File size: 7,879 Bytes
f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 3ca8d29 79db6b6 f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 f659e16 79db6b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
---
library_name: transformers
license: cc-by-nc-sa-4.0
pipeline_tag: text-ranking
---
<div align="center">
# Contextual AI Reranker v2 6B
<img src="Contextual_AI_Brand_Mark_Dark.png" width="10%" alt="Contextual_AI"/>
[](https://contextual.ai/blog/rerank-v2)
[](https://huggingface.co/collections/ContextualAI/contextual-ai-reranker-v2)
</div>
<hr>
## Highlights
Contextual AI's reranker is the **first instruction-following reranker** capable of handling retrieval conflicts and ranking with custom instructions (e.g., prioritizing recent information). It achieves state-of-the-art performance on BEIR and sits on the cost/performance Pareto frontier across:
- Instruction following
- Question answering
- Multilinguality (100+ languages)
- Product search & recommendation
- Real-world use cases
<p align="center">
<img src="main_benchmark.png" width="1200"/>
<p>
For detailed benchmarks, see our [blog post](https://contextual.ai/blog/rerank-v2).
## Overview
- **Model Type**: Text Reranking
- **Supported Languages**: 100+
- **Parameters**: 6B
- **Context Length**: up to 32K
## When to Use This Model
Use this reranker when you need to:
- Re-rank retrieved documents with custom instructions
- Handle conflicting information in retrieval results
- Prioritize documents by recency or other criteria
- Support multilingual search (100+ languages)
- Process long contexts (up to 32K tokens)
## Quickstart
### Basic Usage
```python
# Choose vLLM (recommended for production) or Transformers (simpler setup)
# See full implementation in sections below
model_path = "ContextualAI/reranker_v2_6b"
query = "What are the health benefits of exercise?"
instruction = "Prioritize recent medical research"
documents = [
"Regular exercise reduces risk of heart disease and improves mental health.",
"A 2024 study shows exercise enhances cognitive function in older adults.",
"Ancient Greeks valued physical fitness for military training."
]
# Using vLLM (see full code below):
infer_w_vllm(model_path, query, instruction, documents)
# OR using Transformers (see full code below):
infer_w_hf(model_path, query, instruction, documents)
```
**Expected Output:**
```
Query: What are the health benefits of exercise?
Instruction: Prioritize recent medical research
Score: -2.2969 | Doc: A 2024 study shows exercise enhances cognitive function in older adults.
Score: -4.6875 | Doc: Regular exercise reduces risk of heart disease and improves mental health.
Score: -12.3750 | Doc: Ancient Greeks valued physical fitness for military training.
```
### vLLM Usage (Recommended for Production)
Requires `vllm==0.10.0` for NVFP4 or `vllm>=0.8.5` for BF16.
```python
import os
os.environ['VLLM_USE_V1'] = '0' # v1 engine doesn't support logits processor yet
import torch
from vllm import LLM, SamplingParams
def logits_processor(_, scores):
"""Custom logits processor for vLLM reranking."""
index = scores[0].view(torch.uint16)
scores = torch.full_like(scores, float("-inf"))
scores[index] = 1
return scores
def format_prompts(query: str, instruction: str, documents: list[str]) -> list[str]:
"""Format query and documents into prompts for reranking."""
if instruction:
instruction = f" {instruction}"
prompts = []
for doc in documents:
prompt = f"Check whether a given document contains information helpful to answer the query.\n<Document> {doc}\n<Query> {query}{instruction} ??"
prompts.append(prompt)
return prompts
def infer_w_vllm(model_path: str, query: str, instruction: str, documents: list[str]):
model = LLM(
model=model_path,
gpu_memory_utilization=0.85,
max_model_len=8192,
dtype="bfloat16",
max_logprobs=2,
max_num_batched_tokens=262144,
)
sampling_params = SamplingParams(
temperature=0,
max_tokens=1,
logits_processors=[logits_processor]
)
prompts = format_prompts(query, instruction, documents)
outputs = model.generate(prompts, sampling_params, use_tqdm=False)
# Extract scores and create results
results = []
for i, output in enumerate(outputs):
score = (
torch.tensor([output.outputs[0].token_ids[0]], dtype=torch.uint16)
.view(torch.bfloat16)
.item()
)
results.append((score, i, documents[i]))
# Sort by score (descending)
results = sorted(results, key=lambda x: x[0], reverse=True)
print(f"Query: {query}")
print(f"Instruction: {instruction}")
for score, doc_id, doc in results:
print(f"Score: {score:.4f} | Doc: {doc}")
# Example usage
if __name__ == "__main__":
model_path = "ContextualAI/reranker_v2_6b"
query = "What are the health benefits of exercise?"
instruction = "Prioritize recent medical research"
documents = [
"Regular exercise reduces risk of heart disease and improves mental health.",
"A 2024 study shows exercise enhances cognitive function in older adults.",
"Ancient Greeks valued physical fitness for military training."
]
infer_w_vllm(model_path, query, instruction, documents)
```
### Transformers Usage (Simpler Setup)
Requires `transformers>=4.51.0` for BF16. Not supported for NVFP4.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
def format_prompts(query: str, instruction: str, documents: list[str]) -> list[str]:
"""Format query and documents into prompts for reranking."""
if instruction:
instruction = f" {instruction}"
prompts = []
for doc in documents:
prompt = f"Check whether a given document contains information helpful to answer the query.\n<Document> {doc}\n<Query> {query}{instruction} ??"
prompts.append(prompt)
return prompts
def infer_w_hf(model_path: str, query: str, instruction: str, documents: list[str]):
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left" # so -1 is the real last token for all prompts
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype).to(device)
model.eval()
prompts = format_prompts(query, instruction, documents)
enc = tokenizer(
prompts,
return_tensors="pt",
padding=True,
truncation=True,
)
input_ids = enc["input_ids"].to(device)
attention_mask = enc["attention_mask"].to(device)
with torch.no_grad():
out = model(input_ids=input_ids, attention_mask=attention_mask)
next_logits = out.logits[:, -1, :] # [batch, vocab]
scores_bf16 = next_logits[:, 0].to(torch.bfloat16)
scores = scores_bf16.float().tolist()
# Sort by score (descending)
results = sorted([(s, i, documents[i]) for i, s in enumerate(scores)], key=lambda x: x[0], reverse=True)
print(f"Query: {query}")
print(f"Instruction: {instruction}")
for score, doc_id, doc in results:
print(f"Score: {score:.4f} | Doc: {doc}")
```
## Citation
If you use this model, please cite:
```bibtex
@misc{ctxl_rerank_v2_instruct_multilingual,
title={Contextual AI Reranker v2},
author={Halal, George and Agrawal, Sheshansh},
year={2025},
url={https://contextual.ai/blog/rerank-v2},
}
```
## License
Creative Commons Attribution Non Commercial Share Alike 4.0 (cc-by-nc-sa-4.0)
## Contact
For questions or issues, please open an issue on the model repository. |