--- license: apache-2.0 tags: - generated_from_trainer datasets: - source_data_nlp metrics: - precision - recall - f1 model-index: - name: sd-smallmol-roles-v2 results: - task: name: Token Classification type: token-classification dataset: name: source_data_nlp type: source_data_nlp args: SMALL_MOL_ROLES metrics: - name: Precision type: precision value: 0.9628394473558838 - name: Recall type: recall value: 0.9716346153846154 - name: F1 type: f1 value: 0.9672170375687963 --- # sd-smallmol-roles-v2 This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data_nlp dataset. It achieves the following results on the evaluation set: - Loss: 0.0015 - Accuracy Score: 0.9995 - Precision: 0.9628 - Recall: 0.9716 - F1: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 256 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.0013 | 1.0 | 1569 | 0.0015 | 0.9995 | 0.9628 | 0.9716 | 0.9672 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 1.17.0 - Tokenizers 0.12.1