File size: 8,809 Bytes
d8c0285 cdeb7bf 788ef61 cdeb7bf 788ef61 99841a2 788ef61 cdeb7bf 788ef61 cdeb7bf 788ef61 563e081 788ef61 563e081 788ef61 563e081 788ef61 942e894 788ef61 563e081 788ef61 563e081 788ef61 563e081 788ef61 cdeb7bf 788ef61 563e081 942e894 563e081 942e894 563e081 788ef61 cdeb7bf d8c0285 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
license: cc-by-nc-4.0
language:
- en
tags:
- vila
- nvila
- conversational
- multimodal
---
Dependency setups:
```bash
# other transformers version may also work, but we have not tested
pip install transformers==4.46 accelerate opencv-python torchvision einops pillow
pip install git+https://github.com/bfshi/scaling_on_scales.git
```
## Usage
```python
from transformers import AutoConfig, AutoModel
from termcolor import colored
model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
# you can use config
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_config(config, trust_remote_code=True)
# or directly from_pretrained
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
# examples generate with raw text
res = model.generate_content([
"how are you today?"
])
print(colored(res, "cyan", attrs=["bold"]))
print("---" * 40)
# examples generate with text + image
import PIL.Image
response = model.generate_content([
PIL.Image.open("inference_test/test_data/caption_meat.jpeg"),
"describe the image?"
])
print(colored(response, "cyan", attrs=["bold"]))
```
## AutoProcessor
we also support `AutoProcessor` class to ease data preparation for training and finetuning.
### single call
```python
from transformers import AutoProcessor, AutoModel
model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
# important: set model to eval mode, otherwise the model will be in training mode and will pad to right.
model.eval()
gpt_conv = [{
"role": "user",
"content": [
{"type": "image", "path": "https://nvlabs.github.io/VILA/asset/example.jpg"},
{"type": "text", "text": "Describe this image."}
]
}]
text = processor.apply_chat_template(gpt_conv, tokenize=False, add_generation_prompt=True)
inputs = processor([text])
output_ids = model.generate(
input_ids=inputs.input_ids,
media=inputs.media,
media_config=inputs.media_config,
generation_config=model.generation_config,
max_new_tokens=256,
)
print(processor.tokenizer.batch_decode(output_ids, skip_special_tokens=True))
##### the above code is equivalent to
# response = model.generate_content([
# PIL.Image.open("demo_images/demo_img_1.png"),
# "describe the image?"
# ])
# print(colored(response, "cyan", attrs=["bold"]))
```
### batch call
```python
from transformers import AutoProcessor, AutoModel
model_path = "Efficient-Large-Model/NVILA-Lite-2B-hf-preview"
model_path = "./NVILA-Lite-2B-hf-preview"
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
# important: set model to eval mode, otherwise the model will be in training mode and will pad to right.
model.eval()
gpt_conv1 = [{
"role": "user",
"content": [
{"type": "image", "path": "https://nvlabs.github.io/VILA/asset/example.jpg"},
{"type": "text", "text": "Describe this image."}
]
}]
gpt_conv2 = [{
"role": "user",
"content": [
{"type": "image", "path": "https://nvlabs.github.io/VILA/asset/example_vqa.jpg"},
{"type": "text", "text": "Describe this image for me. Provide a detailed description of the image."}
]
}]
messages = [gpt_conv1, gpt_conv2]
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
inputs = processor(texts)
output_ids = model.generate(
input_ids=inputs.input_ids,
media=inputs.media,
media_config=inputs.media_config,
generation_config=model.generation_config,
max_new_tokens=256,
)
output_texts = processor.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
print(output_texts[0])
print("---" * 40)
print(output_texts[1])
```
## Model Convert
The follwing code converts a convetional NVILA model to a HF compatible model.
```python
import os, os.path as osp
from transformers import AutoConfig, AutoModel, AutoProcessor, AutoTokenizer, AutoImageProcessor
model_path = "Efficient-Large-Model/NVILA-Lite-2B"
output_dir = "NVILA-Lite-2B-hf-preview"
if osp.isdir(output_dir):
shutil.rmtree(output_dir)
from llava.remote_code.modeling_vila import VILAForCasualLM
VILAForCasualLM.convert_vila_dev_ckpt_to_remote(model_path, output_dir, copy=False)
```
---
license: cc-by-nc-4.0
library_name: transformers
pipeline_tag: text-generation
tags:
- NVILA
- VLM
---
# VILA Model Card
## Model details
**Model type:**
NVILA is a visual language model (VLM) pretrained with interleaved image-text data at scale, enabling multi-image VLM. Visual language models (VLMs) have made significant advances in accuracy in recent years. However, their efficiency has received much less attention. This paper introduces NVILA, a family of open VLMs designed to optimize both efficiency and accuracy. Building on top of VILA, we improve its model architecture by first scaling up the spatial and temporal resolutions, and then compressing visual tokens. This "scale-then-compress" approach enables NVILA to efficiently process high-resolution images and long videos. We also conduct a systematic investigation to enhance the efficiency of NVILA throughout its entire lifecycle, from training and fine-tuning to deployment. NVILA matches or surpasses the accuracy of many leading open and proprietary VLMs across a wide range of image and video benchmarks. At the same time, it reduces training costs by 4.5X, fine-tuning memory usage by 3.4X, pre-filling latency by 1.6-2.2X, and decoding latency by 1.2-2.8X. We will soon make our code and models available to facilitate reproducibility.
**Model date:**
NVILA was trained in Nov 2024.
**Paper or resources for more information:**
https://github.com/NVLabs/VILA
```
@misc{liu2024nvila,
title={NVILA: Efficient Frontier Visual Language Models},
author={Zhijian Liu and Ligeng Zhu and Baifeng Shi and Zhuoyang Zhang and Yuming Lou and Shang Yang and Haocheng Xi and Shiyi Cao and Yuxian Gu and Dacheng Li and Xiuyu Li and Yunhao Fang and Yukang Chen and Cheng-Yu Hsieh and De-An Huang and An-Chieh Cheng and Vishwesh Nath and Jinyi Hu and Sifei Liu and Ranjay Krishna and Daguang Xu and Xiaolong Wang and Pavlo Molchanov and Jan Kautz and Hongxu Yin and Song Han and Yao Lu},
year={2024},
eprint={2412.04468},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.04468},
}
```
## License
- The code is released under the Apache 2.0 license as found in the [LICENSE](./LICENSE) file.
- The pretrained weights are released under the [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
- The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms:
- [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI
- [Dataset Licenses](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/LICENSE) for each one used during training.
**Where to send questions or comments about the model:**
https://github.com/NVLabs/VILA/issues
## Intended use
**Primary intended uses:**
The primary use of VILA is research on large multimodal models and chatbots.
**Primary intended users:**
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
## Input:
**Input Type:** Image, Video, Text
**Input Format:** Red, Green, Blue; MP4 ;String
**Input Parameters:** 2D, 3D
## Output:
**Output Type:** Text
**Output Format:** String
**Supported Hardware Microarchitecture Compatibility:**
* Ampere
* Jetson
* Hopper
* Lovelace
**[Preferred/Supported] Operating System(s):** <br>
Linux
## Training dataset
See [Dataset Preparation](https://arxiv.org/abs/2412.04468) for more details.
** Data Collection Method by dataset
* [Hybrid: Automated, Human]
** Labeling Method by dataset
* [Hybrid: Automated, Human]
## Inference:
**Engine:** [Tensor(RT), Triton, Or List Other Here]
* PyTorch
* TensorRT-LLM
* TinyChat
**Test Hardware:**
* A100
* Jetson Orin
* RTX 4090
## Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
|