SDNQ
Collection
Models quantized with SDNQ
•
17 items
•
Updated
•
2
4 bit (UINT4 with SVD rank 32) quantization of Qwen/Qwen3-VL-32B-Instruct using SDNQ.
Usage:
pip install git+https://github.com/Disty0/sdnq
import torch
from sdnq import SDNQConfig # import sdnq to register it into diffusers and transformers
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
model_path = "Disty0/Qwen3-VL-32B-Instruct-SDNQ-uint4-svd-r32"
# default: Load the model on the available device(s)
model = Qwen3VLForConditionalGeneration.from_pretrained(
model_path, dtype=torch.bfloat16, device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen3VLForConditionalGeneration.from_pretrained(
# model_path,
# dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
processor = AutoProcessor.from_pretrained(model_path)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt"
)
inputs = inputs.to(model.device)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Base model
Qwen/Qwen3-VL-32B-Instruct