Upload files with `vila-upload`.
Browse filesUpload processing_vila.py
Upload modeling_vila.py
- modeling_vila.py +39 -35
- processing_vila.py +267 -207
modeling_vila.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
-
from typing import List, Optional, Type
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
-
from torch import Tensor
|
|
|
|
| 7 |
from transformers.configuration_utils import PretrainedConfig
|
| 8 |
from transformers.generation.utils import GenerationMixin
|
| 9 |
from transformers.modeling_outputs import BaseModelOutputWithPooling, CausalLMOutputWithPast
|
|
@@ -55,23 +56,22 @@ class MultimodalProjector(nn.Module):
|
|
| 55 |
):
|
| 56 |
super().__init__(*args, **kwargs)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
raise NotImplementedError(f"Unsupported mm_projector_type: {config.mm_projector_type}")
|
| 75 |
|
| 76 |
self.layers.type(config.torch_dtype)
|
| 77 |
|
|
@@ -131,22 +131,29 @@ class VILAForConditionalGeneration(PreTrainedModel, GenerationMixin):
|
|
| 131 |
attention_mask: Optional[Tensor] = None,
|
| 132 |
input_ids: Optional[Tensor] = None,
|
| 133 |
inputs_embeds: Optional[Tensor] = None,
|
|
|
|
| 134 |
pixel_values: Optional[Tensor] = None,
|
|
|
|
|
|
|
| 135 |
**kwargs,
|
| 136 |
) -> CausalLMOutputWithPast:
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
pixel_values = None
|
| 140 |
|
| 141 |
-
if
|
| 142 |
-
if input_ids is None:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
inputs_embeds = self._embed(input_ids, pixel_values)
|
| 146 |
|
| 147 |
outputs = self.llm.__call__(
|
| 148 |
-
inputs_embeds=inputs_embeds.to(device=self.llm.device, dtype=self.llm.dtype),
|
| 149 |
attention_mask=(attention_mask.to(device=self.llm.device) if attention_mask is not None else None),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
**kwargs,
|
| 151 |
)
|
| 152 |
|
|
@@ -208,10 +215,7 @@ class VILAForConditionalGeneration(PreTrainedModel, GenerationMixin):
|
|
| 208 |
|
| 209 |
selected_layer_hidden_states = vision_tower_output.hidden_states[self.config.mm_vision_select_layer]
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
raise NotImplementedError(
|
| 216 |
-
f"Unsupported mm_vision_select_feature: {self.config.mm_vision_select_feature}"
|
| 217 |
-
)
|
|
|
|
| 1 |
+
from typing import List, Optional, Type, Union
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
+
from torch import LongTensor, Tensor
|
| 7 |
+
from transformers.cache_utils import Cache
|
| 8 |
from transformers.configuration_utils import PretrainedConfig
|
| 9 |
from transformers.generation.utils import GenerationMixin
|
| 10 |
from transformers.modeling_outputs import BaseModelOutputWithPooling, CausalLMOutputWithPast
|
|
|
|
| 56 |
):
|
| 57 |
super().__init__(*args, **kwargs)
|
| 58 |
|
| 59 |
+
if config.mm_projector_type == "mlp_downsample_3x3_fix":
|
| 60 |
+
self.layers = nn.Sequential(
|
| 61 |
+
DownSample3x3BlockFix(),
|
| 62 |
+
nn.LayerNorm(config.mm_hidden_size * 9),
|
| 63 |
+
nn.Linear(
|
| 64 |
+
config.mm_hidden_size * 9,
|
| 65 |
+
config.mm_hidden_size * 3,
|
| 66 |
+
),
|
| 67 |
+
nn.GELU(),
|
| 68 |
+
nn.LayerNorm(config.vision_config.hidden_size * 3),
|
| 69 |
+
nn.Linear(config.vision_config.hidden_size * 3, config.hidden_size),
|
| 70 |
+
nn.GELU(),
|
| 71 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 72 |
+
)
|
| 73 |
+
else:
|
| 74 |
+
raise NotImplementedError(f"Unsupported mm_projector_type: {config.mm_projector_type}")
|
|
|
|
| 75 |
|
| 76 |
self.layers.type(config.torch_dtype)
|
| 77 |
|
|
|
|
| 131 |
attention_mask: Optional[Tensor] = None,
|
| 132 |
input_ids: Optional[Tensor] = None,
|
| 133 |
inputs_embeds: Optional[Tensor] = None,
|
| 134 |
+
past_key_values: Optional[Cache] = None,
|
| 135 |
pixel_values: Optional[Tensor] = None,
|
| 136 |
+
position_ids: Optional[LongTensor] = None,
|
| 137 |
+
logits_to_keep: Union[int, Tensor] = 0,
|
| 138 |
**kwargs,
|
| 139 |
) -> CausalLMOutputWithPast:
|
| 140 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 141 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds.")
|
|
|
|
| 142 |
|
| 143 |
+
if past_key_values is None: # Prefill
|
| 144 |
+
if input_ids is not None:
|
| 145 |
+
inputs_embeds = self._embed(input_ids, pixel_values)
|
| 146 |
+
input_ids = None
|
|
|
|
| 147 |
|
| 148 |
outputs = self.llm.__call__(
|
|
|
|
| 149 |
attention_mask=(attention_mask.to(device=self.llm.device) if attention_mask is not None else None),
|
| 150 |
+
input_ids=(input_ids.to(device=self.llm.device) if input_ids is not None else None),
|
| 151 |
+
inputs_embeds=(
|
| 152 |
+
inputs_embeds.to(device=self.llm.device, dtype=self.llm.dtype) if inputs_embeds is not None else None
|
| 153 |
+
),
|
| 154 |
+
past_key_values=past_key_values,
|
| 155 |
+
position_ids=(position_ids.to(device=self.llm.device) if position_ids is not None else None),
|
| 156 |
+
logits_to_keep=logits_to_keep,
|
| 157 |
**kwargs,
|
| 158 |
)
|
| 159 |
|
|
|
|
| 215 |
|
| 216 |
selected_layer_hidden_states = vision_tower_output.hidden_states[self.config.mm_vision_select_layer]
|
| 217 |
|
| 218 |
+
if self.config.mm_vision_select_feature == "cls_patch":
|
| 219 |
+
return selected_layer_hidden_states
|
| 220 |
+
else:
|
| 221 |
+
raise NotImplementedError(f"Unsupported mm_vision_select_feature: {self.config.mm_vision_select_feature}")
|
|
|
|
|
|
|
|
|
processing_vila.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from typing import List, Optional, Tuple, cast
|
| 2 |
|
| 3 |
import transformers.image_transforms as image_transforms
|
|
@@ -14,7 +15,7 @@ from transformers.models.siglip.image_processing_siglip import SiglipImageProces
|
|
| 14 |
from transformers.models.siglip.image_processing_siglip_fast import SiglipImageProcessorFast
|
| 15 |
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 16 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 17 |
-
from transformers.tokenization_utils_base import PreTrainedTokenizerBase, TextInput
|
| 18 |
from transformers.video_utils import VideoInput
|
| 19 |
|
| 20 |
logger = transformers.utils.logging.get_logger(__name__)
|
|
@@ -83,7 +84,6 @@ class VILAProcessor(ProcessorMixin):
|
|
| 83 |
text: TextInput | List[TextInput],
|
| 84 |
images: Optional[ImageInput] = None,
|
| 85 |
videos: Optional[VideoInput] = None,
|
| 86 |
-
audio: None = None,
|
| 87 |
**kwargs: Unpack[ProcessingKwargs],
|
| 88 |
) -> VILAProcessorOutput:
|
| 89 |
"""Preprocesses inputs for VILA.
|
|
@@ -92,7 +92,6 @@ class VILAProcessor(ProcessorMixin):
|
|
| 92 |
text: The text to be processed.
|
| 93 |
images: The images to be processed.
|
| 94 |
videos: The videos to be processed.
|
| 95 |
-
audio: Not available.
|
| 96 |
**kwargs: Additional arguments for processing.
|
| 97 |
|
| 98 |
Returns:
|
|
@@ -105,58 +104,32 @@ class VILAProcessor(ProcessorMixin):
|
|
| 105 |
**kwargs,
|
| 106 |
)
|
| 107 |
|
| 108 |
-
|
| 109 |
text=text,
|
| 110 |
images=images,
|
| 111 |
videos=videos,
|
| 112 |
)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
videos=prepared_videos,
|
| 119 |
)
|
| 120 |
|
| 121 |
-
# Process images.
|
| 122 |
-
image_inputs, num_cropped_images = self._process_images(
|
| 123 |
-
images=prepared_images,
|
| 124 |
-
video_flags=video_flags,
|
| 125 |
-
**merged_kwargs["images_kwargs"],
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
# Process text.
|
| 129 |
-
prepared_text = self._pad_image_tokens_by_num_crops(
|
| 130 |
-
prepared_text,
|
| 131 |
-
num_cropped_images=num_cropped_images,
|
| 132 |
-
video_flags=video_flags,
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
prepared_text = self._pad_image_tokens_by_num_embeddings(prepared_text)
|
| 136 |
-
|
| 137 |
text_inputs = self.tokenizer.__call__(
|
| 138 |
-
|
| 139 |
**merged_kwargs["text_kwargs"],
|
| 140 |
)
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
idx = 0
|
| 150 |
-
while idx < len(input_ids):
|
| 151 |
-
if input_ids[idx] != image_token_id:
|
| 152 |
-
idx += 1
|
| 153 |
-
continue
|
| 154 |
|
| 155 |
-
|
| 156 |
-
input_ids[idx + self.image_pad_len] = lf_token_id
|
| 157 |
-
idx += self.image_pad_len + 1
|
| 158 |
-
else:
|
| 159 |
-
break
|
| 160 |
|
| 161 |
return VILAProcessorOutput(
|
| 162 |
data={
|
|
@@ -165,119 +138,118 @@ class VILAProcessor(ProcessorMixin):
|
|
| 165 |
}
|
| 166 |
)
|
| 167 |
|
| 168 |
-
def
|
| 169 |
-
|
| 170 |
-
image: Image,
|
| 171 |
-
*,
|
| 172 |
-
is_video_frame: bool,
|
| 173 |
-
) -> List[Image]:
|
| 174 |
-
"""Crops the image into multiple tiles.
|
| 175 |
|
| 176 |
Args:
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
Returns:
|
| 180 |
-
The cropped images.
|
| 181 |
-
"""
|
| 182 |
-
|
| 183 |
-
# TODO: Support more image processors.
|
| 184 |
-
if not isinstance(self.image_processor, (SiglipImageProcessor, SiglipImageProcessorFast)):
|
| 185 |
-
raise NotImplementedError
|
| 186 |
-
|
| 187 |
-
assert self.image_processor.size["height"] == self.image_processor.size["width"]
|
| 188 |
-
cropped_size = self.image_processor.size["height"]
|
| 189 |
-
|
| 190 |
-
cropped_images: List[Image] = dynamic_preprocess(
|
| 191 |
-
image,
|
| 192 |
-
min_num=self.min_tiles,
|
| 193 |
-
max_num=self.max_tiles if not is_video_frame else self.video_max_tiles,
|
| 194 |
-
image_size=cropped_size,
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
return cropped_images
|
| 198 |
-
|
| 199 |
-
def _pad_image_tokens_by_num_crops(
|
| 200 |
-
self,
|
| 201 |
-
text: List[str],
|
| 202 |
-
*,
|
| 203 |
-
num_cropped_images: List[int],
|
| 204 |
-
video_flags: List[bool],
|
| 205 |
-
) -> List[str]:
|
| 206 |
-
"""Pads each \\<image> to num_cropped_images of "\\<image>\\n" for images and "\\<video>" for videos.
|
| 207 |
-
|
| 208 |
-
Args:
|
| 209 |
-
text: The text to be padded.
|
| 210 |
-
num_cropped_images: The number of cropped images for each image token.
|
| 211 |
-
video_flags: A list of flags indicating whether the num_cropped_images item is a video.
|
| 212 |
|
| 213 |
Returns:
|
| 214 |
-
The
|
|
|
|
| 215 |
"""
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
), "num_cropped_images and video_flags must have the same length."
|
| 220 |
-
|
| 221 |
-
image_token: str = cast(str, self.tokenizer.image_token)
|
| 222 |
|
| 223 |
-
|
| 224 |
|
| 225 |
for text_item in text:
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
# Repeatedly find image_token in the text.
|
| 229 |
-
while image_token in text_item:
|
| 230 |
image_pos = text_item.find(image_token)
|
|
|
|
| 231 |
|
| 232 |
-
if image_pos
|
| 233 |
-
|
| 234 |
-
video_flag = video_flags.pop(0)
|
| 235 |
-
|
| 236 |
-
return_text_item += (
|
| 237 |
-
text_item[:image_pos] + (image_token if video_flag else (image_token + "\n")) * num_crops
|
| 238 |
-
)
|
| 239 |
-
text_item = text_item[image_pos + len(image_token) :]
|
| 240 |
-
|
| 241 |
-
else:
|
| 242 |
break
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
return_text_item += text_item
|
| 249 |
-
text_item = ""
|
| 250 |
-
|
| 251 |
-
return_text.append(return_text_item)
|
| 252 |
-
|
| 253 |
-
if len(num_cropped_images) != 0:
|
| 254 |
-
raise ValueError("Too many images provided.")
|
| 255 |
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
self,
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
|
|
|
|
|
|
| 263 |
|
| 264 |
Args:
|
| 265 |
-
|
|
|
|
|
|
|
| 266 |
|
| 267 |
Returns:
|
| 268 |
-
The
|
| 269 |
"""
|
| 270 |
|
| 271 |
image_token = cast(str, self.tokenizer.image_token)
|
|
|
|
| 272 |
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
| 277 |
text: TextInput | List[TextInput],
|
| 278 |
images: Optional[ImageInput],
|
| 279 |
videos: Optional[VideoInput],
|
| 280 |
) -> Tuple[List[str], List[Image], List[List[Image]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
prepared_text = text if isinstance(text, list) else [text]
|
| 282 |
|
| 283 |
if images is not None:
|
|
@@ -296,117 +268,205 @@ class VILAProcessor(ProcessorMixin):
|
|
| 296 |
|
| 297 |
return prepared_text, prepared_images, prepared_videos
|
| 298 |
|
| 299 |
-
def
|
| 300 |
self,
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
**kwargs,
|
| 305 |
-
) -> Tuple[BatchFeature, List[int]]:
|
| 306 |
-
cropped_images: List[Image] = []
|
| 307 |
-
num_cropped_images: List[int] = []
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
return BatchFeature(), num_cropped_images
|
| 319 |
|
| 320 |
-
|
| 321 |
-
cropped_images,
|
| 322 |
-
**kwargs,
|
| 323 |
-
)
|
| 324 |
|
| 325 |
-
return
|
| 326 |
|
| 327 |
-
def
|
| 328 |
-
self,
|
| 329 |
-
|
| 330 |
-
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
-
This method
|
| 333 |
-
|
|
|
|
| 334 |
|
| 335 |
Args:
|
| 336 |
-
text: The text
|
| 337 |
-
images: The images
|
| 338 |
-
videos: The videos
|
| 339 |
|
| 340 |
Returns:
|
| 341 |
-
The
|
|
|
|
| 342 |
"""
|
| 343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
image_token = cast(str, self.tokenizer.image_token)
|
| 345 |
-
|
| 346 |
|
| 347 |
-
|
| 348 |
-
return_images: List[Image] = []
|
| 349 |
-
return_video_flags: List[bool] = []
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
|
|
|
|
|
|
|
|
|
| 353 |
|
| 354 |
-
|
| 355 |
-
while image_token in text_item or video_token in text_item:
|
| 356 |
-
image_pos = text_item.find(image_token)
|
| 357 |
-
video_pos = text_item.find(video_token)
|
| 358 |
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
-
|
| 366 |
-
# Take an image and keep the image token if:
|
| 367 |
-
# - an image token is found, and
|
| 368 |
-
# - there are images left, and
|
| 369 |
-
# - the image token is before the first video token.
|
| 370 |
|
| 371 |
-
|
| 372 |
-
return_images.append(image)
|
| 373 |
-
return_video_flags.append(False)
|
| 374 |
|
| 375 |
-
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
|
|
|
|
|
|
| 383 |
|
| 384 |
-
|
| 385 |
-
return_images.extend(video)
|
| 386 |
-
return_video_flags.extend([True] * len(video))
|
| 387 |
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
break
|
| 392 |
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
-
|
| 400 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
|
| 402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
|
|
|
| 408 |
|
| 409 |
-
return
|
| 410 |
|
| 411 |
|
| 412 |
def dynamic_preprocess(image: Image, min_num: int, max_num: int, image_size: int, use_thumbnail=True) -> List[Image]:
|
|
|
|
| 1 |
+
import uuid
|
| 2 |
from typing import List, Optional, Tuple, cast
|
| 3 |
|
| 4 |
import transformers.image_transforms as image_transforms
|
|
|
|
| 15 |
from transformers.models.siglip.image_processing_siglip_fast import SiglipImageProcessorFast
|
| 16 |
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
| 17 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 18 |
+
from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase, TextInput
|
| 19 |
from transformers.video_utils import VideoInput
|
| 20 |
|
| 21 |
logger = transformers.utils.logging.get_logger(__name__)
|
|
|
|
| 84 |
text: TextInput | List[TextInput],
|
| 85 |
images: Optional[ImageInput] = None,
|
| 86 |
videos: Optional[VideoInput] = None,
|
|
|
|
| 87 |
**kwargs: Unpack[ProcessingKwargs],
|
| 88 |
) -> VILAProcessorOutput:
|
| 89 |
"""Preprocesses inputs for VILA.
|
|
|
|
| 92 |
text: The text to be processed.
|
| 93 |
images: The images to be processed.
|
| 94 |
videos: The videos to be processed.
|
|
|
|
| 95 |
**kwargs: Additional arguments for processing.
|
| 96 |
|
| 97 |
Returns:
|
|
|
|
| 104 |
**kwargs,
|
| 105 |
)
|
| 106 |
|
| 107 |
+
normalized_text, normalized_images, normalized_videos = self._normalize_inputs(
|
| 108 |
text=text,
|
| 109 |
images=images,
|
| 110 |
videos=videos,
|
| 111 |
)
|
| 112 |
|
| 113 |
+
preprocessed_text, preprocessed_media_tiles = self._preprocess_inputs(
|
| 114 |
+
text=normalized_text,
|
| 115 |
+
images=normalized_images,
|
| 116 |
+
videos=normalized_videos,
|
|
|
|
| 117 |
)
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
text_inputs = self.tokenizer.__call__(
|
| 120 |
+
preprocessed_text,
|
| 121 |
**merged_kwargs["text_kwargs"],
|
| 122 |
)
|
| 123 |
|
| 124 |
+
if len(preprocessed_media_tiles) > 0:
|
| 125 |
+
image_inputs = self.image_processor.__call__(
|
| 126 |
+
preprocessed_media_tiles,
|
| 127 |
+
**merged_kwargs["images_kwargs"],
|
| 128 |
+
)
|
| 129 |
+
else:
|
| 130 |
+
image_inputs = BatchFeature()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
+
text_inputs = self._replace_image_tile_suffix(text_inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
return VILAProcessorOutput(
|
| 135 |
data={
|
|
|
|
| 138 |
}
|
| 139 |
)
|
| 140 |
|
| 141 |
+
def _find_media_token_order(self, text: List[str]) -> List[str]:
|
| 142 |
+
"""Finds the order of media tokens in the text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
Args:
|
| 145 |
+
text: The text to be processed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
Returns:
|
| 148 |
+
The order of media tokens in the text. Each item is either an image token or a video
|
| 149 |
+
token.
|
| 150 |
"""
|
| 151 |
|
| 152 |
+
image_token = cast(str, self.tokenizer.image_token)
|
| 153 |
+
video_token = cast(str, self.tokenizer.video_token)
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
return_order: List[str] = []
|
| 156 |
|
| 157 |
for text_item in text:
|
| 158 |
+
while image_token in text_item or video_token in text_item:
|
|
|
|
|
|
|
|
|
|
| 159 |
image_pos = text_item.find(image_token)
|
| 160 |
+
video_pos = text_item.find(video_token)
|
| 161 |
|
| 162 |
+
if image_pos == -1 and video_pos == -1:
|
| 163 |
+
# If no media token found, move to the next text item.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
break
|
| 165 |
|
| 166 |
+
elif image_pos == -1:
|
| 167 |
+
# If only video token found, add it to the return order.
|
| 168 |
+
return_order.append(video_token)
|
| 169 |
+
text_item = text_item[video_pos + len(video_token) :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
elif video_pos == -1:
|
| 172 |
+
# If only image token found, add it to the return order.
|
| 173 |
+
return_order.append(image_token)
|
| 174 |
+
text_item = text_item[image_pos + len(image_token) :]
|
| 175 |
|
| 176 |
+
else:
|
| 177 |
+
# If both tokens found, choose the one that appears first.
|
| 178 |
+
if image_pos < video_pos:
|
| 179 |
+
return_order.append(image_token)
|
| 180 |
+
text_item = text_item[image_pos + len(image_token) :]
|
| 181 |
+
else:
|
| 182 |
+
return_order.append(video_token)
|
| 183 |
+
text_item = text_item[video_pos + len(video_token) :]
|
| 184 |
+
|
| 185 |
+
return return_order
|
| 186 |
+
|
| 187 |
+
def _generate_image_token_placeholder(self, text: List[str]) -> str:
|
| 188 |
+
while True:
|
| 189 |
+
placeholder = f"<|image_placeholder_{str(uuid.uuid4())}|>"
|
| 190 |
+
if all(placeholder not in text_item for text_item in text):
|
| 191 |
+
return placeholder
|
| 192 |
+
|
| 193 |
+
def _merge_media_tiles(
|
| 194 |
self,
|
| 195 |
+
image_tiles: List[List[Image]],
|
| 196 |
+
video_tiles: List[List[List[Image]]],
|
| 197 |
+
media_token_order: List[str],
|
| 198 |
+
) -> List[Image]:
|
| 199 |
+
"""Merges the media tiles by the media token order.
|
| 200 |
|
| 201 |
Args:
|
| 202 |
+
image_tiles: The image tiles.
|
| 203 |
+
video_tiles: The video tiles.
|
| 204 |
+
media_token_order: The order of media tokens in the text.
|
| 205 |
|
| 206 |
Returns:
|
| 207 |
+
The merged media tiles.
|
| 208 |
"""
|
| 209 |
|
| 210 |
image_token = cast(str, self.tokenizer.image_token)
|
| 211 |
+
video_token = cast(str, self.tokenizer.video_token)
|
| 212 |
|
| 213 |
+
image_tiles_idx = 0
|
| 214 |
+
video_tiles_idx = 0
|
| 215 |
+
|
| 216 |
+
return_tiles: List[Image] = []
|
| 217 |
+
|
| 218 |
+
for media_token in media_token_order:
|
| 219 |
+
if media_token == image_token:
|
| 220 |
+
return_tiles.extend(image_tiles[image_tiles_idx])
|
| 221 |
+
image_tiles_idx += 1
|
| 222 |
+
elif media_token == video_token:
|
| 223 |
+
for video_tile in video_tiles[video_tiles_idx]:
|
| 224 |
+
return_tiles.extend(video_tile)
|
| 225 |
+
video_tiles_idx += 1
|
| 226 |
+
else:
|
| 227 |
+
raise ValueError(f"Invalid media token: {media_token}")
|
| 228 |
|
| 229 |
+
return return_tiles
|
| 230 |
+
|
| 231 |
+
def _normalize_inputs(
|
| 232 |
+
self,
|
| 233 |
text: TextInput | List[TextInput],
|
| 234 |
images: Optional[ImageInput],
|
| 235 |
videos: Optional[VideoInput],
|
| 236 |
) -> Tuple[List[str], List[Image], List[List[Image]]]:
|
| 237 |
+
"""Normalizes text, image, and video inputs for processing.
|
| 238 |
+
|
| 239 |
+
This method converts various input formats into standardized lists of PIL images
|
| 240 |
+
and text strings that can be processed by the model.
|
| 241 |
+
|
| 242 |
+
Args:
|
| 243 |
+
text: The original input text.
|
| 244 |
+
images: The original input images.
|
| 245 |
+
videos: The original input videos.
|
| 246 |
+
|
| 247 |
+
Returns:
|
| 248 |
+
The text as a list of strings.
|
| 249 |
+
The images as a list of PIL images.
|
| 250 |
+
The videos as a list of lists of PIL images.
|
| 251 |
+
"""
|
| 252 |
+
|
| 253 |
prepared_text = text if isinstance(text, list) else [text]
|
| 254 |
|
| 255 |
if images is not None:
|
|
|
|
| 268 |
|
| 269 |
return prepared_text, prepared_images, prepared_videos
|
| 270 |
|
| 271 |
+
def _pad_image_tiles(
|
| 272 |
self,
|
| 273 |
+
text: List[str],
|
| 274 |
+
) -> List[str]:
|
| 275 |
+
"""Pads each media tile.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
+
This will pad each <image> to (self.image_pad_len + 1) times. The additional one padding is
|
| 278 |
+
for the \\n token suffix.
|
| 279 |
|
| 280 |
+
Args:
|
| 281 |
+
text: The text to be padded.
|
| 282 |
|
| 283 |
+
Returns:
|
| 284 |
+
The padded text.
|
| 285 |
+
"""
|
|
|
|
| 286 |
|
| 287 |
+
image_token = cast(str, self.tokenizer.image_token)
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
return [text_item.replace(image_token, image_token * (self.image_pad_len + 1)) for text_item in text]
|
| 290 |
|
| 291 |
+
def _preprocess_inputs(
|
| 292 |
+
self,
|
| 293 |
+
text: List[str],
|
| 294 |
+
images: List[Image],
|
| 295 |
+
videos: List[List[Image]],
|
| 296 |
+
) -> Tuple[List[str], List[Image]]:
|
| 297 |
+
"""Preprocesses the input data for the VILA model.
|
| 298 |
|
| 299 |
+
This method takes a list of texts, images, and videos, and prepares them for the model.
|
| 300 |
+
It handles the interleaving of text and media, and returns the processed text and a
|
| 301 |
+
list of media tiles (images or video frames).
|
| 302 |
|
| 303 |
Args:
|
| 304 |
+
text: The input text.
|
| 305 |
+
images: The input images.
|
| 306 |
+
videos: The input videos.
|
| 307 |
|
| 308 |
Returns:
|
| 309 |
+
The text ready to be tokenized.
|
| 310 |
+
The media tiles ready to be processed.
|
| 311 |
"""
|
| 312 |
|
| 313 |
+
media_token_order = self._find_media_token_order(text)
|
| 314 |
+
|
| 315 |
+
image_token_placeholder = self._generate_image_token_placeholder(text)
|
| 316 |
+
|
| 317 |
+
preprocessed_text = text
|
| 318 |
+
preprocessed_text, preprocessed_image_tiles = self._preprocess_images(
|
| 319 |
+
preprocessed_text,
|
| 320 |
+
images,
|
| 321 |
+
image_token_placeholder=image_token_placeholder,
|
| 322 |
+
)
|
| 323 |
+
preprocessed_text, preprocessed_video_tiles = self._preprocess_videos(
|
| 324 |
+
preprocessed_text,
|
| 325 |
+
videos,
|
| 326 |
+
image_token_placeholder=image_token_placeholder,
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
# Convert back to the original image token.
|
| 330 |
image_token = cast(str, self.tokenizer.image_token)
|
| 331 |
+
preprocessed_text = [text_item.replace(image_token_placeholder, image_token) for text_item in preprocessed_text]
|
| 332 |
|
| 333 |
+
preprocessed_text = self._pad_image_tiles(preprocessed_text)
|
|
|
|
|
|
|
| 334 |
|
| 335 |
+
preprocessed_media_tiles = self._merge_media_tiles(
|
| 336 |
+
preprocessed_image_tiles,
|
| 337 |
+
preprocessed_video_tiles,
|
| 338 |
+
media_token_order,
|
| 339 |
+
)
|
| 340 |
|
| 341 |
+
return preprocessed_text, preprocessed_media_tiles
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
+
def _preprocess_images(
|
| 344 |
+
self,
|
| 345 |
+
text: List[str],
|
| 346 |
+
images: List[Image],
|
| 347 |
+
*,
|
| 348 |
+
image_token_placeholder: str,
|
| 349 |
+
) -> Tuple[List[str], List[List[Image]]]:
|
| 350 |
+
single_image_token_placeholder = self._generate_image_token_placeholder(text)
|
| 351 |
+
|
| 352 |
+
preprocessed_text = text
|
| 353 |
+
preprocessed_image_tiles: List[List[Image]] = []
|
| 354 |
+
|
| 355 |
+
for image in images:
|
| 356 |
+
preprocessed_text, preprocessed_single_image_tiles = self._preprocess_single_image(
|
| 357 |
+
text,
|
| 358 |
+
image,
|
| 359 |
+
image_token_placeholder=single_image_token_placeholder,
|
| 360 |
+
is_video_frame=False,
|
| 361 |
+
use_dynamic_preprocess=(len(images) == 1),
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
preprocessed_text = [
|
| 365 |
+
text_item.replace(
|
| 366 |
+
single_image_token_placeholder,
|
| 367 |
+
(image_token_placeholder + "\n") if len(images) == 1 else image_token_placeholder,
|
| 368 |
+
)
|
| 369 |
+
for text_item in preprocessed_text
|
| 370 |
+
]
|
| 371 |
|
| 372 |
+
preprocessed_image_tiles.append(preprocessed_single_image_tiles)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
|
| 374 |
+
return preprocessed_text, preprocessed_image_tiles
|
|
|
|
|
|
|
| 375 |
|
| 376 |
+
def _preprocess_single_image(
|
| 377 |
+
self,
|
| 378 |
+
text: List[str],
|
| 379 |
+
image: Image,
|
| 380 |
+
*,
|
| 381 |
+
image_token_placeholder: str,
|
| 382 |
+
is_video_frame: bool,
|
| 383 |
+
use_dynamic_preprocess: bool,
|
| 384 |
+
) -> Tuple[List[str], List[Image]]:
|
| 385 |
+
assert isinstance(self.image_processor, (SiglipImageProcessor, SiglipImageProcessorFast))
|
| 386 |
+
assert self.image_processor.size["height"] == self.image_processor.size["width"]
|
| 387 |
+
cropped_size = self.image_processor.size["height"]
|
| 388 |
|
| 389 |
+
if use_dynamic_preprocess:
|
| 390 |
+
if is_video_frame:
|
| 391 |
+
max_num = self.video_max_tiles
|
| 392 |
+
else:
|
| 393 |
+
max_num = self.max_tiles
|
| 394 |
+
else:
|
| 395 |
+
max_num = 1
|
| 396 |
|
| 397 |
+
image = image.convert("RGB")
|
|
|
|
|
|
|
| 398 |
|
| 399 |
+
cropped_images: List[Image] = dynamic_preprocess(
|
| 400 |
+
image,
|
| 401 |
+
min_num=self.min_tiles,
|
| 402 |
+
max_num=max_num,
|
| 403 |
+
image_size=cropped_size,
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
image_token = cast(str, self.tokenizer.image_token)
|
| 407 |
+
|
| 408 |
+
for i in range(len(text)):
|
| 409 |
+
if image_token in text[i]:
|
| 410 |
+
text[i] = text[i].replace(image_token, image_token_placeholder * len(cropped_images))
|
| 411 |
+
break
|
| 412 |
+
|
| 413 |
+
return text, cropped_images
|
| 414 |
+
|
| 415 |
+
def _preprocess_videos(
|
| 416 |
+
self,
|
| 417 |
+
text: List[str],
|
| 418 |
+
videos: List[List[Image]],
|
| 419 |
+
*,
|
| 420 |
+
image_token_placeholder: str,
|
| 421 |
+
) -> Tuple[List[str], List[List[List[Image]]]]:
|
| 422 |
+
image_token = cast(str, self.tokenizer.image_token)
|
| 423 |
+
video_token = cast(str, self.tokenizer.video_token)
|
| 424 |
+
|
| 425 |
+
processed_text = text
|
| 426 |
+
processed_video_tiles: List[List[List[Image]]] = []
|
| 427 |
+
|
| 428 |
+
for video in videos:
|
| 429 |
+
# Replace the first video token with #frame image tokens.
|
| 430 |
+
for i in range(len(processed_text)):
|
| 431 |
+
if video_token in processed_text[i]:
|
| 432 |
+
processed_text[i] = processed_text[i].replace(video_token, image_token * len(video))
|
| 433 |
break
|
| 434 |
|
| 435 |
+
processed_frame_tiles: List[List[Image]] = []
|
| 436 |
+
for frame in video:
|
| 437 |
+
processed_text, processed_single_frame_tiles = self._preprocess_single_image(
|
| 438 |
+
processed_text,
|
| 439 |
+
frame,
|
| 440 |
+
image_token_placeholder=image_token_placeholder,
|
| 441 |
+
is_video_frame=True,
|
| 442 |
+
use_dynamic_preprocess=(self.video_max_tiles > 1),
|
| 443 |
+
)
|
| 444 |
+
processed_frame_tiles.append(processed_single_frame_tiles)
|
| 445 |
|
| 446 |
+
processed_video_tiles.append(processed_frame_tiles)
|
| 447 |
+
|
| 448 |
+
return processed_text, processed_video_tiles
|
| 449 |
+
|
| 450 |
+
def _replace_image_tile_suffix(self, text_inputs: BatchEncoding) -> BatchEncoding:
|
| 451 |
+
lf_token_id = cast(int, self.tokenizer.encode("\n")[0])
|
| 452 |
+
image_token_id = cast(int, self.tokenizer.image_token_id)
|
| 453 |
+
|
| 454 |
+
for i in range(len(text_inputs.input_ids)):
|
| 455 |
+
input_ids = text_inputs.input_ids[i]
|
| 456 |
|
| 457 |
+
idx = 0
|
| 458 |
+
while idx < len(input_ids):
|
| 459 |
+
if input_ids[idx] != image_token_id:
|
| 460 |
+
idx += 1
|
| 461 |
+
continue
|
| 462 |
|
| 463 |
+
if idx + self.image_pad_len < len(input_ids):
|
| 464 |
+
input_ids[idx + self.image_pad_len] = lf_token_id
|
| 465 |
+
idx += self.image_pad_len + 1
|
| 466 |
+
else:
|
| 467 |
+
break
|
| 468 |
|
| 469 |
+
return text_inputs
|
| 470 |
|
| 471 |
|
| 472 |
def dynamic_preprocess(image: Image, min_num: int, max_num: int, image_size: int, use_thumbnail=True) -> List[Image]:
|