--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss license: apache-2.0 language: - en datasets: - EpistemeAI/recursive_self_improvement_dataset --- ## Model Card ### We release open-weight metatune-gpt20b, fine tuned version of OpenAI's gpt-oss-20b model, this is one of the first public release recursive self improving AI. - Generates new data for itself, - Evaluates its performance, and - Adjusts its own hyperparameters based on improvement metrics. ### additional Model Information Due to recursive self improvement method, there is no final model, but improved model, this is a 5th metacycle(generation) improved checkpoint model. ## Use cases: - general purpose ## Guardrails: - generally, please set reasoning = "high", it will usually prevent jailbreaking and prompt injection - use safety gpt oss 20b for guardrails before this model: [openai/gpt-oss-safeguard-20b](https://huggingface.co/openai/gpt-oss-safeguard-20b) # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` For Google Colab (free/Pro) ``` !pip install -q --upgrade torch !pip install -q transformers triton==3.4 kernels !pip uninstall -q torchvision torchaudio -y ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "EpistemeAI/metatune-gpt20b-R1.1" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Derive the Euler–Lagrange equation from the principle of stationary action.""}, ] outputs = pipe( messages, max_new_tokens=3000, ) print(outputs[0]["generated_text"][-1]) ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. # Risk: - Prompt safely with recursive self improvement model. Use safety gpt oss 20b for model safety analysis - Do not use this model for creating nuclear, biological and chemical weapons. # Benchmark Code to duplicate the benchmark (Using +std for final result) ```py #gpqa diamond !lm_eval --model hf --model_args pretrained=EpistemeAI/metatune-gpt20b-R1.1,parallelize=True,dtype=bfloat16 --tasks gpqa_diamond_cot_zeroshot --num_fewshot 0 --gen_kwargs temperature=0.9,top_p=0.9,max_new_tokens=2048 --batch_size auto:4 --limit 10 --device cuda:0 --output_path ./eval_harness/gpt-oss-20b3 #gsm8k cot !lm_eval --model hf --model_args pretrained=EpistemeAI/metatune-gpt20b-R1.1,parallelize=True,dtype=bfloat16 --tasks gsm8k_cot_llama --num_fewshot 0 --gen_kwargs temperature=0.9,top_p=0.9,max_new_tokens=2048 --batch_size auto:4 --limit 10 --device cuda:0 --output_path ./eval_harness/gpt-oss-20b3 #mmlu computer science !lm_eval --model hf --model_args pretrained=EpistemeAI/metatune-gpt20b-R1.1,parallelize=True,dtype=bfloat16 --tasks mmlu_pro_plus_computer_science --apply_chat_template --fewshot_as_multiturn --num_fewshot 0 --gen_kwargs temperature=0.9,top_p=0.9,max_new_tokens=1024 --batch_size auto:4 --limit 10 --device cuda:0 --output_path ./eval_harness/gpt-oss-20b3 ``` hf (pretrained=EpistemeAI/metatune-gpt20b-R1.1,parallelize=True,dtype=bfloat16), gen_kwargs: (temperature=0.9,top_p=0.9,max_new_tokens=2048), limit: 10.0, num_fewshot: 0, batch_size: auto:4 | Tasks |Version| Filter |n-shot| Metric |metatune R1.1(high)| metatune R1|metatune R0| |-------------------------|------:|----------------|:-----|-----------|:------------|:-----------|:----------| |gpqa_diamond_cot_zeroshot| 1|flexible-extract| 0|exact_match| +0.933 |0.722 | | |gsm8k_cot_llama | 3|flexible- extrac| 0|exact_match| +1.0 |0.9796 |0.91 | |mmlu pro plus | | | | | | |computer_science | 1|custom-extract| 0|exact_match| +0.7633| |mmlu pro X | | | | | | |computer_science | 0|custom-extract | 0|exact_match| 0.8528| |math | 0|custom-extract | 0|exact_match| 0.9333| # Inspiration [Jürgen Schmidhuber](https://people.idsia.ch/~juergen/goedelmachine.html) # Thank you - [OpenAI](https://openai.com/) - [Google Colab](https://colab.research.google.com) # Uploaded finetuned model - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Citation ```bibtex @misc{openai2025gptoss120bgptoss20bmodel, title={gpt-oss-120b & gpt-oss-20b Model Card}, author={OpenAI}, year={2025}, eprint={2508.10925}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.10925}, } ```