DraconicDragon commited on
Commit
07302a4
·
1 Parent(s): ea93bd5

Create onnx_barebones_inference.py

Browse files
Files changed (1) hide show
  1. onnx_barebones_inference.py +126 -0
onnx_barebones_inference.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import onnxruntime as ort
2
+ import numpy as np
3
+ from PIL import Image
4
+ import pandas as pd
5
+ import requests
6
+ import io
7
+ import sys
8
+
9
+ # CONFIG SECTION
10
+ ONNX_MODEL_PATH = "./lsnet_xl_artist-dynamo-opset18_merged.onnx"
11
+ CSV_PATH = "./class_mapping.csv"
12
+ IMAGE_URL = "https://cdn.donmai.us/sample/9f/bb/__vampire_s_sister_original_drawn_by_gogalking__sample-9fbb30aa76bdc8242a1c122d3d6b41d9.jpg"
13
+ IMAGE_SIZE = (224, 224)
14
+
15
+ TOP_K = 5
16
+ PREDICTION_THRESHOLD = 0.0
17
+ # ------------------------------------------------------------
18
+
19
+ def preprocess_image_from_url(image_url, size=(224, 224)):
20
+ """
21
+ Downloads an image from a URL, preprocesses it, and prepares it for the model.
22
+ """
23
+ try:
24
+ response = requests.get(image_url)
25
+ response.raise_for_status() # Raise an exception for bad status codes
26
+ image_bytes = io.BytesIO(response.content)
27
+ image = Image.open(image_bytes).convert("RGB")
28
+ except requests.exceptions.RequestException as e:
29
+ print(f"Error: Failed to download image from URL '{image_url}'.\nDetails: {e}")
30
+ sys.exit(1)
31
+ except Exception as e:
32
+ print(f"Error: Could not process the downloaded image. It may not be a valid image file.\nDetails: {e}")
33
+ sys.exit(1)
34
+
35
+
36
+ # Resize the image
37
+ image = image.resize(size, Image.Resampling.LANCZOS)
38
+
39
+ # Convert image to numpy array and scale to [0, 1]
40
+ image_np = np.array(image, dtype=np.float32) / 255.0
41
+
42
+ # Define ImageNet mean and standard deviation for normalization
43
+ mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
44
+ std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
45
+
46
+ # Normalize the image
47
+ normalized_image = (image_np - mean) / std
48
+
49
+ # Transpose the dimensions from (H, W, C) to (C, H, W)
50
+ transposed_image = normalized_image.transpose((2, 0, 1))
51
+
52
+ # Add a batch dimension to create a shape of (1, C, H, W)
53
+ batched_image = np.expand_dims(transposed_image, axis=0)
54
+
55
+ return batched_image
56
+
57
+ def load_labels(csv_path):
58
+ """
59
+ Loads the class labels from the provided CSV file into a dictionary,
60
+ handling the header row and stripping quotes from names.
61
+ """
62
+ try:
63
+ df = pd.read_csv(csv_path)
64
+ if 'class_id' not in df.columns or 'class_name' not in df.columns:
65
+ print(f"Error: CSV file must have 'class_id' and 'class_name' columns.")
66
+ sys.exit(1)
67
+ df['class_name'] = df['class_name'].str.strip("'")
68
+ return dict(zip(df['class_id'], df['class_name']))
69
+ except FileNotFoundError:
70
+ print(f"Error: CSV file not found at '{csv_path}'")
71
+ sys.exit(1)
72
+ except Exception as e:
73
+ print(f"Error reading CSV file: {e}")
74
+ sys.exit(1)
75
+
76
+ def softmax(x):
77
+ """Compute softmax values for a set of scores."""
78
+ e_x = np.exp(x - np.max(x))
79
+ return e_x / e_x.sum(axis=0)
80
+
81
+ def main():
82
+ """
83
+ Main function to run the ONNX model inference.
84
+ """
85
+ print("1. Loading class labels...")
86
+ labels = load_labels(CSV_PATH)
87
+ print(f" Loaded {len(labels)} labels.")
88
+
89
+ print("\n2. Downloading and preprocessing image from URL...")
90
+ input_tensor = preprocess_image_from_url(IMAGE_URL, IMAGE_SIZE)
91
+ print(f" Image shape: {input_tensor.shape}, Data type: {input_tensor.dtype}")
92
+
93
+ print("\n3. Initializing ONNX runtime session...")
94
+ try:
95
+ session = ort.InferenceSession(ONNX_MODEL_PATH, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
96
+ input_name = session.get_inputs()[0].name
97
+ output_name = session.get_outputs()[0].name
98
+ print(" ONNX session created successfully.")
99
+ except Exception as e:
100
+ print(f"Error loading ONNX model: {e}")
101
+ sys.exit(1)
102
+
103
+ print("\n4. Running inference...")
104
+ results = session.run([output_name], {input_name: input_tensor})
105
+ logits = results[0][0]
106
+ print(" Inference complete.")
107
+
108
+ print("\n5. Processing results...")
109
+ probabilities = softmax(logits)
110
+ top_k_indices = np.argsort(probabilities)[-TOP_K:][::-1]
111
+
112
+ print(f"\n--- Predictions for image URL (Top K: {TOP_K}, Threshold: {PREDICTION_THRESHOLD:.1%}) ---")
113
+
114
+ predictions_found = 0
115
+ for i, index in enumerate(top_k_indices):
116
+ score = probabilities[index]
117
+ if score >= PREDICTION_THRESHOLD:
118
+ class_name = labels.get(index, f"Unknown Class #{index}")
119
+ print(f"Rank {i+1}: {class_name} (Score: {score:.2%})")
120
+ predictions_found += 1
121
+
122
+ if predictions_found == 0:
123
+ print("No predictions met the specified threshold.")
124
+
125
+ if __name__ == "__main__":
126
+ main()