File size: 3,366 Bytes
176052f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2-1.5B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: fine_tuned_yelp_callback10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_yelp_callback10

This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2174
- Accuracy: 0.9601

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.8575        | 0.0170 | 100  | 0.4890          | 0.8281   |
| 0.7118        | 0.0340 | 200  | 0.5564          | 0.8484   |
| 0.5044        | 0.0509 | 300  | 0.5218          | 0.8463   |
| 0.3969        | 0.0679 | 400  | 0.9168          | 0.7809   |
| 0.4494        | 0.0849 | 500  | 0.5158          | 0.8453   |
| 0.3766        | 0.1019 | 600  | 0.5252          | 0.8772   |
| 0.3938        | 0.1188 | 700  | 0.5676          | 0.8573   |
| 0.3681        | 0.1358 | 800  | 0.2930          | 0.9116   |
| 0.3955        | 0.1528 | 900  | 0.2745          | 0.8845   |
| 0.2859        | 0.1698 | 1000 | 0.3442          | 0.9150   |
| 0.329         | 0.1868 | 1100 | 0.2673          | 0.9116   |
| 0.2898        | 0.2037 | 1200 | 0.1957          | 0.9221   |
| 0.2645        | 0.2207 | 1300 | 0.2623          | 0.9335   |
| 0.2906        | 0.2377 | 1400 | 0.2438          | 0.9280   |
| 0.2511        | 0.2547 | 1500 | 0.3281          | 0.9211   |
| 0.3           | 0.2716 | 1600 | 0.1789          | 0.9467   |
| 0.2592        | 0.2886 | 1700 | 0.2963          | 0.9270   |
| 0.2274        | 0.3056 | 1800 | 0.3387          | 0.9309   |
| 0.2843        | 0.3226 | 1900 | 0.2788          | 0.9291   |
| 0.281         | 0.3396 | 2000 | 0.2553          | 0.9442   |
| 0.2624        | 0.3565 | 2100 | 0.1737          | 0.9547   |
| 0.2503        | 0.3735 | 2200 | 0.1948          | 0.9454   |
| 0.2856        | 0.3905 | 2300 | 0.2797          | 0.9269   |
| 0.1531        | 0.4075 | 2400 | 0.2548          | 0.9490   |
| 0.2316        | 0.4244 | 2500 | 0.2906          | 0.9440   |
| 0.2061        | 0.4414 | 2600 | 0.2194          | 0.9517   |
| 0.1991        | 0.4584 | 2700 | 0.1949          | 0.9515   |
| 0.1721        | 0.4754 | 2800 | 0.2730          | 0.9368   |
| 0.1696        | 0.4924 | 2900 | 0.2238          | 0.9326   |
| 0.2013        | 0.5093 | 3000 | 0.1802          | 0.9603   |
| 0.2026        | 0.5263 | 3100 | 0.2174          | 0.9601   |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu126
- Datasets 3.3.2
- Tokenizers 0.21.0