_dim=256, fact_memory_size=1000, fact_dim=256, ra_threshold=0.7):
|
| 246 |
-
super().__init__()
|
| 247 |
-
|
| 248 |
-
state_dict = {}
|
| 249 |
-
if original_model_path and os.path.exists(original_model_path):
|
| 250 |
-
with safetensors.safe_open(original_model_path, framework="pt", device="cpu") as f:
|
| 251 |
-
for key in f.keys():
|
| 252 |
-
state_dict[key] = f.get_tensor(key)
|
| 253 |
-
|
| 254 |
-
original_vocab_size = 5000 # 假設原始模型的詞彙量
|
| 255 |
-
original_embedding_dim = 64 # 假設原始模型的 embedding_dim
|
| 256 |
-
|
| 257 |
-
# 判斷是否需要重新初始化 OriginalMoETransformerBlock 和 LayerNorm
|
| 258 |
-
# 如果 embedding_dim 或 moe_hidden_dim 改變,則不載入原始權重,讓其重新初始化
|
| 259 |
-
if embedding_dim != original_embedding_dim or moe_hidden_dim != 192: # 假設原始 moe_hidden_dim 是 192
|
| 260 |
-
print("Embedding_dim or moe_hidden_dim changed. OriginalMoETransformerBlock and LayerNorm will be reinitialized.")
|
| 261 |
-
self.original_model_core = OriginalModelReconstructed(vocab_size, embedding_dim, moe_hidden_dim, num_experts)
|
| 262 |
-
# 這些層將是可訓練的
|
| 263 |
-
else:
|
| 264 |
-
self.original_model_core = OriginalModelReconstructed(original_vocab_size, original_embedding_dim, moe_hidden_dim, num_experts)
|
| 265 |
-
# 載入原始權重到核心模型 (如果存在)
|
| 266 |
-
if state_dict:
|
| 267 |
-
print("Loading original model weights...")
|
| 268 |
-
self.original_model_core.norm.weight.data = state_dict["gamma"]
|
| 269 |
-
self.original_model_core.norm.bias.data = state_dict["beta"]
|
| 270 |
-
for i in range(num_experts):
|
| 271 |
-
self.original_model_core.transformer_block_0.experts_w1[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w1.weight"][i].T
|
| 272 |
-
self.original_model_core.transformer_block_0.experts_w2[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w2.weight"][i].T
|
| 273 |
-
self.original_model_core.transformer_block_0.gate.weight.data = state_dict["transformer_block.0.moe.gate.weight"].T
|
| 274 |
-
print("Original model weights loaded.")
|
| 275 |
-
|
| 276 |
-
for param in self.original_model_core.transformer_block_0.parameters():
|
| 277 |
-
param.requires_grad = False
|
| 278 |
-
for param in self.original_model_core.norm.parameters():
|
| 279 |
-
param.requires_grad = False
|
| 280 |
-
|
| 281 |
-
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
|
| 282 |
-
self.output_layer = nn.Linear(embedding_dim, vocab_size)
|
| 283 |
-
|
| 284 |
-
self.vision_encoder = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)
|
| 285 |
-
self.vision_encoder = nn.Sequential(*list(self.vision_encoder.children())[:-1])
|
| 286 |
-
self.vision_projection = nn.Linear(512, visual_feature_dim)
|
| 287 |
-
|
| 288 |
-
for param in self.vision_encoder.parameters():
|
| 289 |
-
param.requires_grad = False
|
| 290 |
-
|
| 291 |
-
self.initial_fusion_layer = nn.Linear(visual_feature_dim + embedding_dim, embedding_dim)
|
| 292 |
-
|
| 293 |
-
self.memory_engine = MemorySymbiosisEngine(embedding_dim, memory_slots, memory_dim)
|
| 294 |
-
|
| 295 |
-
# 引入 Reality Anchor 模組
|
| 296 |
-
self.reality_anchor = RealityAnchor(embedding_dim, fact_memory_size, fact_dim, ra_threshold)
|
| 297 |
-
|
| 298 |
-
# 引入 Multidimensional Generation Orchestrator (MGO) 模組
|
| 299 |
-
self.mgo = MultidimensionalGenerationOrchestrator(embedding_dim, vocab_size)
|
| 300 |
-
|
| 301 |
-
def forward(self, text_input, image_input, user_profile_embedding=None, use_ra=False, return_fused_features=False):
|
| 302 |
-
text_features = self.embeddings(text_input)
|
| 303 |
-
if text_features.dim() == 3:
|
| 304 |
-
text_features = text_features.squeeze(1)
|
| 305 |
-
|
| 306 |
-
image_features = self.vision_encoder(image_input)
|
| 307 |
-
image_features = image_features.view(image_features.size(0), -1)
|
| 308 |
-
image_features = self.vision_projection(image_features)
|
| 309 |
-
|
| 310 |
-
fused_initial_features = self.initial_fusion_layer(torch.cat((text_features, image_features), dim=1))
|
| 311 |
-
|
| 312 |
-
if return_fused_features:
|
| 313 |
-
return fused_initial_features
|
| 314 |
-
|
| 315 |
-
memory_enhanced_features = self.memory_engine(fused_initial_features, user_profile_embedding)
|
| 316 |
-
|
| 317 |
-
# 應用 Reality Anchor (RA) 技術
|
| 318 |
-
if use_ra:
|
| 319 |
-
# 在這裡,我們假設 memory_enhanced_features 作為生成上下文的嵌入
|
| 320 |
-
# 並將其作為 current_token_embedding 傳遞給 RA 進行調 # 實際應用中, RA 可能會更細粒度地作用於每個生成的 token
|
| 321 |
-
adjusted_features, consistency_score = self.reality_anchor(memory_enhanced_features, memory_enhanced_features) # 簡化: 上下文和當前 token 相同
|
| 322 |
-
x = self.original_model_core.transformer_block_0(adjusted_features)
|
| 323 |
-
else:
|
| 324 |
-
x = self.original_model_core.transformer_block_0(memory_enhanced_features)
|
| 325 |
-
|
| 326 |
-
x = self.original_model_core.norm(x)
|
| 327 |
-
final_features = x # 將 x 賦值給 final_features, 以便 MGO 處理
|
| 328 |
-
|
| 329 |
-
# 應用 Multidimensional Generation Orchestrator (MGO) 技術
|
| 330 |
-
guidance_signal, planning_params, length_control_signal = self.mgo(final_features, current_output_length=0, target_intent_idx=None)
|
| 331 |
-
final_features = final_features + guidance_signal # 疊加引導信號
|
| 332 |
-
|
| 333 |
-
output = self.output_layer(final_features)
|
| 334 |
-
|
| 335 |
-
if use_ra:
|
| 336 |
-
return output, consistency_score, planning_params, length_control_signal
|
| 337 |
-
else:
|
| 338 |
-
return output, planning_params, length_control_signal
|
| 339 |
-
|
| 340 |
-
if __name__ == "__main__":
|
| 341 |
-
original_model_path = "/home/ubuntu/upload/moe_model.safetensors"
|
| 342 |
-
|
| 343 |
-
vocab_size = 10000 # 詞彙量保持不變
|
| 344 |
-
embedding_dim = 128 # 增加嵌入維度以增加參數
|
| 345 |
-
moe_hidden_dim = 384 # 增加 MoE 隱藏維度以增加參數
|
| 346 |
-
num_experts = 16
|
| 347 |
-
visual_feature_dim = 256
|
| 348 |
-
memory_slots = 10
|
| 349 |
-
memory_dim = 256
|
| 350 |
-
fact_memory_size = 1000
|
| 351 |
-
fact_dim = 256
|
| 352 |
-
ra_threshold = 0.7
|
| 353 |
-
|
| 354 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 355 |
-
|
| 356 |
-
# 初始化整合模型 (包含 RA)
|
| 357 |
-
integrated_model_ra = FullyIntegratedModelWithRA(
|
| 358 |
-
original_model_path=original_model_path,
|
| 359 |
-
vocab_size=vocab_size,
|
| 360 |
-
embedding_dim=embedding_dim,
|
| 361 |
-
moe_hidden_dim=moe_hidden_dim,
|
| 362 |
-
num_experts=num_experts,
|
| 363 |
-
visual_feature_dim=visual_feature_dim,
|
| 364 |
-
memory_slots=memory_slots,
|
| 365 |
-
memory_dim=memory_dim,
|
| 366 |
-
fact_memory_size=fact_memory_size,
|
| 367 |
-
fact_dim=fact_dim,
|
| 368 |
-
ra_threshold=ra_threshold
|
| 369 |
-
).to(device)
|
| 370 |
-
integrated_model_ra.eval() # 設置為評估模式
|
| 371 |
-
|
| 372 |
-
print("Fully Integrated Model with RA initialized successfully.")
|
| 373 |
-
|
| 374 |
-
# 計算總參數數量
|
| 375 |
-
total_trainable_params = sum(p.numel() for p in integrated_model_ra.parameters() if p.requires_grad)
|
| 376 |
-
print(f"Total trainable parameters: {total_trainable_params / 1_000_000:.2f}M")
|
| 377 |
-
total_all_params = sum(p.numel() for p in integrated_model_ra.parameters())
|
| 378 |
-
print(f"Total all parameters (including frozen): {total_all_params / 1_000_000:.2f}M")
|
| 379 |
-
|
| 380 |
-
# --- 模擬 Agent Matrix 框架交互 (包含 RA 命令) ---
|
| 381 |
-
agent_interface_ra = AgentMatrixInterface(integrated_model_ra)
|
| 382 |
-
print("Agent Matrix Interface with RA initialized.")
|
| 383 |
-
|
| 384 |
-
# 模擬輸入
|
| 385 |
-
dummy_text_input = torch.tensor([[100]], dtype=torch.long).to(device) # Batch size 1, 1 token
|
| 386 |
-
dummy_image_input = torch.randn(1, 3, 224, 224).to(device) # Batch size 1, 3 channels, 224x224
|
| 387 |
-
|
| 388 |
-
print("\n--- Simulating Agent Matrix Commands (with RA) ---")
|
| 389 |
-
|
| 390 |
-
# 模擬 'analyze_image_text' 命令
|
| 391 |
-
try:
|
| 392 |
-
print("Executing command: analyze_image_text")
|
| 393 |
-
fused_features = agent_interface_ra(command="analyze_image_text", text_input=dummy_text_input, image_input=dummy_image_input)
|
| 394 |
-
print(f"Analyzed features shape: {fused_features.shape}")
|
| 395 |
-
except Exception as e:
|
| 396 |
-
print(f"Error executing analyze_image_text: {e}")
|
| 397 |
-
|
| 398 |
-
# 模擬 'generate_response' 命令 (不啟用 RA)
|
| 399 |
-
try:
|
| 400 |
-
print("Executing command: generate_response (without RA)")
|
| 401 |
-
output_logits, planning_params, length_control_signal = agent_interface_ra(command="generate_response", text_input=dummy_text_input, image_input=dummy_image_input)
|
| 402 |
-
print(f"Generated response logits shape: {output_logits.shape}")
|
| 403 |
-
print(f"MGO Planning Params: {planning_params.tolist()}")
|
| 404 |
-
print(f"MGO Length Control Signal: {length_control_signal.item():.4f}")
|
| 405 |
-
except Exception as e:
|
| 406 |
-
print(f"Error executing generate_response (without RA): {e}")
|
| 407 |
-
|
| 408 |
-
# 模擬 'generate_anchored_response' 命令 (啟用 RA)
|
| 409 |
-
try:
|
| 410 |
-
print("Executing command: generate_anchored_response (with RA)")
|
| 411 |
-
output_logits_ra, consistency_score, planning_params_ra, length_control_signal_ra = agent_interface_ra(command="generate_anchored_response", text_input=dummy_text_input, image_input=dummy_image_input)
|
| 412 |
-
print(f"Generated anchored response logits shape: {output_logits_ra.shape}")
|
| 413 |
-
print(f"Fact consistency score: {consistency_score.item():.4f}")
|
| 414 |
-
print(f"MGO Planning Params (RA): {planning_params_ra.tolist()}")
|
| 415 |
-
print(f"MGO Length Control Signal (RA): {length_control_signal_ra.item():.4f}")
|
| 416 |
-
except Exception as e:
|
| 417 |
-
print(f"Error executing generate_anchored_response (with RA): {e}")
|
| 418 |
-
|
| 419 |
-
# 模擬 'retrieve_memory' 命令
|
| 420 |
-
try:
|
| 421 |
-
print("Executing command: retrieve_memory")
|
| 422 |
-
retrieved_memory = agent_interface_ra(command="retrieve_memory", query_text_input=dummy_text_input, query_image_input=dummy_image_input)
|
| 423 |
-
print(f"Retrieved memory shape: {retrieved_memory.shape}")
|
| 424 |
-
except Exception as e:
|
| 425 |
-
print(f"Error executing retrieve_memory: {e}")
|
| 426 |
-
|
| 427 |
-
# 保存整合後的模型 (包含 RA)
|
| 428 |
-
state_dict_to_save_ra = integrated_model_ra.state_dict()
|
| 429 |
-
keys_to_remove_ra = [key for key in state_dict_to_save_ra.keys() if 'vision_encoder' in key]
|
| 430 |
-
for key in keys_to_remove_ra:
|
| 431 |
-
del state_dict_to_save_ra[key]
|
| 432 |
-
|
| 433 |
-
for key in state_dict_to_save_ra:
|
| 434 |
-
if isinstance(state_dict_to_save_ra[key], torch.Tensor):
|
| 435 |
-
state_dict_to_save_ra[key] = state_dict_to_save_ra[key].contiguous()
|
| 436 |
-
|
| 437 |
-
safetensors_save_file(state_dict_to_save_ra, "fully_integrated_model_with_ra_mgo.safetensors")
|
| 438 |
-
print("Fully integrated model with RA and MGO saved to fully_integrated_model_with_ra_mgo.safetensors")
|
| 439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|