DeepMostInnovations commited on
Commit
e289938
·
verified ·
1 Parent(s): a8edcb3

Update README with Enhanced RAG system instructions

Browse files
Files changed (1) hide show
  1. README.md +23 -1
README.md CHANGED
@@ -36,7 +36,28 @@ git clone https://huggingface.co/DeepMostInnovations/hindi-embedding-foundationa
36
  cd hindi-embedding-foundational-model
37
  ```
38
 
39
- ### Quick Start
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ```python
42
  from hindi_embeddings import HindiEmbedder
@@ -102,6 +123,7 @@ Technical specifications:
102
  - Question answering
103
  - Document similarity comparison
104
  - Content-based filtering
 
105
 
106
  ## License
107
 
 
36
  cd hindi-embedding-foundational-model
37
  ```
38
 
39
+ ### Enhanced RAG System
40
+
41
+ This model now includes an enhanced RAG (Retrieval Augmented Generation) system that integrates Unsloth's optimized Llama-3.2-1B-Instruct model for question answering on top of Hindi document retrieval.
42
+
43
+ #### Setup and Installation
44
+
45
+ 1. Install additional dependencies:
46
+ ```bash
47
+ pip install unsloth transformers bitsandbytes accelerate langchain langchain-community
48
+ ```
49
+
50
+ 2. Index your documents:
51
+ ```bash
52
+ python hindi-rag-system.py --model_dir /path/to/your/model --tokenizer_dir /path/to/tokenizer --data_dir ./data --output_dir ./output --index
53
+ ```
54
+
55
+ 3. Run in QA mode with LLM:
56
+ ```bash
57
+ python hindi-rag-system.py --model_dir /path/to/your/model --tokenizer_dir /path/to/tokenizer --output_dir ./output --interactive --qa
58
+ ```
59
+
60
+ ### Basic Embedding Usage
61
 
62
  ```python
63
  from hindi_embeddings import HindiEmbedder
 
123
  - Question answering
124
  - Document similarity comparison
125
  - Content-based filtering
126
+ - RAG systems for Hindi language content
127
 
128
  ## License
129