Cogent-ai commited on
Commit
7c25b28
·
verified ·
1 Parent(s): b32a25e

Delete integrated_model_design.py

Browse files
Files changed (1) hide show
  1. integrated_model_design.py +0 -341
integrated_model_design.py DELETED
@@ -1,341 +0,0 @@
1
-
2
- import torch
3
- import torch.nn as nn
4
- from safetensors.torch import save_file as safetensors_save_file
5
- from torchvision import models, transforms
6
- from PIL import Image
7
- import safetensors
8
- import os
9
-
10
- # --- 1. 原始模型架構 (從 reconstruct_original_model.py 複製) ---
11
- class OriginalMoETransformerBlock(nn.Module):
12
- def __init__(self, input_dim, hidden_dim, output_dim, num_experts):
13
- super().__init__()
14
- self.num_experts = num_experts
15
- self.input_dim = input_dim
16
- self.hidden_dim = hidden_dim
17
- self.output_dim = output_dim
18
-
19
- self.experts_w1 = nn.ModuleList([nn.Linear(input_dim, hidden_dim, bias=False) for _ in range(num_experts)])
20
- self.experts_w2 = nn.ModuleList([nn.Linear(hidden_dim, output_dim, bias=False) for _ in range(num_experts)])
21
- self.gate = nn.Linear(input_dim, num_experts, bias=False)
22
-
23
- def forward(self, x):
24
- gate_logits = self.gate(x)
25
- weights = torch.softmax(gate_logits, dim=-1)
26
-
27
- expert_outputs = torch.empty(x.shape[0], self.num_experts, self.output_dim, device=x.device)
28
- for i in range(self.num_experts):
29
- expert_outputs[:, i, :] = self.experts_w2[i](self.experts_w1[i](x))
30
-
31
- output = torch.sum(expert_outputs * weights.unsqueeze(-1), dim=1)
32
-
33
- return output
34
-
35
- class OriginalModelReconstructed(nn.Module):
36
- def __init__(self, vocab_size, embedding_dim, moe_hidden_dim, num_experts):
37
- super().__init__()
38
- self.embeddings = nn.Embedding(vocab_size, embedding_dim)
39
- self.transformer_block_0 = OriginalMoETransformerBlock(embedding_dim, moe_hidden_dim, embedding_dim, num_experts)
40
- self.norm = nn.LayerNorm(embedding_dim)
41
- self.output_layer = nn.Linear(embedding_dim, vocab_size)
42
-
43
- def forward(self, x):
44
- x = self.embeddings(x).squeeze(1)
45
- x = self.transformer_block_0(x)
46
- x = self.norm(x)
47
- x = self.output_layer(x)
48
- return x
49
-
50
- # --- 2. 記憶共生引擎模組 (Person X Memory Symbiosis Engine) ---
51
- # 這個模組將負責存儲、檢索和整合用戶的歷史記憶。
52
- # 這裡我們使用一個簡化的記憶網絡作為示例,實際實現會更複雜。
53
- class MemorySymbiosisEngine(nn.Module):
54
- def __init__(self, embedding_dim, memory_slots=10, memory_dim=256):
55
- super().__init__()
56
- self.memory_slots = memory_slots
57
- self.memory_dim = memory_dim
58
-
59
- # 記憶存儲:簡單的鍵值對記憶,這裡用可學習的張量模擬
60
- self.memory_keys = nn.Parameter(torch.randn(memory_slots, memory_dim))
61
- self.memory_values = nn.Parameter(torch.randn(memory_slots, embedding_dim)) # 存儲與 embedding_dim 兼容的記憶
62
-
63
- # 記憶讀取機制:使用注意力機制從記憶中檢索相關信息
64
- self.query_projection = nn.Linear(embedding_dim, memory_dim)
65
- self.memory_read_fusion = nn.Linear(embedding_dim + embedding_dim, embedding_dim) # 融合查詢和讀取到的記憶
66
-
67
- def forward(self, current_features, user_profile_embedding=None):
68
- # current_features: 當前輸入的融合特徵 (batch_size, embedding_dim)
69
-
70
- # 生成查詢向量
71
- query = self.query_projection(current_features) # (batch_size, memory_dim)
72
-
73
- # 計算查詢與記憶鍵的相似度 (點積注意力)
74
- attention_scores = torch.matmul(query, self.memory_keys.T) # (batch_size, memory_slots)
75
- attention_weights = torch.softmax(attention_scores, dim=-1) # (batch_size, memory_slots)
76
-
77
- # 根據權重讀取記憶值
78
- read_memory = torch.matmul(attention_weights, self.memory_values) # (batch_size, embedding_dim)
79
-
80
- # 將讀取到的記憶與當前特徵融合
81
- fused_with_memory = torch.cat((current_features, read_memory), dim=-1)
82
- output_features = self.memory_read_fusion(fused_with_memory)
83
-
84
- # 記憶更新機制 (簡化:這裡不實作複雜的記憶寫入,假定記憶是預訓練或緩慢更新的)
85
- return output_features
86
-
87
- # --- 3. 智能體生態框架接口 (Agent Matrix Intelligent Agent Ecosystem Framework) ---
88
- # 這個模組將作為模型與外部 Agent Matrix 框架交互的接口。
89
- # 模型本身作為一個智能體,接收指令,輸出結果。
90
- # 這裡我們用一個簡單的接口類來模擬,實際的框架交互會通過 RPC 或消息隊列實現。
91
- class AgentMatrixInterface(nn.Module):
92
- def __init__(self, model_core):
93
- super().__init__()
94
- self.model_core = model_core # 核心模型,負責處理多模態輸入和記憶
95
-
96
- # 假設 Agent Matrix 框架會通過一個 "command" 來指示模型執行什麼任務
97
- # 這裡我們模擬一個簡單的任務映射
98
- self.task_mapping = {
99
- "analyze_image_text": self._analyze_image_text,
100
- "retrieve_memory": self._retrieve_memory,
101
- "generate_response": self._generate_response
102
- }
103
-
104
- def _analyze_image_text(self, text_input, image_input):
105
- # 這裡調用核心模型的前向傳播,獲取輸出
106
- return self.model_core(text_input, image_input, return_fused_features=True) # 返回融合後的特徵
107
-
108
- def _retrieve_memory(self, query_text_input, query_image_input=None):
109
- # 模擬記憶檢索,可能需要一個單獨的記憶查詢模組
110
- # 暫時直接調用核心模型,讓記憶模組自行處理
111
- # 這裡我們假設模型能夠在 forward 內部處理記憶檢索
112
- dummy_image = torch.randn(1, 3, 224, 224) # 假設一個 dummy image
113
- dummy_text = torch.tensor([0]) # 假設一個 dummy text token
114
- # 為了演示,直接從記憶引擎讀取
115
- text_features = self.model_core.embeddings(query_text_input)
116
- if text_features.dim() == 3:
117
- text_features = text_features.squeeze(1)
118
-
119
- if query_image_input is not None:
120
- image_features = self.model_core.vision_encoder(query_image_input)
121
- image_features = image_features.view(image_features.size(0), -1)
122
- image_features = self.model_core.vision_projection(image_features)
123
- current_features = self.model_core.initial_fusion_layer(torch.cat((text_features, image_features), dim=1))
124
- else:
125
- current_features = text_features # 如果沒有圖像輸入,則只使用文本特徵
126
-
127
- return self.model_core.memory_engine(current_features)
128
-
129
- def _generate_response(self, text_input, image_input):
130
- return self.model_core(text_input, image_input)
131
-
132
- def forward(self, command, **kwargs):
133
- if command in self.task_mapping:
134
- return self.task_mapping[command](**kwargs)
135
- else:
136
- raise ValueError(f"Unknown command: {command}")
137
-
138
- # --- 4. 整合後的完整模型架構 ---
139
- # 整合 On-Device Compute 的考慮:
140
- # 這裡的架構設計本身就是輕量化的,embedding_dim 較小。
141
- # 為了實現 On-Device Compute,我們在訓練後會對模型進行量化、剪枝等優化。
142
- # 這部分不會直接體現在 PyTorch 模型定義中,而是在部署時進行。
143
-
144
- class FullyIntegratedModel(nn.Module):
145
- def __init__(self, original_model_path, vocab_size, embedding_dim, moe_hidden_dim, num_experts, visual_feature_dim=256,
146
- memory_slots=10, memory_dim=256):
147
- super().__init__()
148
-
149
- state_dict = {}
150
- if original_model_path:
151
- with safetensors.safe_open(original_model_path, framework="pt", device="cpu") as f:
152
- for key in f.keys():
153
- state_dict[key] = f.get_tensor(key)
154
-
155
- # 原始模型的核心部分,詞彙量和嵌入維度保持與原始模型兼容
156
- # 這裡我們使用原始的 vocab_size 和 embedding_dim 來載入原始模型的 MoE 權重
157
- # 之後我們會替換 embeddings 和 output_layer 以支持新的 vocab_size
158
- original_vocab_size = 5000 # 假設原始模型的詞彙量
159
- original_embedding_dim = 64 # 假設原始模型的 embedding_dim
160
-
161
- self.original_model_core = OriginalModelReconstructed(original_vocab_size, original_embedding_dim, moe_hidden_dim, num_experts)
162
-
163
- # 載入原始權重到核心模型
164
- self.original_model_core.norm.weight.data = state_dict["gamma"]
165
- self.original_model_core.norm.bias.data = state_dict["beta"]
166
- for i in range(num_experts):
167
- self.original_model_core.transformer_block_0.experts_w1[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w1.weight"][i].T
168
- self.original_model_core.transformer_block_0.experts_w2[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w2.weight"][i].T
169
- self.original_model_core.transformer_block_0.gate.weight.data = state_dict["transformer_block.0.moe.gate.weight"].T
170
-
171
- # 凍結原始模型的 Transformer Block 和 LayerNorm 權重
172
- for param in self.original_model_core.transformer_block_0.parameters():
173
- param.requires_grad = False
174
- for param in self.original_model_core.norm.parameters():
175
- param.requires_grad = False
176
-
177
- # 重新定義 embeddings 和 output_layer 以支持新的 vocab_size
178
- self.embeddings = nn.Embedding(vocab_size, embedding_dim)
179
- self.output_layer = nn.Linear(embedding_dim, vocab_size)
180
-
181
- # 視覺前端:使用預訓練的 ResNet18 作為圖像編碼器
182
- print("Initializing vision encoder (ResNet18). This may take some time to download weights...")
183
- self.vision_encoder = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)
184
- self.vision_encoder = nn.Sequential(*list(self.vision_encoder.children())[:-1])
185
- print("Vision encoder initialized.")
186
- self.vision_projection = nn.Linear(512, visual_feature_dim)
187
-
188
- # 凍結視覺編碼器權重
189
- for param in self.vision_encoder.parameters():
190
- param.requires_grad = False
191
-
192
- # 特徵融合層:將視覺特徵與文本特徵融合
193
- # 這��的 embedding_dim 是新的 embedding_dim
194
- self.initial_fusion_layer = nn.Linear(visual_feature_dim + embedding_dim, embedding_dim)
195
-
196
- # 記憶共生引擎
197
- self.memory_engine = MemorySymbiosisEngine(embedding_dim, memory_slots, memory_dim)
198
-
199
- # 最終融合層:融合記憶引擎的輸出
200
- self.final_fusion_layer = nn.Linear(embedding_dim, embedding_dim) # 記憶引擎輸出也是 embedding_dim
201
-
202
- def forward(self, text_input, image_input, user_profile_embedding=None, return_fused_features=False):
203
- # 1. 處理文本輸入
204
- text_features = self.embeddings(text_input)
205
- if text_features.dim() == 3:
206
- text_features = text_features.squeeze(1)
207
-
208
- # 2. 處理圖像輸入
209
- image_features = self.vision_encoder(image_input)
210
- image_features = image_features.view(image_features.size(0), -1)
211
- image_features = self.vision_projection(image_features)
212
-
213
- # 3. 初始特徵融合 (文本 + 視覺)
214
- fused_initial_features = torch.cat((text_features, image_features), dim=1)
215
- fused_initial_features = self.initial_fusion_layer(fused_initial_features)
216
-
217
- if return_fused_features:
218
- return fused_initial_features
219
-
220
- # 4. 記憶共生引擎處理
221
- # 將融合後的特徵傳遞給記憶引擎,獲取記憶增強後的特徵
222
- memory_enhanced_features = self.memory_engine(fused_initial_features, user_profile_embedding)
223
-
224
- # 5. 最終融合層 (可選,這裡直接使用記憶引擎的輸出)
225
- # memory_enhanced_features = self.final_fusion_layer(memory_enhanced_features)
226
-
227
- # 6. 傳遞給原始模型的 MoE Transformer Block
228
- # 這裡使用 self.original_model_core 的 transformer_block_0 和 norm
229
- x = self.original_model_core.transformer_block_0(memory_enhanced_features)
230
- x = self.original_model_core.norm(x)
231
-
232
- # 7. 輸出層
233
- output = self.output_layer(x)
234
- return output
235
-
236
-
237
- # 範例使用
238
- if __name__ == "__main__":
239
- original_model_path = "/home/ubuntu/upload/moe_model.safetensors"
240
-
241
- # 模型參數
242
- # 這裡的 vocab_size 和 embedding_dim 應該與您在 integrate_vision_retained.py 中使用的兼容
243
- # 為了演示,我們使用一個較小的 vocab_size 和 embedding_dim
244
- vocab_size = 10000 # 示例詞彙量
245
- embedding_dim = 64 # 嵌入維度,與原始 MoE Block 兼容
246
- moe_hidden_dim = 192
247
- num_experts = 16
248
- visual_feature_dim = 256
249
- memory_slots = 10
250
- memory_dim = 256
251
-
252
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
253
-
254
- # 初始化整合模型
255
- integrated_model = FullyIntegratedModel(
256
- original_model_path=original_model_path,
257
- vocab_size=vocab_size,
258
- embedding_dim=embedding_dim,
259
- moe_hidden_dim=moe_hidden_dim,
260
- num_experts=num_experts,
261
- visual_feature_dim=visual_feature_dim,
262
- memory_slots=memory_slots,
263
- memory_dim=memory_dim
264
- ).to(device)
265
- integrated_model.eval() # 設置為評估模式
266
-
267
- print("Fully Integrated Model initialized successfully.")
268
-
269
- # 檢查 ResNet18 是否已下載
270
- resnet_cache_dir = torch.hub.get_dir()
271
- print(f"PyTorch Hub cache directory: {resnet_cache_dir}")
272
- resnet_weights_path = os.path.join(resnet_cache_dir, "checkpoints", "resnet18-f37072fd.pth")
273
- if os.path.exists(resnet_weights_path):
274
- print(f"ResNet18 weights found at: {resnet_weights_path}")
275
- else:
276
- print("ResNet18 weights not found in cache. They might be downloaded during initialization.")
277
-
278
- # 計算總參數數量
279
- total_params = sum(p.numel() for p in integrated_model.parameters() if p.requires_grad)
280
- print(f"Total trainable parameters: {total_params / 1_000_000:.2f}M")
281
- total_all_params = sum(p.numel() for p in integrated_model.parameters())
282
- print(f"Total all parameters (including frozen): {total_all_params / 1_000_000:.2f}M")
283
-
284
- # --- 模擬 Agent Matrix 框架交互 ---
285
- agent_interface = AgentMatrixInterface(integrated_model)
286
- print("Agent Matrix Interface initialized.")
287
-
288
- # 模擬輸入
289
- dummy_text_input = torch.tensor([[100]], dtype=torch.long).to(device) # Batch size 1, 1 token
290
- dummy_image_input = torch.randn(1, 3, 224, 224).to(device) # Batch size 1, 3 channels, 224x224
291
-
292
- print("\n--- Simulating Agent Matrix Commands ---")
293
-
294
- # 模擬 'analyze_image_text' 命令
295
- try:
296
- print("Executing command: analyze_image_text")
297
- fused_features = agent_interface(command="analyze_image_text", text_input=dummy_text_input, image_input=dummy_image_input)
298
- print(f"Analyzed features shape: {fused_features.shape}")
299
- except Exception as e:
300
- print(f"Error executing analyze_image_text: {e}")
301
-
302
- # 模擬 'generate_response' 命令
303
- try:
304
- print("Executing command: generate_response")
305
- output_logits = agent_interface(command="generate_response", text_input=dummy_text_input, image_input=dummy_image_input)
306
- print(f"Generated response logits shape: {output_logits.shape}")
307
- except Exception as e:
308
- print(f"Error executing generate_response: {e}")
309
-
310
- # 模擬 'retrieve_memory' 命令
311
- try:
312
- print("Executing command: retrieve_memory")
313
- retrieved_memory = agent_interface(command="retrieve_memory", query_text_input=dummy_text_input, query_image_input=dummy_image_input)
314
- print(f"Retrieved memory shape: {retrieved_memory.shape}")
315
- except Exception as e:
316
- print(f"Error executing retrieve_memory: {e}")
317
-
318
- # 保存整合後的模型 (只保存可訓練的參數)
319
- state_dict_to_save = integrated_model.state_dict()
320
- # 移除凍結的 vision_encoder 權重,因為它們是預訓練的,不需要保存到 safetensors
321
- keys_to_remove = [key for key in state_dict_to_save.keys() if 'vision_encoder' in key]
322
- for key in keys_to_remove:
323
- del state_dict_to_save[key]
324
-
325
- # 確保所有張量都是連續的
326
- for key in state_dict_to_save:
327
- if isinstance(state_dict_to_save[key], torch.Tensor):
328
- state_dict_to_save[key] = state_dict_to_save[key].contiguous()
329
-
330
- safetensors_save_file(state_dict_to_save, "fully_integrated_model.safetensors")
331
- print("Fully integrated model saved to fully_integrated_model.safetensors")
332
-
333
- # --- On-Device Compute 部署考慮 (此處僅為說明,不實作) ---
334
- print("\n--- On-Device Compute Considerations ---")
335
- print("To enable On-Device Compute, this model would typically undergo further optimization steps after training:")
336
- print("1. Quantization: Convert model weights and activations to lower precision (e.g., INT8) to reduce size and speed up inference.")
337
- print("2. Pruning: Remove redundant connections/neurons to make the model sparse.")
338
- print("3. Export to optimized formats: Convert to formats like ONNX, TensorFlow Lite, or Core ML for efficient deployment on edge devices.")
339
- print("4. Hardware-specific optimization: Utilize dedicated AI accelerators (NPUs) on target devices.")
340
- print("These steps are part of the deployment pipeline and are not directly implemented in the PyTorch model definition.")
341
-