Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: llama2
|
| 5 |
+
tags:
|
| 6 |
+
- code-generation
|
| 7 |
+
- verilog
|
| 8 |
+
- systemverilog
|
| 9 |
+
- rtl
|
| 10 |
+
- hardware-design
|
| 11 |
+
- fifo
|
| 12 |
+
- semiconductor
|
| 13 |
+
- ip-design
|
| 14 |
+
- lora
|
| 15 |
+
- codellama
|
| 16 |
+
base_model: codellama/CodeLlama-7B-Instruct-hf
|
| 17 |
+
datasets:
|
| 18 |
+
- Elinnos/verilog-fifo-dataset
|
| 19 |
+
library_name: peft
|
| 20 |
+
pipeline_tag: text-generation
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# CodeLlama-7B Fine-Tuned for Verilog FIFO Generation
|
| 24 |
+
|
| 25 |
+
## Model Description
|
| 26 |
+
|
| 27 |
+
This is a **LoRA fine-tuned CodeLlama-7B-Instruct** model specialized in generating clean, synthesizable Verilog/SystemVerilog code for FIFO (First-In-First-Out) designs. The model was trained on comprehensive FIFO specifications following industry best practices for RTL design.
|
| 28 |
+
|
| 29 |
+
**Model Type:** Causal Language Model (LoRA Adapter)
|
| 30 |
+
**Base Model:** [codellama/CodeLlama-7B-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7B-Instruct-hf)
|
| 31 |
+
**Training Date:** 2025-11-25
|
| 32 |
+
**Organization:** Elinnos Systems
|
| 33 |
+
|
| 34 |
+
## Key Features
|
| 35 |
+
|
| 36 |
+
✅ **Complete Code Generation** - Generates full Verilog modules with proper structure
|
| 37 |
+
✅ **Synthesizable RTL** - Clean, synthesizable code following best practices
|
| 38 |
+
✅ **FIFO Variants** - Supports various FIFO architectures (synchronous, asynchronous, parameterized)
|
| 39 |
+
✅ **Protocol Compliance** - Proper signal handling, full/empty flags, error handling
|
| 40 |
+
✅ **Production-Ready** - No comments, no debug statements, clean functional code
|
| 41 |
+
|
| 42 |
+
## Training Details
|
| 43 |
+
|
| 44 |
+
### Dataset
|
| 45 |
+
|
| 46 |
+
- **Training Samples:** 70
|
| 47 |
+
- **Validation Samples:** 9
|
| 48 |
+
- **Test Samples:** 15
|
| 49 |
+
- **Total Samples:** 94
|
| 50 |
+
- **Dataset Format:** CodeLlama chat template format
|
| 51 |
+
- **Average Sequence Length:** 1536 tokens
|
| 52 |
+
|
| 53 |
+
### Training Configuration
|
| 54 |
+
|
| 55 |
+
- **Base Model:** codellama/CodeLlama-7B-Instruct-hf
|
| 56 |
+
- **Training Method:** LoRA (Low-Rank Adaptation)
|
| 57 |
+
- **Quantization:** 4-bit NF4 (for GPU memory efficiency)
|
| 58 |
+
- **Training Steps:** 25 steps (5 epochs)
|
| 59 |
+
- **Epochs:** 5
|
| 60 |
+
- **Batch Size:** 4
|
| 61 |
+
- **Effective Batch Size:** 16 (with gradient accumulation)
|
| 62 |
+
- **Learning Rate:** 2e-05
|
| 63 |
+
- **Max Sequence Length:** 1536
|
| 64 |
+
- **Hardware:** NVIDIA A100-SXM4-40GB
|
| 65 |
+
|
| 66 |
+
### LoRA Configuration
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
from peft import LoraConfig
|
| 70 |
+
|
| 71 |
+
LoraConfig(
|
| 72 |
+
r=48, # Rank
|
| 73 |
+
lora_alpha=96, # Scaling factor
|
| 74 |
+
target_modules=['q_proj', 'up_proj', 'down_proj', 'gate_proj', 'o_proj', 'k_proj', 'v_proj'],
|
| 75 |
+
lora_dropout=0.15,
|
| 76 |
+
bias="none",
|
| 77 |
+
task_type="CAUSAL_LM"
|
| 78 |
+
)
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
**Target Modules:**
|
| 82 |
+
- `q_proj`
|
| 83 |
+
- `up_proj`
|
| 84 |
+
- `down_proj`
|
| 85 |
+
- `gate_proj`
|
| 86 |
+
- `o_proj`
|
| 87 |
+
- `k_proj`
|
| 88 |
+
- `v_proj`
|
| 89 |
+
|
| 90 |
+
**Trainable Parameters:** ~672M (LoRA adapter only)
|
| 91 |
+
|
| 92 |
+
## Model Capabilities
|
| 93 |
+
|
| 94 |
+
### What This Model Can Do
|
| 95 |
+
|
| 96 |
+
1. **Synchronous FIFO Design**
|
| 97 |
+
- Dual-port memory architecture
|
| 98 |
+
- Write/Read pointer management
|
| 99 |
+
- Full/Empty flag generation
|
| 100 |
+
- Configurable width and depth
|
| 101 |
+
- Error handling (write_err, read_err)
|
| 102 |
+
- Threshold flags (almost_full, almost_empty)
|
| 103 |
+
- Occupancy output
|
| 104 |
+
|
| 105 |
+
2. **Asynchronous FIFO Design**
|
| 106 |
+
- Gray code pointer synchronization
|
| 107 |
+
- Clock domain crossing (CDC)
|
| 108 |
+
- Separate read/write clocks
|
| 109 |
+
- Data valid signals
|
| 110 |
+
|
| 111 |
+
3. **Advanced Features**
|
| 112 |
+
- Parameterized FIFO modules
|
| 113 |
+
- AXI-like handshake protocols
|
| 114 |
+
- Pipelined output stages
|
| 115 |
+
- Peek capability
|
| 116 |
+
- Clear signal support
|
| 117 |
+
|
| 118 |
+
4. **Code Quality**
|
| 119 |
+
- Clean, synthesizable RTL
|
| 120 |
+
- No comments or debug statements
|
| 121 |
+
- Proper signal naming conventions
|
| 122 |
+
- Modular design structure
|
| 123 |
+
|
| 124 |
+
## Usage
|
| 125 |
+
|
| 126 |
+
### Installation
|
| 127 |
+
|
| 128 |
+
```bash
|
| 129 |
+
pip install transformers peft torch bitsandbytes accelerate
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
### Loading the Model
|
| 133 |
+
|
| 134 |
+
```python
|
| 135 |
+
import torch
|
| 136 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 137 |
+
from peft import PeftModel
|
| 138 |
+
from transformers import BitsAndBytesConfig
|
| 139 |
+
|
| 140 |
+
# Load base model with 4-bit quantization
|
| 141 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 142 |
+
"codellama/CodeLlama-7B-Instruct-hf",
|
| 143 |
+
quantization_config=BitsAndBytesConfig(
|
| 144 |
+
load_in_4bit=True,
|
| 145 |
+
bnb_4bit_quant_type="nf4",
|
| 146 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 147 |
+
),
|
| 148 |
+
device_map="auto",
|
| 149 |
+
trust_remote_code=True
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# Load fine-tuned LoRA adapter
|
| 153 |
+
model = PeftModel.from_pretrained(
|
| 154 |
+
base_model,
|
| 155 |
+
"Elinnos/codellama-7b-fifo-verilog"
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# Load tokenizer
|
| 159 |
+
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7B-Instruct-hf")
|
| 160 |
+
if tokenizer.pad_token is None:
|
| 161 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 162 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
### Generating Code
|
| 166 |
+
|
| 167 |
+
```python
|
| 168 |
+
# Create prompt using CodeLlama chat template
|
| 169 |
+
system_prompt = "You are Elinnos RTL Code Generator v1.0, a specialized Verilog/SystemVerilog code generation agent. Your role: Generate clean, synthesizable RTL code for hardware design tasks. Output ONLY functional RTL code with no $display, assertions, comments, or debug statements."
|
| 170 |
+
|
| 171 |
+
user_prompt = "Generate a synchronous FIFO with 8-bit data width, depth 4, write_enable, read_enable, full flag, empty flag."
|
| 172 |
+
|
| 173 |
+
messages = [
|
| 174 |
+
{"role": "system", "content": system_prompt},
|
| 175 |
+
{"role": "user", "content": user_prompt}
|
| 176 |
+
]
|
| 177 |
+
|
| 178 |
+
prompt = tokenizer.apply_chat_template(
|
| 179 |
+
messages,
|
| 180 |
+
tokenize=False,
|
| 181 |
+
add_generation_prompt=True
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Generate
|
| 185 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 186 |
+
outputs = model.generate(
|
| 187 |
+
**inputs,
|
| 188 |
+
max_new_tokens=800,
|
| 189 |
+
temperature=0.3,
|
| 190 |
+
do_sample=True,
|
| 191 |
+
top_p=0.9,
|
| 192 |
+
repetition_penalty=1.2,
|
| 193 |
+
eos_token_id=tokenizer.eos_token_id
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
# Decode response
|
| 197 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=False)
|
| 198 |
+
print(response)
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
### Using the Simple Inference Script
|
| 202 |
+
|
| 203 |
+
```bash
|
| 204 |
+
# From the codellama-migration directory
|
| 205 |
+
python3 simple_finetuned_model_inference.py \
|
| 206 |
+
--prompt "Generate a synchronous FIFO with 32-bit data width, depth 16" \
|
| 207 |
+
--model-path "Elinnos/codellama-7b-fifo-verilog"
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
## Training Code
|
| 211 |
+
|
| 212 |
+
The model was trained using the following repository:
|
| 213 |
+
- **Repository:** [Elinnos/codellama-fifo-finetuning](https://huggingface.co/Elinnos/codellama-fifo-finetuning)
|
| 214 |
+
- **Training Script:** `scripts/training/finetune_codellama.py`
|
| 215 |
+
|
| 216 |
+
### Training Command
|
| 217 |
+
|
| 218 |
+
```bash
|
| 219 |
+
python scripts/training/finetune_codellama.py \
|
| 220 |
+
--base-model codellama/CodeLlama-7B-Instruct-hf \
|
| 221 |
+
--dataset datasets/processed/split_chat_format/train.jsonl \
|
| 222 |
+
--output-dir training-outputs/codellama-fifo-v2-chat \
|
| 223 |
+
--max-length 1536 \
|
| 224 |
+
--num-epochs 5 \
|
| 225 |
+
--batch-size 4 \
|
| 226 |
+
--gradient-accumulation 4 \
|
| 227 |
+
--learning-rate 2e-05 \
|
| 228 |
+
--lora-r 48 \
|
| 229 |
+
--lora-alpha 96 \
|
| 230 |
+
--lora-dropout 0.15
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
## Evaluation
|
| 234 |
+
|
| 235 |
+
### Training Metrics
|
| 236 |
+
|
| 237 |
+
- **Final Training Loss:** 0.626
|
| 238 |
+
- **Final Validation Loss:** 0.609
|
| 239 |
+
- **Training Loss Progression:**
|
| 240 |
+
- Epoch 1: 1.113
|
| 241 |
+
- Epoch 2: 0.996
|
| 242 |
+
- Epoch 3: 0.834
|
| 243 |
+
- Epoch 4: 0.704
|
| 244 |
+
- Epoch 5: 0.626
|
| 245 |
+
|
| 246 |
+
### Model Performance
|
| 247 |
+
|
| 248 |
+
The model demonstrates strong capability in:
|
| 249 |
+
- Generating syntactically correct Verilog code
|
| 250 |
+
- Following FIFO design specifications
|
| 251 |
+
- Producing clean, synthesizable RTL
|
| 252 |
+
- Handling various FIFO configurations (width, depth, features)
|
| 253 |
+
|
| 254 |
+
## Limitations
|
| 255 |
+
|
| 256 |
+
- Model size: Requires base CodeLlama-7B-Instruct model (~13GB)
|
| 257 |
+
- Context window: Maximum sequence length of 1536 tokens
|
| 258 |
+
- Domain: Specialized for FIFO designs, may not generalize to other RTL components
|
| 259 |
+
- Language: Primarily English prompts
|
| 260 |
+
|
| 261 |
+
## Citation
|
| 262 |
+
|
| 263 |
+
If you use this model, please cite:
|
| 264 |
+
|
| 265 |
+
```bibtex
|
| 266 |
+
@model{{codellama_fifo_elinnos}},
|
| 267 |
+
title={CodeLlama-7B Fine-Tuned for Verilog FIFO Generation},
|
| 268 |
+
author={Elinnos Systems},
|
| 269 |
+
year={2025},
|
| 270 |
+
url={https://huggingface.co/Elinnos/codellama-7b-fifo-verilog}
|
| 271 |
+
}
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
## License
|
| 275 |
+
|
| 276 |
+
This model follows the same license as the base CodeLlama-7B-Instruct model (Llama 2 Community License).
|
| 277 |
+
|
| 278 |
+
## Contact
|
| 279 |
+
|
| 280 |
+
For questions or issues, please contact:
|
| 281 |
+
- **Organization:** Elinnos Systems
|
| 282 |
+
- **Repository:** [Elinnos/codellama-fifo-finetuning](https://huggingface.co/Elinnos)
|
| 283 |
+
|
| 284 |
+
---
|
| 285 |
+
|
| 286 |
+
*Model trained by Elinnos Systems for Verilog FIFO code generation.*
|