DanielDsouza commited on
Commit
08e732a
·
1 Parent(s): 30162de

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -122.12 +/- 36.94
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
 
28
 
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'DanielDsouza/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 256.09 +/- 17.54
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
 
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e93329900d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e9332990160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e93329901f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e9332990280>", "_build": "<function ActorCriticPolicy._build at 0x7e9332990310>", "forward": "<function ActorCriticPolicy.forward at 0x7e93329903a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e9332990430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e93329904c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e9332990550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e93329905e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e9332990670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e9332990700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e933292d980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703490770509389935, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2mjz2m86I/dUcvPgWTNr9sB609EsKGvAAAAAAAAAAAzay4vHbDO7znhaO7n/yJPI+8qD0S+GK9AACAPwAAgD/Nnlu+ZdM5P2sAWLw6rxS/QlqXvls+QD4AAAAAAAAAAJrRq7tnDwU/Yp3wPA30676eRuW8qm4aPQAAAAAAAAAAQDyCPSnsYLomySm9XKOYNmCrgDsC3Qm2AACAPwAAAABmPSa9gQylvCU1Wbwqn7E8MtyuOjO1gjwAAIA/AACAPzMHjDuujrc/V4kTPmHnoT6VqJ+7VDgEvQAAAAAAAAAAmtMuPYPKNbyhGT08hGDVPKAWPr0D6Yy9AACAPwAAgD8z2eM8W8KIvHjEnb2d6pu8mJCWPT3zEj4AAIA/AACAP7PtE71oIWU/mM38vbDEKr/aEei9ym8bPQAAAAAAAAAA0y4Pvk9aYT9yfam9Wpklv/Bror7gP2o8AAAAAAAAAAD9IGS+u7UjP7a2uD1xFAW/xdauvk/4SD4AAAAAAAAAAGaOsrsUTIu6iM0YOIm8ATN8ZUq7M4cxtwAAgD8AAIA/gOhRPRzgXLyrzIO+5FxfvdPAwD1nGzc+AACAPwAAgD9Nc1298gGdP5BmGb6G+Sy/iaICvtvZ8L0AAAAAAAAAAEAlgz1/Qr4/5iuyPj2WibyIqLE9wZhIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.983616, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVnggAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKWTK5kK/qMAWyUS6aMAXSUR0C5Pybj94u9dX2UKGgGR0Bx/JV5rxiHaAdLqWgIR0C5PyqwD/2kdX2UKGgGR0ByBWy2QXANaAdLrGgIR0C5Py/jS5RTdX2UKGgGR0BzCdXbM5fdaAdLrmgIR0C5PzDqfOD8dX2UKGgGR0Bwh5Grjo6kaAdLtGgIR0C5PzoJmdy1dX2UKGgGR0Bx/dMj/uLKaAdLuWgIR0C5P0HbEgnudX2UKGgGR0Bwf/IikftAaAdLuWgIR0C5P0GV3Ux3dX2UKGgGR0Bw8ks052haaAdLvmgIR0C5P0cG5c1PdX2UKGgGR0BznbO0LMLXaAdLwGgIR0C5P0oYm9g4dX2UKGgGR0BxSFc4YJmeaAdLxWgIR0C5P1IeYD1XdX2UKGgGR0BwWTJDE3sHaAdLxmgIR0C5P1FRpDeCdX2UKGgGR0BwzjVZs9B9aAdLx2gIR0C5P1NCZ4OddX2UKGgGR0Bwb5M10knkaAdLx2gIR0C5P1LPUrkKdX2UKGgGR0Bx+TNIK+i8aAdL2WgIR0C5P2S2c8T0dX2UKGgGR0ByMdhMJx//aAdNEAFoCEdAuT+rhvR7Z3V9lChoBkdAcUvC0WuX/2gHS7xoCEdAuUA+sny/bnV9lChoBkdAbyMrIYFaCGgHS65oCEdAuUBJ26kIonV9lChoBkdAcKpNet0V8GgHS7doCEdAuUBP3pOernV9lChoBkdAcY5Uc4o7WGgHS8xoCEdAuUBUzuWrwXV9lChoBkdAcI5l/pdKNGgHS71oCEdAuUBlgrpaBHV9lChoBkdAcOvn1WbPQmgHS8JoCEdAuUB8jPfKp3V9lChoBkdActrwosqaw2gHS8NoCEdAuUC2saKk23V9lChoBkdAc6ut+CsfaGgHS+BoCEdAuUDDWsijcnV9lChoBkdAczjhtLteD2gHS91oCEdAuUDfuSfUWnV9lChoBkdAccJHXmNipmgHS8FoCEdAuUEAnRb8nHV9lChoBkdAc8PI7vG6w2gHS9toCEdAuUFYauOjqXV9lChoBkdAc2SbmU4aP2gHS+VoCEdAuUGmauwHJXV9lChoBkdAc2otSAH3UWgHTbIBaAhHQLlBv58Sf191fZQoaAZHQHPCHzxwyZdoB00RAWgIR0C5QdLlV94NdX2UKGgGR0BzxYM8YAKfaAdL/2gIR0C5QesQqZtvdX2UKGgGR0ByXGQA+6iCaAdLxGgIR0C5QiDM/yG0dX2UKGgGR0Bwc2mFajesaAdLuGgIR0C5QtNFBppOdX2UKGgGR0BxcTkJa7mMaAdLyGgIR0C5QuSONo8IdX2UKGgGR0By4q8ujASGaAdLz2gIR0C5QwBhDw6RdX2UKGgGR0BzNovGp++eaAdLz2gIR0C5QxeK8+RpdX2UKGgGR0BxX0c1fmcOaAdLtmgIR0C5QxnPeHi4dX2UKGgGR0BxkwLG7z06aAdL5GgIR0C5Qx3EMspYdX2UKGgGR0Byn8j6eoUBaAdL0WgIR0C5QyuinHeadX2UKGgGR0Byze9EkSmJaAdLz2gIR0C5Qy+JcgQpdX2UKGgGR0ByzvF1jiGWaAdLz2gIR0C5QzkKzAvddX2UKGgGR0Bw2jsNUfgaaAdLwGgIR0C5Q012FFlTdX2UKGgGR0Budyl3yI56aAdLvGgIR0C5Q1EY4yXVdX2UKGgGR0Byf1lUZNwjaAdL1mgIR0C5Q1+jVQQ+dX2UKGgGR0BzNtPBSDRMaAdNBAFoCEdAuUNkk0JnhHV9lChoBkdAccBV+7UXpGgHS7xoCEdAuUNtu3trsXV9lChoBkdAcHOn/kvK2mgHS8RoCEdAuUOQy31BdHV9lChoBkdAcLHnZTQ3P2gHTRcBaAhHQLlD+htcfNl1fZQoaAZHQHCycyBTXJ5oB0uwaAhHQLlEEbADaGp1fZQoaAZHQHHZbFGXokloB0vUaAhHQLlEOse4kNZ1fZQoaAZHQHIhX/xUedVoB0uoaAhHQLlERLmp2ll1fZQoaAZHQHE6Lf51vEVoB0vNaAhHQLlEU74i5d51fZQoaAZHQHER2ki2UjdoB0vFaAhHQLlEW6H0se51fZQoaAZHQHM6VjiGWUtoB0vTaAhHQLlEbTYdyT91fZQoaAZHQHICyYgJTl1oB0vPaAhHQLlEdwqRU3p1fZQoaAZHQHCo5A6dUbVoB0u5aAhHQLlEhhTfixV1fZQoaAZHQHHeAT/Q0GhoB0vhaAhHQLlEhWKdhAp1fZQoaAZHQHH9HTiKiwloB0vJaAhHQLlEizZYgaF1fZQoaAZHQHKNiLAHmihoB0u+aAhHQLlElGcWj451fZQoaAZHQHLM/PomoitoB0vQaAhHQLlEn+bmU4d1fZQoaAZHQHG3V0o0ALloB0v2aAhHQLlEwhtLteF1fZQoaAZHQHIK2b1AZ89oB00NAWgIR0C5RNCUC7sfdX2UKGgGR0ByjFx3mmtRaAdL42gIR0C5ROBb8m8edX2UKGgGR0BxbWDWbwz+aAdLrmgIR0C5ROZ08vEkdX2UKGgGR0ByAVcxCY1HaAdLqGgIR0C5RTt0FKTTdX2UKGgGR0BwbM2DQJHBaAdLsWgIR0C5RT/qxC6ZdX2UKGgGR0BwW3CVKPGRaAdLxmgIR0C5RUSHdoFndX2UKGgGR0B0sbyEtdzGaAdL8GgIR0C5RVjV+Zw5dX2UKGgGR0Bx50RdyDIzaAdL0mgIR0C5RV7j94u9dX2UKGgGR0BwmDgrH2h7aAdLqmgIR0C5RWiAMDwIdX2UKGgGR0BwcFe3QUpNaAdLt2gIR0C5RWxceKbbdX2UKGgGR0By8bo0Q9RraAdLzmgIR0C5RYDQu27WdX2UKGgGR0By/48kleF+aAdLx2gIR0C5RZTbvgFYdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1227, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e29d83fdea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e29d83fdf30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e29d83fdfc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e29d83fe050>", "_build": "<function ActorCriticPolicy._build at 0x7e29d83fe0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7e29d83fe170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e29d83fe200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e29d83fe290>", "_predict": "<function ActorCriticPolicy._predict at 0x7e29d83fe320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e29d83fe3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e29d83fe440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e29d83fe4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e29d859b140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703675681136416672, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpvdT1zcmw/XW5gvSYkV74XsN08rbK7OwAAAAAAAAAA5op0va7Pg7rDqYG7QkhktifyazsVlZM6AACAPwAAgD8zkP48hVPlufCmzLrRq6+1G1NrOvh/8jkAAIA/AACAP5oJnzxckwa6iKprvJc25LNcrYk5h8KjMwAAgD8AAIA/wIjNvcYCsT+DO9W+y3KVvnqPs70iAwG+AAAAAAAAAAAAGKy8rjWoutPhpTr67JY1UNIfOoNRvrkAAIA/AACAP03IEr2PSiO6WupwusOsBrZzMTc7FjeMOQAAgD8AAIA/ZuoSvCmAe7qSZa07ZyVONZ905rm+/EA0AACAPwAAgD9m7uY7w7EsuqhlZzssCKm2+ADTugGkorUAAIA/AACAP5rB/DtIh426CIbquw4eB7YV5985BmR3NQAAgD8AAIA/mofgPHtQgLoIew88hlMrNiDP7roEIiU1AACAPwAAgD8zeAU9odCBvP72kj2MWsg8x53cPZaXej0AAIA/AACAP80AXDxcGxW6NgBwuVwdabSuDt06DFCPOAAAgD8AAIA/c+/cvWPgkT7D5Ms9NjQtvvGJ4Trvupg9AAAAAAAAAADAnZE914etP8vwUD5pxHq++zQWPlZp4jwAAAAAAAAAAJpjPrwfhbI4TmHbPBZxkbx3Kai7QY0OvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6B7IcR15mMAWyUTRoDjAF0lEdAlQ/5taY/mnV9lChoBkdAYWLwLE1l5GgHTegDaAhHQJUXL2FnIyV1fZQoaAZHQGZXpGnXNC9oB03oA2gIR0CVILuKoAGTdX2UKGgGR0BjuRfBvaUSaAdN6ANoCEdAlSFnYHxBmnV9lChoBkdAZfxIPK+zt2gHTegDaAhHQJUl1KAavRt1fZQoaAZHQGERtY0VJtloB03oA2gIR0CVKTpJwsGxdX2UKGgGR0BjbRWaMJhOaAdN6ANoCEdAlSvsIZ62OXV9lChoBkdATLyprDZUUGgHS+doCEdAlTGuUdJaq3V9lChoBkdAZbvsguAZsWgHTegDaAhHQJUzrFbVz6t1fZQoaAZHQGV6yVW0Z3toB03oA2gIR0CVNu974SHudX2UKGgGR0BkvoW8AaNuaAdN6ANoCEdAlTvV1KXfInV9lChoBkdAZxIVQhwEQ2gHTegDaAhHQJVc2LDQ7cR1fZQoaAZHQGHzC0v4/NZoB03oA2gIR0CVYWmpEQXidX2UKGgGR0BlobGYKIBSaAdN6ANoCEdAlWLhClabF3V9lChoBkdAYih+b3Gn42gHTegDaAhHQJVjqYBvJil1fZQoaAZHQGKkZLAYYSBoB03oA2gIR0CVZE39JjDsdX2UKGgGR0Bhio95hSccaAdN6ANoCEdAlWyybUgB93V9lChoBkdAYaSkfs/puGgHTegDaAhHQJVtYdQwbl11fZQoaAZHQGMse/5+H8FoB03oA2gIR0CVcsvoePq+dX2UKGgGR0BfnliSaEzwaAdN6ANoCEdAlX2K33Hq/3V9lChoBkdAZtyGW2PT5WgHTegDaAhHQJWDiCCjDbd1fZQoaAZHQGTQS0a6z3RoB03oA2gIR0CVh40Zm7J5dX2UKGgGR0BkcUhq0tyxaAdN6ANoCEdAlYpOlwcYInV9lChoBkdAZkrh73PAwmgHTegDaAhHQJWQL/bTMJR1fZQoaAZHQGMLHskY4yZoB03oA2gIR0CVkjEPlMh6dX2UKGgGR0BjAO/L1VYIaAdN6ANoCEdAlZVR99c8knV9lChoBkdAZBcGpuMuOGgHTegDaAhHQJWaLy08eS11fZQoaAZHQGaNXQ2MsH1oB03oA2gIR0CVvFC2MKkVdX2UKGgGR0Bkv7Tc6/7BaAdN6ANoCEdAlcD20/nnuHV9lChoBkdAcsoZ7XxvvWgHTW0CaAhHQJXBovWYnfF1fZQoaAZHQGfA2DHwPRRoB03oA2gIR0CVwmBlcyFgdX2UKGgGR0Bd1Y8+zMRpaAdN6ANoCEdAlcMfzWf9P3V9lChoBkdAYEqJ1q33H2gHTegDaAhHQJXDxXvH93t1fZQoaAZHQGI3smOU+s5oB03oA2gIR0CVy/a+N96UdX2UKGgGR0BdFD3AVO9GaAdN6ANoCEdAlcyiQcPvrnV9lChoBkdAXb1PVNHpbGgHTegDaAhHQJXR7Lns9jh1fZQoaAZHQGVw80k4WDZoB03oA2gIR0CV4BD/VAiWdX2UKGgGR0BxZLBAOavzaAdN2gFoCEdAleOD238XN3V9lChoBkdAZANr8BMi8mgHTegDaAhHQJXjl+pfhMt1fZQoaAZHQGPKmplz2exoB03oA2gIR0CV5xfReC04dX2UKGgGR0BhwF9H+ZPVaAdN6ANoCEdAle5DB68g6nV9lChoBkdAZl7MPBi1A2gHTegDaAhHQJXwxbqyGBZ1fZQoaAZHQFwJdD6WPcVoB03oA2gIR0CV9CaisXBQdX2UKGgGR0Bbp8JhOP/8aAdN6ANoCEdAlfiySA6Mi3V9lChoBkdAYW4PGyX2NGgHTegDaAhHQJYGw3++/QB1fZQoaAZHQGb9vVNHpbFoB03oA2gIR0CWHFVzIV/MdX2UKGgGR0BmUsNSZSeiaAdN6ANoCEdAlh1XjlxOtXV9lChoBkdAY2pWZqmCRWgHTegDaAhHQJYfk6tDD0l1fZQoaAZHQGEn1lPJq7BoB03oA2gIR0CWIIrWRRuTdX2UKGgGR0Bj0BH09QoDaAdN6ANoCEdAliu3w1BMSXV9lChoBkdAZOHph4MWoGgHTegDaAhHQJYsebNKRMh1fZQoaAZHQFO4DoyKvV5oB0vdaAhHQJYx8bS7Xg91fZQoaAZHQFzFmJm/WUdoB03oA2gIR0CWMmIbOu7pdX2UKGgGR0BgAgz7/GVBaAdN6ANoCEdAlkEc2aUiZHV9lChoBkdAY5F4TK1XvGgHTegDaAhHQJZEzfwZwXJ1fZQoaAZHQGR0JxWDHwRoB03oA2gIR0CWROPTodMkdX2UKGgGR0BGd/J/5LyuaAdNCQFoCEdAlkZ12FFlTXV9lChoBkdAYwAG/vfCRGgHTegDaAhHQJZHgFEAo5R1fZQoaAZHQGCvjZ+QU6BoB03oA2gIR0CWTPksz2vjdX2UKGgGR0BhClaOgg5jaAdN6ANoCEdAlk7QIdELIHV9lChoBkdAYCsy57PY4GgHTegDaAhHQJZSRwsGxD91fZQoaAZHQGc8nanJkoZoB03oA2gIR0CWWIWS2Yv4dX2UKGgGR0Au5MKTjebeaAdNEgFoCEdAllm/MfRu0nV9lChoBkdAOitWZJCjUWgHTRwBaAhHQJZeC2PT5O91fZQoaAZHQGbU9mpVCHBoB03oA2gIR0CWZtG5+YtydX2UKGgGR0BgvueMAFPjaAdN6ANoCEdAlnsFQqI8AHV9lChoBkdAYgAS8J2MbWgHTegDaAhHQJZ7rcbiqAB1fZQoaAZHQGLhVSGahHtoB03oA2gIR0CWfcVKwpvxdX2UKGgGR0BiS3yqdYnwaAdN6ANoCEdAloadKVY6n3V9lChoBkdAYZG5qdpZfWgHTegDaAhHQJaHi3H7xd91fZQoaAZHQHE7Hu3MINVoB02yAWgIR0CWid10DEFXdX2UKGgGR0BiWgBkqc3EaAdN6ANoCEdAlo6lktmL+HV9lChoBkdAROw8bJfYz2gHTRkBaAhHQJaUQHIIWxh1fZQoaAZHQGO6DB2wFC9oB03oA2gIR0CWnUjB2wFDdX2UKGgGR0BkoZWDHwPRaAdN6ANoCEdAlqC1qnFYMnV9lChoBkdAYuscAiml7GgHTegDaAhHQJaiW6unuRd1fZQoaAZHQGHDmViWmgtoB03oA2gIR0CWqRsvIwM6dX2UKGgGR0BagD9GZuyeaAdN6ANoCEdAlqsmbsniN3V9lChoBkdAX11JRO1v22gHTegDaAhHQJaucLjPv8Z1fZQoaAZHQGFmdpZfUnZoB03oA2gIR0CWs4wx33YddX2UKGgGR0BmmsHQhOgyaAdN6ANoCEdAlrfWlZX+2nV9lChoBkdAZqlZRKpT/GgHTegDaAhHQJbB80GeMAF1fZQoaAZHQGUb1QIldC5oB03oA2gIR0CWx8uUD+zddX2UKGgGR0BjyloSL61taAdN6ANoCEdAltjNxdY4hnV9lChoBkdAZB9RXOnl4mgHTegDaAhHQJbkg0UGmk51fZQoaAZHQGKGaYVqN6xoB03oA2gIR0CW5UX1J17qdX2UKGgGR0Bgq0PhAGB4aAdN6ANoCEdAluc4ZdfLLnV9lChoBkdAZDJ1SwW30GgHTegDaAhHQJbrfQyAQQN1fZQoaAZHQGOfL+glF+doB03oA2gIR0CW8G83++/QdX2UKGgGR0BhzQUzsQd0aAdN6ANoCEdAlv0qq4pc5nV9lChoBkdAZLlf/m1YyWgHTegDaAhHQJcBqPRzBAR1fZQoaAZHQGWeFXaJyhloB03oA2gIR0CXA1wkPczqdX2UKGgGR0BiuDEtNBWxaAdN6ANoCEdAlwqNsSCe3HV9lChoBkdAX+wTRIBikWgHTegDaAhHQJcMh6lchTx1fZQoaAZHQGMtCdz4k/toB03oA2gIR0CXD7Z62OQydX2UKGgGR0BhuO76Hj6vaAdN6ANoCEdAlxSh37k4m3V9lChoBkdAY1v+AmReTmgHTegDaAhHQJcY6pbUwzt1fZQoaAZHQGUNI0Q9RrJoB03oA2gIR0CXIgZ4Oc2BdX2UKGgGR0BnQuS4e9zwaAdN6ANoCEdAlybJtFa0QnV9lChoBkdAYBwE/SpiqmgHTegDaAhHQJcneuX/o7p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8369d42561c524bf3f916ca6e85216c2d4ded6db486a351b962437f1c87036bd
3
- size 146810
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6debd345462cc8a2abe416da55610d9119b837cd884f34f16f40b7bd1d9b973b
3
+ size 147557
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7e93329900d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e9332990160>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e93329901f0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e9332990280>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7e9332990310>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7e93329903a0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e9332990430>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e93329904c0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7e9332990550>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e93329905e0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e9332990670>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e9332990700>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7e933292d980>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 16384,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1703490770509389935,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2mjz2m86I/dUcvPgWTNr9sB609EsKGvAAAAAAAAAAAzay4vHbDO7znhaO7n/yJPI+8qD0S+GK9AACAPwAAgD/Nnlu+ZdM5P2sAWLw6rxS/QlqXvls+QD4AAAAAAAAAAJrRq7tnDwU/Yp3wPA30676eRuW8qm4aPQAAAAAAAAAAQDyCPSnsYLomySm9XKOYNmCrgDsC3Qm2AACAPwAAAABmPSa9gQylvCU1Wbwqn7E8MtyuOjO1gjwAAIA/AACAPzMHjDuujrc/V4kTPmHnoT6VqJ+7VDgEvQAAAAAAAAAAmtMuPYPKNbyhGT08hGDVPKAWPr0D6Yy9AACAPwAAgD8z2eM8W8KIvHjEnb2d6pu8mJCWPT3zEj4AAIA/AACAP7PtE71oIWU/mM38vbDEKr/aEei9ym8bPQAAAAAAAAAA0y4Pvk9aYT9yfam9Wpklv/Bror7gP2o8AAAAAAAAAAD9IGS+u7UjP7a2uD1xFAW/xdauvk/4SD4AAAAAAAAAAGaOsrsUTIu6iM0YOIm8ATN8ZUq7M4cxtwAAgD8AAIA/gOhRPRzgXLyrzIO+5FxfvdPAwD1nGzc+AACAPwAAgD9Nc1298gGdP5BmGb6G+Sy/iaICvtvZ8L0AAAAAAAAAAEAlgz1/Qr4/5iuyPj2WibyIqLE9wZhIPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": 0.983616,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVnggAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKWTK5kK/qMAWyUS6aMAXSUR0C5Pybj94u9dX2UKGgGR0Bx/JV5rxiHaAdLqWgIR0C5PyqwD/2kdX2UKGgGR0ByBWy2QXANaAdLrGgIR0C5Py/jS5RTdX2UKGgGR0BzCdXbM5fdaAdLrmgIR0C5PzDqfOD8dX2UKGgGR0Bwh5Grjo6kaAdLtGgIR0C5PzoJmdy1dX2UKGgGR0Bx/dMj/uLKaAdLuWgIR0C5P0HbEgnudX2UKGgGR0Bwf/IikftAaAdLuWgIR0C5P0GV3Ux3dX2UKGgGR0Bw8ks052haaAdLvmgIR0C5P0cG5c1PdX2UKGgGR0BznbO0LMLXaAdLwGgIR0C5P0oYm9g4dX2UKGgGR0BxSFc4YJmeaAdLxWgIR0C5P1IeYD1XdX2UKGgGR0BwWTJDE3sHaAdLxmgIR0C5P1FRpDeCdX2UKGgGR0BwzjVZs9B9aAdLx2gIR0C5P1NCZ4OddX2UKGgGR0Bwb5M10knkaAdLx2gIR0C5P1LPUrkKdX2UKGgGR0Bx+TNIK+i8aAdL2WgIR0C5P2S2c8T0dX2UKGgGR0ByMdhMJx//aAdNEAFoCEdAuT+rhvR7Z3V9lChoBkdAcUvC0WuX/2gHS7xoCEdAuUA+sny/bnV9lChoBkdAbyMrIYFaCGgHS65oCEdAuUBJ26kIonV9lChoBkdAcKpNet0V8GgHS7doCEdAuUBP3pOernV9lChoBkdAcY5Uc4o7WGgHS8xoCEdAuUBUzuWrwXV9lChoBkdAcI5l/pdKNGgHS71oCEdAuUBlgrpaBHV9lChoBkdAcOvn1WbPQmgHS8JoCEdAuUB8jPfKp3V9lChoBkdActrwosqaw2gHS8NoCEdAuUC2saKk23V9lChoBkdAc6ut+CsfaGgHS+BoCEdAuUDDWsijcnV9lChoBkdAczjhtLteD2gHS91oCEdAuUDfuSfUWnV9lChoBkdAccJHXmNipmgHS8FoCEdAuUEAnRb8nHV9lChoBkdAc8PI7vG6w2gHS9toCEdAuUFYauOjqXV9lChoBkdAc2SbmU4aP2gHS+VoCEdAuUGmauwHJXV9lChoBkdAc2otSAH3UWgHTbIBaAhHQLlBv58Sf191fZQoaAZHQHPCHzxwyZdoB00RAWgIR0C5QdLlV94NdX2UKGgGR0BzxYM8YAKfaAdL/2gIR0C5QesQqZtvdX2UKGgGR0ByXGQA+6iCaAdLxGgIR0C5QiDM/yG0dX2UKGgGR0Bwc2mFajesaAdLuGgIR0C5QtNFBppOdX2UKGgGR0BxcTkJa7mMaAdLyGgIR0C5QuSONo8IdX2UKGgGR0By4q8ujASGaAdLz2gIR0C5QwBhDw6RdX2UKGgGR0BzNovGp++eaAdLz2gIR0C5QxeK8+RpdX2UKGgGR0BxX0c1fmcOaAdLtmgIR0C5QxnPeHi4dX2UKGgGR0BxkwLG7z06aAdL5GgIR0C5Qx3EMspYdX2UKGgGR0Byn8j6eoUBaAdL0WgIR0C5QyuinHeadX2UKGgGR0Byze9EkSmJaAdLz2gIR0C5Qy+JcgQpdX2UKGgGR0ByzvF1jiGWaAdLz2gIR0C5QzkKzAvddX2UKGgGR0Bw2jsNUfgaaAdLwGgIR0C5Q012FFlTdX2UKGgGR0Budyl3yI56aAdLvGgIR0C5Q1EY4yXVdX2UKGgGR0Byf1lUZNwjaAdL1mgIR0C5Q1+jVQQ+dX2UKGgGR0BzNtPBSDRMaAdNBAFoCEdAuUNkk0JnhHV9lChoBkdAccBV+7UXpGgHS7xoCEdAuUNtu3trsXV9lChoBkdAcHOn/kvK2mgHS8RoCEdAuUOQy31BdHV9lChoBkdAcLHnZTQ3P2gHTRcBaAhHQLlD+htcfNl1fZQoaAZHQHCycyBTXJ5oB0uwaAhHQLlEEbADaGp1fZQoaAZHQHHZbFGXokloB0vUaAhHQLlEOse4kNZ1fZQoaAZHQHIhX/xUedVoB0uoaAhHQLlERLmp2ll1fZQoaAZHQHE6Lf51vEVoB0vNaAhHQLlEU74i5d51fZQoaAZHQHER2ki2UjdoB0vFaAhHQLlEW6H0se51fZQoaAZHQHM6VjiGWUtoB0vTaAhHQLlEbTYdyT91fZQoaAZHQHICyYgJTl1oB0vPaAhHQLlEdwqRU3p1fZQoaAZHQHCo5A6dUbVoB0u5aAhHQLlEhhTfixV1fZQoaAZHQHHeAT/Q0GhoB0vhaAhHQLlEhWKdhAp1fZQoaAZHQHH9HTiKiwloB0vJaAhHQLlEizZYgaF1fZQoaAZHQHKNiLAHmihoB0u+aAhHQLlElGcWj451fZQoaAZHQHLM/PomoitoB0vQaAhHQLlEn+bmU4d1fZQoaAZHQHG3V0o0ALloB0v2aAhHQLlEwhtLteF1fZQoaAZHQHIK2b1AZ89oB00NAWgIR0C5RNCUC7sfdX2UKGgGR0ByjFx3mmtRaAdL42gIR0C5ROBb8m8edX2UKGgGR0BxbWDWbwz+aAdLrmgIR0C5ROZ08vEkdX2UKGgGR0ByAVcxCY1HaAdLqGgIR0C5RTt0FKTTdX2UKGgGR0BwbM2DQJHBaAdLsWgIR0C5RT/qxC6ZdX2UKGgGR0BwW3CVKPGRaAdLxmgIR0C5RUSHdoFndX2UKGgGR0B0sbyEtdzGaAdL8GgIR0C5RVjV+Zw5dX2UKGgGR0Bx50RdyDIzaAdL0mgIR0C5RV7j94u9dX2UKGgGR0BwmDgrH2h7aAdLqmgIR0C5RWiAMDwIdX2UKGgGR0BwcFe3QUpNaAdLt2gIR0C5RWxceKbbdX2UKGgGR0By8bo0Q9RraAdLzmgIR0C5RYDQu27WdX2UKGgGR0By/48kleF+aAdLx2gIR0C5RZTbvgFYdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 1227,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e29d83fdea0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e29d83fdf30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e29d83fdfc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e29d83fe050>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e29d83fe0e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e29d83fe170>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e29d83fe200>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e29d83fe290>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e29d83fe320>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e29d83fe3b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e29d83fe440>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e29d83fe4d0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e29d859b140>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1703675681136416672,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpvdT1zcmw/XW5gvSYkV74XsN08rbK7OwAAAAAAAAAA5op0va7Pg7rDqYG7QkhktifyazsVlZM6AACAPwAAgD8zkP48hVPlufCmzLrRq6+1G1NrOvh/8jkAAIA/AACAP5oJnzxckwa6iKprvJc25LNcrYk5h8KjMwAAgD8AAIA/wIjNvcYCsT+DO9W+y3KVvnqPs70iAwG+AAAAAAAAAAAAGKy8rjWoutPhpTr67JY1UNIfOoNRvrkAAIA/AACAP03IEr2PSiO6WupwusOsBrZzMTc7FjeMOQAAgD8AAIA/ZuoSvCmAe7qSZa07ZyVONZ905rm+/EA0AACAPwAAgD9m7uY7w7EsuqhlZzssCKm2+ADTugGkorUAAIA/AACAP5rB/DtIh426CIbquw4eB7YV5985BmR3NQAAgD8AAIA/mofgPHtQgLoIew88hlMrNiDP7roEIiU1AACAPwAAgD8zeAU9odCBvP72kj2MWsg8x53cPZaXej0AAIA/AACAP80AXDxcGxW6NgBwuVwdabSuDt06DFCPOAAAgD8AAIA/c+/cvWPgkT7D5Ms9NjQtvvGJ4Trvupg9AAAAAAAAAADAnZE914etP8vwUD5pxHq++zQWPlZp4jwAAAAAAAAAAJpjPrwfhbI4TmHbPBZxkbx3Kai7QY0OvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6B7IcR15mMAWyUTRoDjAF0lEdAlQ/5taY/mnV9lChoBkdAYWLwLE1l5GgHTegDaAhHQJUXL2FnIyV1fZQoaAZHQGZXpGnXNC9oB03oA2gIR0CVILuKoAGTdX2UKGgGR0BjuRfBvaUSaAdN6ANoCEdAlSFnYHxBmnV9lChoBkdAZfxIPK+zt2gHTegDaAhHQJUl1KAavRt1fZQoaAZHQGERtY0VJtloB03oA2gIR0CVKTpJwsGxdX2UKGgGR0BjbRWaMJhOaAdN6ANoCEdAlSvsIZ62OXV9lChoBkdATLyprDZUUGgHS+doCEdAlTGuUdJaq3V9lChoBkdAZbvsguAZsWgHTegDaAhHQJUzrFbVz6t1fZQoaAZHQGV6yVW0Z3toB03oA2gIR0CVNu974SHudX2UKGgGR0BkvoW8AaNuaAdN6ANoCEdAlTvV1KXfInV9lChoBkdAZxIVQhwEQ2gHTegDaAhHQJVc2LDQ7cR1fZQoaAZHQGHzC0v4/NZoB03oA2gIR0CVYWmpEQXidX2UKGgGR0BlobGYKIBSaAdN6ANoCEdAlWLhClabF3V9lChoBkdAYih+b3Gn42gHTegDaAhHQJVjqYBvJil1fZQoaAZHQGKkZLAYYSBoB03oA2gIR0CVZE39JjDsdX2UKGgGR0Bhio95hSccaAdN6ANoCEdAlWyybUgB93V9lChoBkdAYaSkfs/puGgHTegDaAhHQJVtYdQwbl11fZQoaAZHQGMse/5+H8FoB03oA2gIR0CVcsvoePq+dX2UKGgGR0BfnliSaEzwaAdN6ANoCEdAlX2K33Hq/3V9lChoBkdAZtyGW2PT5WgHTegDaAhHQJWDiCCjDbd1fZQoaAZHQGTQS0a6z3RoB03oA2gIR0CVh40Zm7J5dX2UKGgGR0BkcUhq0tyxaAdN6ANoCEdAlYpOlwcYInV9lChoBkdAZkrh73PAwmgHTegDaAhHQJWQL/bTMJR1fZQoaAZHQGMLHskY4yZoB03oA2gIR0CVkjEPlMh6dX2UKGgGR0BjAO/L1VYIaAdN6ANoCEdAlZVR99c8knV9lChoBkdAZBcGpuMuOGgHTegDaAhHQJWaLy08eS11fZQoaAZHQGaNXQ2MsH1oB03oA2gIR0CVvFC2MKkVdX2UKGgGR0Bkv7Tc6/7BaAdN6ANoCEdAlcD20/nnuHV9lChoBkdAcsoZ7XxvvWgHTW0CaAhHQJXBovWYnfF1fZQoaAZHQGfA2DHwPRRoB03oA2gIR0CVwmBlcyFgdX2UKGgGR0Bd1Y8+zMRpaAdN6ANoCEdAlcMfzWf9P3V9lChoBkdAYEqJ1q33H2gHTegDaAhHQJXDxXvH93t1fZQoaAZHQGI3smOU+s5oB03oA2gIR0CVy/a+N96UdX2UKGgGR0BdFD3AVO9GaAdN6ANoCEdAlcyiQcPvrnV9lChoBkdAXb1PVNHpbGgHTegDaAhHQJXR7Lns9jh1fZQoaAZHQGVw80k4WDZoB03oA2gIR0CV4BD/VAiWdX2UKGgGR0BxZLBAOavzaAdN2gFoCEdAleOD238XN3V9lChoBkdAZANr8BMi8mgHTegDaAhHQJXjl+pfhMt1fZQoaAZHQGPKmplz2exoB03oA2gIR0CV5xfReC04dX2UKGgGR0BhwF9H+ZPVaAdN6ANoCEdAle5DB68g6nV9lChoBkdAZl7MPBi1A2gHTegDaAhHQJXwxbqyGBZ1fZQoaAZHQFwJdD6WPcVoB03oA2gIR0CV9CaisXBQdX2UKGgGR0Bbp8JhOP/8aAdN6ANoCEdAlfiySA6Mi3V9lChoBkdAYW4PGyX2NGgHTegDaAhHQJYGw3++/QB1fZQoaAZHQGb9vVNHpbFoB03oA2gIR0CWHFVzIV/MdX2UKGgGR0BmUsNSZSeiaAdN6ANoCEdAlh1XjlxOtXV9lChoBkdAY2pWZqmCRWgHTegDaAhHQJYfk6tDD0l1fZQoaAZHQGEn1lPJq7BoB03oA2gIR0CWIIrWRRuTdX2UKGgGR0Bj0BH09QoDaAdN6ANoCEdAliu3w1BMSXV9lChoBkdAZOHph4MWoGgHTegDaAhHQJYsebNKRMh1fZQoaAZHQFO4DoyKvV5oB0vdaAhHQJYx8bS7Xg91fZQoaAZHQFzFmJm/WUdoB03oA2gIR0CWMmIbOu7pdX2UKGgGR0BgAgz7/GVBaAdN6ANoCEdAlkEc2aUiZHV9lChoBkdAY5F4TK1XvGgHTegDaAhHQJZEzfwZwXJ1fZQoaAZHQGR0JxWDHwRoB03oA2gIR0CWROPTodMkdX2UKGgGR0BGd/J/5LyuaAdNCQFoCEdAlkZ12FFlTXV9lChoBkdAYwAG/vfCRGgHTegDaAhHQJZHgFEAo5R1fZQoaAZHQGCvjZ+QU6BoB03oA2gIR0CWTPksz2vjdX2UKGgGR0BhClaOgg5jaAdN6ANoCEdAlk7QIdELIHV9lChoBkdAYCsy57PY4GgHTegDaAhHQJZSRwsGxD91fZQoaAZHQGc8nanJkoZoB03oA2gIR0CWWIWS2Yv4dX2UKGgGR0Au5MKTjebeaAdNEgFoCEdAllm/MfRu0nV9lChoBkdAOitWZJCjUWgHTRwBaAhHQJZeC2PT5O91fZQoaAZHQGbU9mpVCHBoB03oA2gIR0CWZtG5+YtydX2UKGgGR0BgvueMAFPjaAdN6ANoCEdAlnsFQqI8AHV9lChoBkdAYgAS8J2MbWgHTegDaAhHQJZ7rcbiqAB1fZQoaAZHQGLhVSGahHtoB03oA2gIR0CWfcVKwpvxdX2UKGgGR0BiS3yqdYnwaAdN6ANoCEdAloadKVY6n3V9lChoBkdAYZG5qdpZfWgHTegDaAhHQJaHi3H7xd91fZQoaAZHQHE7Hu3MINVoB02yAWgIR0CWid10DEFXdX2UKGgGR0BiWgBkqc3EaAdN6ANoCEdAlo6lktmL+HV9lChoBkdAROw8bJfYz2gHTRkBaAhHQJaUQHIIWxh1fZQoaAZHQGO6DB2wFC9oB03oA2gIR0CWnUjB2wFDdX2UKGgGR0BkoZWDHwPRaAdN6ANoCEdAlqC1qnFYMnV9lChoBkdAYuscAiml7GgHTegDaAhHQJaiW6unuRd1fZQoaAZHQGHDmViWmgtoB03oA2gIR0CWqRsvIwM6dX2UKGgGR0BagD9GZuyeaAdN6ANoCEdAlqsmbsniN3V9lChoBkdAX11JRO1v22gHTegDaAhHQJaucLjPv8Z1fZQoaAZHQGFmdpZfUnZoB03oA2gIR0CWs4wx33YddX2UKGgGR0BmmsHQhOgyaAdN6ANoCEdAlrfWlZX+2nV9lChoBkdAZqlZRKpT/GgHTegDaAhHQJbB80GeMAF1fZQoaAZHQGUb1QIldC5oB03oA2gIR0CWx8uUD+zddX2UKGgGR0BjyloSL61taAdN6ANoCEdAltjNxdY4hnV9lChoBkdAZB9RXOnl4mgHTegDaAhHQJbkg0UGmk51fZQoaAZHQGKGaYVqN6xoB03oA2gIR0CW5UX1J17qdX2UKGgGR0Bgq0PhAGB4aAdN6ANoCEdAluc4ZdfLLnV9lChoBkdAZDJ1SwW30GgHTegDaAhHQJbrfQyAQQN1fZQoaAZHQGOfL+glF+doB03oA2gIR0CW8G83++/QdX2UKGgGR0BhzQUzsQd0aAdN6ANoCEdAlv0qq4pc5nV9lChoBkdAZLlf/m1YyWgHTegDaAhHQJcBqPRzBAR1fZQoaAZHQGWeFXaJyhloB03oA2gIR0CXA1wkPczqdX2UKGgGR0BiuDEtNBWxaAdN6ANoCEdAlwqNsSCe3HV9lChoBkdAX+wTRIBikWgHTegDaAhHQJcMh6lchTx1fZQoaAZHQGMtCdz4k/toB03oA2gIR0CXD7Z62OQydX2UKGgGR0BhuO76Hj6vaAdN6ANoCEdAlxSh37k4m3V9lChoBkdAY1v+AmReTmgHTegDaAhHQJcY6pbUwzt1fZQoaAZHQGUNI0Q9RrJoB03oA2gIR0CXIgZ4Oc2BdX2UKGgGR0BnQuS4e9zwaAdN6ANoCEdAlybJtFa0QnV9lChoBkdAYBwE/SpiqmgHTegDaAhHQJcneuX/o7p1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c17a74f9c1c5542e0e98f9982db71b79c9f33813418f9437958755d299a8b89f
3
- size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8aae6d1a11c7cb17ea04c0611e9231d480ae2354a678dd691d502f8bc22de8b
3
+ size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fcd9fc8c3499acc687a8dd236ecb7c7d5347d647dfa9e91dd8b6ebf3dbcf2888
3
- size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce4c9bd6e45eeb126fdf87d4ed7b63808702214428a3097ba27c2c702f2db5a8
3
+ size 43634
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -2,7 +2,7 @@
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.1.0+cu121
5
- - GPU Enabled: True
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
 
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: False
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -122.12196793865652, "std_reward": 36.94069054820784, "n_evaluation_episodes": 10, "eval_datetime": "2023-12-27T10:55:47.460844"}
 
1
+ {"mean_reward": 256.08885884867493, "std_reward": 17.5354215071896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-27T11:40:36.086855"}