|
|
import numpy as np
|
|
|
import collections
|
|
|
from itertools import repeat
|
|
|
from functools import partial
|
|
|
from typing import Optional, Literal
|
|
|
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.nn.functional as F
|
|
|
from transformers import PreTrainedModel
|
|
|
from transformers.utils import logging
|
|
|
from transformers.modeling_outputs import BaseModelOutput, SequenceClassifierOutput
|
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss
|
|
|
|
|
|
from .configuration_bird_mae import BirdMAEConfig
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
|
|
"""
|
|
|
embed_dim: output dimension for each position
|
|
|
pos: a list of positions to be encoded: size (M,)
|
|
|
out: (M, D)
|
|
|
"""
|
|
|
assert embed_dim % 2 == 0
|
|
|
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
|
|
omega /= embed_dim / 2.
|
|
|
omega = 1. / 10000**omega
|
|
|
|
|
|
pos = pos.reshape(-1)
|
|
|
out = np.einsum('m,d->md', pos, omega)
|
|
|
|
|
|
emb_sin = np.sin(out)
|
|
|
emb_cos = np.cos(out)
|
|
|
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1)
|
|
|
return emb
|
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
|
|
assert embed_dim % 2 == 0
|
|
|
|
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
|
|
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
|
|
|
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1)
|
|
|
return emb
|
|
|
|
|
|
def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False):
|
|
|
"""
|
|
|
grid_size: int of the grid height and width
|
|
|
return:
|
|
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
|
|
"""
|
|
|
grid_h = np.arange(grid_size[0], dtype=np.float32)
|
|
|
grid_w = np.arange(grid_size[1], dtype=np.float32)
|
|
|
grid = np.meshgrid(grid_w, grid_h)
|
|
|
grid = np.stack(grid, axis=0)
|
|
|
|
|
|
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
|
|
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
|
|
if cls_token:
|
|
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
|
|
return pos_embed
|
|
|
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
"""
|
|
|
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True):
|
|
|
super(DropPath, self).__init__()
|
|
|
self.drop_prob = drop_prob
|
|
|
self.scale_by_keep = scale_by_keep
|
|
|
|
|
|
def forward(self, x):
|
|
|
if self.drop_prob == 0. or not self.training:
|
|
|
return x
|
|
|
keep_prob = 1 - self.drop_prob
|
|
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
|
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
|
|
if keep_prob > 0.0 and self.scale_by_keep:
|
|
|
random_tensor.div_(keep_prob)
|
|
|
return x * random_tensor
|
|
|
|
|
|
def _ntuple(n):
|
|
|
def parse(x):
|
|
|
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
|
|
return tuple(x)
|
|
|
return tuple(repeat(x, n))
|
|
|
return parse
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
|
|
"""
|
|
|
def __init__(
|
|
|
self,
|
|
|
in_features,
|
|
|
hidden_features=None,
|
|
|
out_features=None,
|
|
|
act_layer=nn.GELU,
|
|
|
norm_layer=None,
|
|
|
bias=True,
|
|
|
drop=0.,
|
|
|
use_conv=False,
|
|
|
):
|
|
|
super().__init__()
|
|
|
out_features = out_features or in_features
|
|
|
hidden_features = hidden_features or in_features
|
|
|
bias = _ntuple(2)(bias)
|
|
|
drop_probs = _ntuple(2)(drop)
|
|
|
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
|
|
|
|
|
|
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
|
|
|
self.act = act_layer()
|
|
|
self.drop1 = nn.Dropout(drop_probs[0])
|
|
|
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
|
|
|
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
|
|
|
self.drop2 = nn.Dropout(drop_probs[1])
|
|
|
|
|
|
def forward(self, x):
|
|
|
x = self.fc1(x)
|
|
|
x = self.act(x)
|
|
|
x = self.drop1(x)
|
|
|
x = self.norm(x)
|
|
|
x = self.fc2(x)
|
|
|
x = self.drop2(x)
|
|
|
return x
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
"""Standard Multi-head Self Attention module with QKV projection.
|
|
|
|
|
|
This module implements the standard multi-head attention mechanism used in transformers.
|
|
|
It supports both the fused attention implementation (scaled_dot_product_attention) for
|
|
|
efficiency when available, and a manual implementation otherwise. The module includes
|
|
|
options for QK normalization, attention dropout, and projection dropout.
|
|
|
"""
|
|
|
fused_attn: bool = True
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
dim: int,
|
|
|
num_heads: int = 8,
|
|
|
qkv_bias: bool = False,
|
|
|
qk_norm: bool = False,
|
|
|
scale_norm: bool = False,
|
|
|
proj_bias: bool = True,
|
|
|
attn_drop: float = 0.,
|
|
|
proj_drop: float = 0.,
|
|
|
norm_layer: nn.Module = None,
|
|
|
) -> None:
|
|
|
"""Initialize the Attention module.
|
|
|
|
|
|
Args:
|
|
|
dim: Input dimension of the token embeddings
|
|
|
num_heads: Number of attention heads
|
|
|
qkv_bias: Whether to use bias in the query, key, value projections
|
|
|
qk_norm: Whether to apply normalization to query and key vectors
|
|
|
proj_bias: Whether to use bias in the output projection
|
|
|
attn_drop: Dropout rate applied to the attention weights
|
|
|
proj_drop: Dropout rate applied after the output projection
|
|
|
norm_layer: Normalization layer constructor for QK normalization if enabled
|
|
|
"""
|
|
|
super().__init__()
|
|
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
|
|
if qk_norm or scale_norm:
|
|
|
assert norm_layer is not None, 'norm_layer must be provided if qk_norm or scale_norm is True'
|
|
|
self.num_heads = num_heads
|
|
|
self.head_dim = dim // num_heads
|
|
|
self.scale = self.head_dim ** -0.5
|
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
self.norm = norm_layer(dim) if scale_norm else nn.Identity()
|
|
|
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
x: torch.Tensor,
|
|
|
attn_mask: torch.Tensor = None,
|
|
|
output_attentions: bool = False,
|
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
|
B, N, C = x.shape
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
|
|
q, k, v = qkv.unbind(0)
|
|
|
q, k = self.q_norm(q), self.k_norm(k)
|
|
|
|
|
|
attn_weights = None
|
|
|
|
|
|
if self.fused_attn and not output_attentions:
|
|
|
x = F.scaled_dot_product_attention(
|
|
|
q, k, v,
|
|
|
attn_mask=attn_mask,
|
|
|
dropout_p=self.attn_drop.p if self.training else 0.,
|
|
|
)
|
|
|
else:
|
|
|
q = q * self.scale
|
|
|
attn = q @ k.transpose(-2, -1)
|
|
|
attn = attn if attn_mask is None else attn + attn_mask
|
|
|
attn_weights = attn.softmax(dim=-1)
|
|
|
x = self.attn_drop(attn_weights) @ v
|
|
|
|
|
|
x = x.transpose(1, 2).reshape(B, N, C)
|
|
|
x = self.norm(x)
|
|
|
x = self.proj(x)
|
|
|
x = self.proj_drop(x)
|
|
|
|
|
|
return x, attn_weights
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
def __init__(
|
|
|
self,
|
|
|
dim: int,
|
|
|
num_heads: int,
|
|
|
mlp_ratio: float = 4.,
|
|
|
qkv_bias: bool = False,
|
|
|
qk_norm: bool = False,
|
|
|
proj_drop: float = 0.,
|
|
|
attn_drop: float = 0.,
|
|
|
init_values: float = None,
|
|
|
drop_path: float = 0.,
|
|
|
act_layer: nn.Module = nn.GELU,
|
|
|
norm_layer: nn.Module = nn.LayerNorm,
|
|
|
mlp_layer: nn.Module = Mlp,
|
|
|
) -> None:
|
|
|
super().__init__()
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
self.attn = Attention(
|
|
|
dim,
|
|
|
num_heads=num_heads,
|
|
|
qkv_bias=qkv_bias,
|
|
|
qk_norm=qk_norm,
|
|
|
attn_drop=attn_drop,
|
|
|
proj_drop=proj_drop,
|
|
|
norm_layer=norm_layer,
|
|
|
)
|
|
|
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
self.mlp = mlp_layer(
|
|
|
in_features=dim,
|
|
|
hidden_features=int(dim * mlp_ratio),
|
|
|
act_layer=act_layer,
|
|
|
drop=proj_drop,
|
|
|
)
|
|
|
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
|
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
|
|
def forward(self, x: torch.Tensor,
|
|
|
output_attentions: bool = False,
|
|
|
attn_mask: torch.Tensor = None
|
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
|
|
|
|
|
|
x_skip = x
|
|
|
x = self.norm1(x)
|
|
|
x, att = self.attn(x, output_attentions=output_attentions, attn_mask=attn_mask)
|
|
|
x = self.ls1(x)
|
|
|
x = self.drop_path1(x)
|
|
|
x += x_skip
|
|
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
|
|
return x, att
|
|
|
|
|
|
|
|
|
class LayerScale(nn.Module):
|
|
|
def __init__(
|
|
|
self,
|
|
|
dim: int,
|
|
|
init_values: float = 1e-5,
|
|
|
inplace: bool = False,
|
|
|
) -> None:
|
|
|
super().__init__()
|
|
|
self.inplace = inplace
|
|
|
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
|
|
|
|
|
|
|
|
class PatchEmbed_org(nn.Module):
|
|
|
""" Image to Patch Embedding
|
|
|
"""
|
|
|
def __init__(self,
|
|
|
img_size: int | tuple[int, ...] = 224,
|
|
|
patch_size: int | tuple[int, ...] = 16,
|
|
|
in_chans=3,
|
|
|
embed_dim=768):
|
|
|
super().__init__()
|
|
|
img_size: tuple[int,int] = _ntuple(2)(img_size)
|
|
|
patch_size: tuple[int,int] = _ntuple(2)(patch_size)
|
|
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
|
|
self.patch_hw = (img_size[1] // patch_size[1], img_size[0] // patch_size[0])
|
|
|
self.img_size = img_size
|
|
|
self.patch_size = patch_size
|
|
|
self.num_patches = num_patches
|
|
|
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
|
|
|
|
def forward(self, x):
|
|
|
B, C, H, W = x.shape
|
|
|
x = self.proj(x)
|
|
|
x = x.flatten(2)
|
|
|
x = x.transpose(1, 2)
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BirdMAEPreTrainedModel(PreTrainedModel):
|
|
|
config_class = BirdMAEConfig
|
|
|
base_model_prefix = "model"
|
|
|
|
|
|
def _init_weights(self, module):
|
|
|
if isinstance(module, nn.Linear):
|
|
|
nn.init.normal_(module.weight, std=.02)
|
|
|
if module.bias is not None:
|
|
|
nn.init.constant_(module.bias, 0)
|
|
|
elif isinstance(module, nn.LayerNorm):
|
|
|
nn.init.constant_(module.weight, 1.0)
|
|
|
nn.init.constant_(module.bias, 0)
|
|
|
elif isinstance(module, nn.Conv2d):
|
|
|
w = module.weight.data
|
|
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
|
|
|
|
|
|
|
|
class BirdMAEModel(BirdMAEPreTrainedModel):
|
|
|
_auto_class = "AutoModel"
|
|
|
|
|
|
|
|
|
def __init__(self, config: BirdMAEConfig):
|
|
|
super().__init__(config)
|
|
|
|
|
|
self.patch_embed = PatchEmbed_org(
|
|
|
img_size=(config.img_size_x, config.img_size_y),
|
|
|
patch_size=config.patch_size,
|
|
|
in_chans=config.in_chans,
|
|
|
embed_dim=config.embed_dim
|
|
|
)
|
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim))
|
|
|
|
|
|
self.pos_embed = nn.Parameter(
|
|
|
torch.zeros(1, config.num_patches + 1, config.embed_dim),
|
|
|
requires_grad=config.pos_trainable
|
|
|
)
|
|
|
|
|
|
if self.pos_embed.data.shape[1] == config.num_patches + 1:
|
|
|
pos_embed_np = get_2d_sincos_pos_embed_flexible(
|
|
|
self.pos_embed.shape[-1],
|
|
|
self.patch_embed.patch_hw,
|
|
|
cls_token=True
|
|
|
)
|
|
|
self.pos_embed.data.copy_(torch.from_numpy(pos_embed_np).float().unsqueeze(0))
|
|
|
else:
|
|
|
logger.warning("Positional embedding shape mismatch. Will not initialize sin-cos pos embed.")
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.depth)]
|
|
|
self.blocks = nn.ModuleList([
|
|
|
Block(
|
|
|
dim=config.embed_dim,
|
|
|
num_heads=config.num_heads,
|
|
|
mlp_ratio=config.mlp_ratio,
|
|
|
qkv_bias=config.qkv_bias,
|
|
|
qk_norm=config.qk_norm,
|
|
|
init_values=config.init_values,
|
|
|
proj_drop=config.proj_drop_rate,
|
|
|
attn_drop=config.attn_drop_rate,
|
|
|
drop_path=dpr[i],
|
|
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=config.norm_layer_eps)
|
|
|
)
|
|
|
for i in range(config.depth)
|
|
|
])
|
|
|
|
|
|
self.pos_drop = nn.Dropout(p=config.pos_drop_rate)
|
|
|
self.norm = nn.LayerNorm(config.embed_dim, eps=config.norm_layer_eps)
|
|
|
self.fc_norm = nn.LayerNorm(config.embed_dim, eps=config.norm_layer_eps)
|
|
|
self.global_pool = config.global_pool
|
|
|
|
|
|
nn.init.trunc_normal_(self.cls_token, std=.02)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
input_values : torch.Tensor,
|
|
|
attention_mask: torch.Tensor = None,
|
|
|
output_attentions: bool = None,
|
|
|
output_hidden_states: bool = None,
|
|
|
return_dict: bool = None,
|
|
|
) -> tuple | BaseModelOutput:
|
|
|
if len(input_values.shape) == 3:
|
|
|
input_values = input_values.unsqueeze(0)
|
|
|
|
|
|
output_attentions = output_attentions or self.config.output_attentions
|
|
|
|
|
|
output_hidden_states = output_hidden_states or self.config.output_hidden_states
|
|
|
return_dict = return_dict or self.config.use_return_dict
|
|
|
|
|
|
B, C, X, Y = input_values.shape
|
|
|
assert X == self.config.img_size_x, f"Expected image_size_x={self.config.img_size_x} but was {X}."
|
|
|
assert Y == self.config.img_size_y, f"Expected image_size_y={self.config.img_size_y} but was {Y}."
|
|
|
|
|
|
x = self.patch_embed(input_values)
|
|
|
|
|
|
x = x + self.pos_embed[:, 1:, :]
|
|
|
cls_token = self.cls_token + self.pos_embed[:, :1, :]
|
|
|
cls_tokens = cls_token.expand(B, -1, -1)
|
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
x = self.pos_drop(x)
|
|
|
|
|
|
all_hidden_states = (x,) if output_hidden_states else None
|
|
|
all_self_attns = () if output_attentions else None
|
|
|
|
|
|
for blk in self.blocks:
|
|
|
x, self_attn_weights = blk(x, output_attentions=output_attentions, attn_mask=attention_mask)
|
|
|
if output_hidden_states:
|
|
|
all_hidden_states += (x,)
|
|
|
if output_attentions:
|
|
|
all_self_attns += (self_attn_weights,)
|
|
|
|
|
|
if self.global_pool is None:
|
|
|
pooled_output = x
|
|
|
elif self.global_pool == "mean":
|
|
|
x = x[:, 1:, :].mean(dim=1)
|
|
|
pooled_output = self.fc_norm(x)
|
|
|
elif self.global_pool == "cls":
|
|
|
x = self.norm(x)
|
|
|
pooled_output = x[:, 0]
|
|
|
else:
|
|
|
raise ValueError(f"Invalid global pool type: {self.global_pool}")
|
|
|
|
|
|
if not return_dict:
|
|
|
return (pooled_output,) + (all_hidden_states if output_hidden_states else ()) + (None,)
|
|
|
|
|
|
return BaseModelOutput(
|
|
|
last_hidden_state=pooled_output,
|
|
|
hidden_states=all_hidden_states,
|
|
|
attentions=all_self_attns
|
|
|
)
|
|
|
|
|
|
|
|
|
class BirdMAEForSequenceClassification(BirdMAEPreTrainedModel):
|
|
|
_auto_class = "AutoModelForSequenceClassification"
|
|
|
def __init__(self, config: BirdMAEConfig, head_type: Literal["linear", "ppnet"]):
|
|
|
super().__init__(config)
|
|
|
self.num_labels = self.config.num_labels
|
|
|
self.head_type = head_type
|
|
|
self.model = BirdMAEModel(config)
|
|
|
if head_type == "linear":
|
|
|
self.head = nn.Linear(config.embed_dim, self.num_labels, bias=False)
|
|
|
elif head_type == "ppnet":
|
|
|
pass
|
|
|
else:
|
|
|
raise NotImplementedError(f"{head_type=} is not supported.")
|
|
|
|
|
|
def forward(self,
|
|
|
input_values: torch.Tensor,
|
|
|
attention_mask: torch.Tensor = None,
|
|
|
labels: torch.Tensor = None,
|
|
|
output_attentions: bool = None,
|
|
|
output_hidden_states: bool = None,
|
|
|
return_dict: bool = None):
|
|
|
return_dict = return_dict or self.config.return_dict
|
|
|
output_attentions = output_attentions or self.config.output_attentions
|
|
|
output_hidden_states = output_hidden_states or self.config.output_hidden_states
|
|
|
|
|
|
output = self.model(input_values,
|
|
|
attention_mask=attention_mask,
|
|
|
output_attentions=output_attentions,
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
return_dict=return_dict)
|
|
|
|
|
|
hidden_state = output[0]
|
|
|
logits = self.head(hidden_state)
|
|
|
|
|
|
loss = None
|
|
|
if labels is not None:
|
|
|
labels = labels.to(logits.device)
|
|
|
if self.config.problem_type is None:
|
|
|
if self.num_labels == 1:
|
|
|
raise NotImplementedError(f"Setting num_labels={self.num_labels} indicates a regression task, which is not supported.")
|
|
|
elif self.num_labels > 1 and labels.shape != logits.shape:
|
|
|
self.config.problem_type = "single_label_classification"
|
|
|
else:
|
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
|
|
if self.config.problem_type == "single_label_classification":
|
|
|
loss_fct = CrossEntropyLoss()
|
|
|
loss = loss_fct(
|
|
|
logits.view(-1, self.num_labels), labels.view(-1)
|
|
|
)
|
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
|
loss_fct = BCEWithLogitsLoss()
|
|
|
loss = loss_fct(logits, labels.float())
|
|
|
|
|
|
if not return_dict:
|
|
|
output = (logits,) + output[1:]
|
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
|
|
return SequenceClassifierOutput(
|
|
|
loss=loss,
|
|
|
logits=logits,
|
|
|
hidden_states=output.hidden_states,
|
|
|
attentions=output.attentions,
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|