File size: 20,396 Bytes
055d923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import numpy as np
import collections
from itertools import repeat
from functools import partial
from typing import Optional, Literal

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.utils import logging
from transformers.modeling_outputs import BaseModelOutput, SequenceClassifierOutput
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss

from .configuration_bird_mae import BirdMAEConfig

logger = logging.get_logger(__name__)


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """

    embed_dim: output dimension for each position

    pos: a list of positions to be encoded: size (M,)

    out: (M, D)

    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out) # (M, D/2)
    emb_cos = np.cos(out) # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb

def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
    return emb

def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False):
    """

    grid_size: int of the grid height and width

    return:

    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)

    """
    grid_h = np.arange(grid_size[0], dtype=np.float32) # grid size[0] = 8
    grid_w = np.arange(grid_size[1], dtype=np.float32) # grid size[1] = 32
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0) # 2,8,32

    grid = grid.reshape([2, 1, grid_size[0], grid_size[1]]) # 2,1,8.32
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed # 267 (+cls) x 1024 (feature dim)

# From timm.models.layers
class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).

    """
    def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        if self.drop_prob == 0. or not self.training:
            return x
        keep_prob = 1 - self.drop_prob
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
        if keep_prob > 0.0 and self.scale_by_keep:
            random_tensor.div_(keep_prob)
        return x * random_tensor

def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
            return tuple(x)
        return tuple(repeat(x, n))
    return parse

class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks

    """
    def __init__(

            self,

            in_features,

            hidden_features=None,

            out_features=None,

            act_layer=nn.GELU,

            norm_layer=None,

            bias=True,

            drop=0.,

            use_conv=False,

    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = _ntuple(2)(bias)
        drop_probs = _ntuple(2)(drop)
        linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear

        self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
        self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.norm(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

# Modified from timm.models.vision_transformer
class Attention(nn.Module):
    """Standard Multi-head Self Attention module with QKV projection.



    This module implements the standard multi-head attention mechanism used in transformers.

    It supports both the fused attention implementation (scaled_dot_product_attention) for

    efficiency when available, and a manual implementation otherwise. The module includes

    options for QK normalization, attention dropout, and projection dropout.

    """
    fused_attn: bool = True

    def __init__(

            self,

            dim: int,

            num_heads: int = 8,

            qkv_bias: bool = False,

            qk_norm: bool = False,

            scale_norm: bool = False,

            proj_bias: bool = True,

            attn_drop: float = 0.,

            proj_drop: float = 0.,

            norm_layer: nn.Module = None,

    ) -> None:
        """Initialize the Attention module.



        Args:

            dim: Input dimension of the token embeddings

            num_heads: Number of attention heads

            qkv_bias: Whether to use bias in the query, key, value projections

            qk_norm: Whether to apply normalization to query and key vectors

            proj_bias: Whether to use bias in the output projection

            attn_drop: Dropout rate applied to the attention weights

            proj_drop: Dropout rate applied after the output projection

            norm_layer: Normalization layer constructor for QK normalization if enabled

        """
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        if qk_norm or scale_norm:
            assert norm_layer is not None, 'norm_layer must be provided if qk_norm or scale_norm is True'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.norm = norm_layer(dim) if scale_norm else nn.Identity()
        self.proj = nn.Linear(dim, dim, bias=proj_bias)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(

            self,

            x: torch.Tensor,

            attn_mask: torch.Tensor = None,

            output_attentions: bool = False,

    ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        attn_weights = None

        if self.fused_attn and not output_attentions:
            x = F.scaled_dot_product_attention(
                q, k, v,
                attn_mask=attn_mask,
                dropout_p=self.attn_drop.p if self.training else 0.,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn if attn_mask is None else attn + attn_mask
            attn_weights = attn.softmax(dim=-1)
            x = self.attn_drop(attn_weights) @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.norm(x)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x, attn_weights


# From timm.models.vision_transformer
class Block(nn.Module):
    def __init__(

            self,

            dim: int,

            num_heads: int,

            mlp_ratio: float = 4.,

            qkv_bias: bool = False,

            qk_norm: bool = False,

            proj_drop: float = 0.,

            attn_drop: float = 0.,

            init_values: float = None,

            drop_path: float = 0.,

            act_layer: nn.Module = nn.GELU,

            norm_layer: nn.Module = nn.LayerNorm,

            mlp_layer: nn.Module = Mlp,

    ) -> None:
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            norm_layer=norm_layer,
        )
        self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = mlp_layer(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x: torch.Tensor,

                output_attentions: bool = False,

                attn_mask: torch.Tensor = None

                ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
        #x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
        x_skip = x
        x = self.norm1(x)
        x, att = self.attn(x, output_attentions=output_attentions, attn_mask=attn_mask)
        x = self.ls1(x)
        x = self.drop_path1(x)
        x += x_skip
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x, att

# From timm.models.vision_transformer
class LayerScale(nn.Module):
    def __init__(

            self,

            dim: int,

            init_values: float = 1e-5,

            inplace: bool = False,

    ) -> None:
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class PatchEmbed_org(nn.Module):
    """ Image to Patch Embedding

    """
    def __init__(self,

                 img_size: int | tuple[int, ...] = 224,

                 patch_size: int | tuple[int, ...] = 16,

                 in_chans=3,

                 embed_dim=768):
        super().__init__()
        img_size: tuple[int,int] = _ntuple(2)(img_size) # audio mae used: (target_length x 128) --> not sure why tbh
        patch_size: tuple[int,int] = _ntuple(2)(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0]) # number of patches height/width = 8/32
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape #batch size, channels, height, width --> apparently sth else is expected???
        x = self.proj(x) # 1, 1, 512, 128 -> 1, 768, 32, 8 (batch, 768 channel, 32 height, 8 width)
        x = x.flatten(2) # 1, 768, 32, 8 -> 1, 768, 256
        x = x.transpose(1, 2) # 1, 768, 256 -> 1, 256, 768
        return x

# --- END OF NECESSARY TIMM/Custom internal module definitions ---


class BirdMAEPreTrainedModel(PreTrainedModel):
    config_class = BirdMAEConfig
    base_model_prefix = "model"

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            nn.init.normal_(module.weight, std=.02)
            if module.bias is not None:
                nn.init.constant_(module.bias, 0)
        elif isinstance(module, nn.LayerNorm):
            nn.init.constant_(module.weight, 1.0)
            nn.init.constant_(module.bias, 0)
        elif isinstance(module, nn.Conv2d):
            w = module.weight.data
            nn.init.xavier_uniform_(w.view([w.shape[0], -1]))


class BirdMAEModel(BirdMAEPreTrainedModel):
    _auto_class = "AutoModel"
    #_keys_to_ignore_on_load_missing = ["fc_norm.weight", "fc_norm.bias"]

    def __init__(self, config: BirdMAEConfig):
        super().__init__(config)

        self.patch_embed = PatchEmbed_org(
            img_size=(config.img_size_x, config.img_size_y),  # (512, 128)
            patch_size=config.patch_size,
            in_chans=config.in_chans,
            embed_dim=config.embed_dim
        )

        self.cls_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim))

        self.pos_embed = nn.Parameter(
            torch.zeros(1, config.num_patches + 1, config.embed_dim),
            requires_grad=config.pos_trainable
        )

        if self.pos_embed.data.shape[1] == config.num_patches + 1:
            pos_embed_np = get_2d_sincos_pos_embed_flexible(
                self.pos_embed.shape[-1],  # embedding dim
                self.patch_embed.patch_hw,  # (8, 32) for a 128x512 image with 16x16 patches
                cls_token=True
            )
            self.pos_embed.data.copy_(torch.from_numpy(pos_embed_np).float().unsqueeze(0))
        else:
            logger.warning("Positional embedding shape mismatch. Will not initialize sin-cos pos embed.")

        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.depth)]
        self.blocks = nn.ModuleList([
            Block(
                dim=config.embed_dim,
                num_heads=config.num_heads,
                mlp_ratio=config.mlp_ratio,
                qkv_bias=config.qkv_bias,
                qk_norm=config.qk_norm,
                init_values=config.init_values,
                proj_drop=config.proj_drop_rate,
                attn_drop=config.attn_drop_rate,
                drop_path=dpr[i],
                #norm_layer=nn.LayerNorm(config.embed_dim, eps=config.norm_layer_eps)
                norm_layer=partial(nn.LayerNorm, eps=config.norm_layer_eps)
            )
            for i in range(config.depth)
        ])

        self.pos_drop = nn.Dropout(p=config.pos_drop_rate)
        self.norm = nn.LayerNorm(config.embed_dim, eps=config.norm_layer_eps) #norm_layer(config.embed_dim)
        self.fc_norm = nn.LayerNorm(config.embed_dim, eps=config.norm_layer_eps) #norm_layer(config.embed_dim)
        self.global_pool = config.global_pool

        nn.init.trunc_normal_(self.cls_token, std=.02)

    def forward(

            self,

            input_values : torch.Tensor,

            attention_mask: torch.Tensor = None,

            output_attentions: bool = None,

            output_hidden_states: bool = None,

            return_dict: bool = None,

    ) -> tuple | BaseModelOutput:
        if len(input_values.shape) == 3:
            input_values = input_values.unsqueeze(0)

        output_attentions = output_attentions or self.config.output_attentions

        output_hidden_states = output_hidden_states or self.config.output_hidden_states
        return_dict = return_dict or self.config.use_return_dict

        B, C, X, Y = input_values.shape
        assert X == self.config.img_size_x, f"Expected image_size_x={self.config.img_size_x} but was {X}."
        assert Y == self.config.img_size_y, f"Expected image_size_y={self.config.img_size_y} but was {Y}."

        x = self.patch_embed(input_values)

        x = x + self.pos_embed[:, 1:, :]
        cls_token = self.cls_token + self.pos_embed[:, :1, :]
        cls_tokens = cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = self.pos_drop(x)

        all_hidden_states = (x,) if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for blk in self.blocks:
            x, self_attn_weights = blk(x, output_attentions=output_attentions, attn_mask=attention_mask)
            if output_hidden_states:
                all_hidden_states += (x,)
            if output_attentions:
                all_self_attns += (self_attn_weights,)

        if self.global_pool is None:
            pooled_output = x
        elif self.global_pool == "mean":
            x = x[:, 1:, :].mean(dim=1)
            pooled_output = self.fc_norm(x)
        elif self.global_pool == "cls":
            x = self.norm(x)
            pooled_output = x[:, 0]
        else:
            raise ValueError(f"Invalid global pool type: {self.global_pool}")

        if not return_dict:
            return (pooled_output,) + (all_hidden_states if output_hidden_states else ()) + (None,)

        return BaseModelOutput(
            last_hidden_state=pooled_output,
            hidden_states=all_hidden_states,
            attentions=all_self_attns
        )


class BirdMAEForSequenceClassification(BirdMAEPreTrainedModel):
    _auto_class = "AutoModelForSequenceClassification"
    def __init__(self, config: BirdMAEConfig, head_type: Literal["linear", "ppnet"]):
        super().__init__(config)
        self.num_labels = self.config.num_labels
        self.head_type = head_type
        self.model = BirdMAEModel(config)
        if head_type == "linear":
            self.head = nn.Linear(config.embed_dim, self.num_labels, bias=False)
        elif head_type == "ppnet":
            pass
        else:
            raise NotImplementedError(f"{head_type=} is not supported.")

    def forward(self,

                input_values: torch.Tensor,

                attention_mask: torch.Tensor = None,

                labels: torch.Tensor = None,

                output_attentions: bool = None,

                output_hidden_states: bool = None,

                return_dict: bool = None):
        return_dict = return_dict or self.config.return_dict
        output_attentions = output_attentions or self.config.output_attentions
        output_hidden_states = output_hidden_states or self.config.output_hidden_states

        output = self.model(input_values,
                            attention_mask=attention_mask,
                            output_attentions=output_attentions,
                            output_hidden_states=output_hidden_states,
                            return_dict=return_dict)

        hidden_state = output[0]
        logits = self.head(hidden_state)

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    raise NotImplementedError(f"Setting num_labels={self.num_labels} indicates a regression task, which is not supported.")
                elif self.num_labels > 1 and labels.shape != logits.shape:
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(
                    logits.view(-1, self.num_labels), labels.view(-1)
                )
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels.float())

        if not return_dict:
            output = (logits,) + output[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=output.hidden_states,
            attentions=output.attentions,
        )