File size: 4,300 Bytes
6c23bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
library_name: peft
license: mit
base_model: THUDM/GLM-4-32B-0414
tags:
- axolotl
- generated_from_trainer
datasets:
- anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1
model-index:
- name: magnum-v5-sft-prototype-glm4-32b-lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.8.0`
```yaml
base_model: THUDM/GLM-4-32B-0414
#base_model_ignore_patterns: "*/*"
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: anthracite-core/magnum-v5-sft-prototype-glm4-32b-lora
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1
ds_type: parquet
type:
shuffle_merged_datasets: true
dataset_prepared_path: ./data/magnum-32b-data
val_set_size: 0.01
output_dir: ./data/32b-lora-out
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#liger_rope: false
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
cut_cross_entropy: true
sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
peft_use_rslora: true
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: 32b-magnum-lora
wandb_entity:
wandb_watch:
wandb_name: run4-Lora-0.001-clip
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 2
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 2e-4
max_grad_norm: 0.001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 40
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: ./deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# magnum-v5-sft-prototype-glm4-32b-lora
This model is a fine-tuned version of [THUDM/GLM-4-32B-0414](https://huggingface.co/THUDM/GLM-4-32B-0414) on the anthracite-core/magnum-v5-sft-proto-glm4-instruct-rev1 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1075
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use paged_ademamix_8bit and the args are:
No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.3541 | 0.0024 | 1 | 1.3336 |
| 1.1718 | 0.2503 | 103 | 1.1633 |
| 1.1976 | 0.5006 | 206 | 1.1460 |
| 1.095 | 0.7509 | 309 | 1.1339 |
| 1.1076 | 1.0 | 412 | 1.1213 |
| 1.1063 | 1.2503 | 515 | 1.1128 |
| 1.1214 | 1.5006 | 618 | 1.1089 |
| 1.0286 | 1.7509 | 721 | 1.1075 |
### Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1 |