Update README.md with weight comparison and hardware info
Browse files
README.md
CHANGED
|
@@ -1,199 +1,269 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- jax
|
| 5 |
+
- flax
|
| 6 |
+
- text-generation
|
| 7 |
+
- transformers
|
| 8 |
+
- google/gemma-2b # Add the specific model name as a tag
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# google/gemma-2b - JAX/Flax
|
| 12 |
+
|
| 13 |
+
This repository contains the JAX/Flax version of the google/gemma-2b model, originally a PyTorch model from google. This conversion enables efficient inference and training on TPUs and GPUs using the JAX/Flax framework.
|
| 14 |
+
|
| 15 |
+
## Model Description
|
| 16 |
+
|
| 17 |
+
google/gemma-2b is a transformer-based language model developed by google.
|
| 18 |
+
|
| 19 |
+
## Conversion Details
|
| 20 |
+
|
| 21 |
+
This model was converted from the original PyTorch implementation to JAX/Flax. The conversion process involved the following steps:
|
| 22 |
+
|
| 23 |
+
1. **Loading the PyTorch model and configuration:** The pretrained PyTorch model and its configuration were loaded using the Hugging Face Transformers library.
|
| 24 |
+
2. **Creating an equivalent Flax model architecture:** A Flax model with the same architecture as the original PyTorch model was created.
|
| 25 |
+
3. **Converting the PyTorch weights to Flax format:** The weights from the PyTorch model were converted to the Flax format using the `convert_pytorch_state_dict_to_flax` utility function provided by Hugging Face.
|
| 26 |
+
4. **Verifying the converted weights:** The converted Flax weights were compared against the original PyTorch weights to ensure that the conversion process was performed accurately.
|
| 27 |
+
|
| 28 |
+
### Important Note about `max_position_embeddings`
|
| 29 |
+
|
| 30 |
+
During the conversion process, it was necessary to modify the `max_position_embeddings` parameter in the model's configuration. The original value of {original_max_pos_embed} led to out-of-memory (OOM) errors on the hardware used for conversion. To resolve this, `max_position_embeddings` was adjusted to {new_max_pos_embed}.
|
| 31 |
+
|
| 32 |
+
**Implications of this change:**
|
| 33 |
+
|
| 34 |
+
* The model may not be able to handle sequences longer than 8192 tokens without truncation or other modifications.
|
| 35 |
+
* If you fine-tune this model, keep in mind the revised `max_position_embeddings` when preparing your training data.
|
| 36 |
+
|
| 37 |
+
## Weight Comparison
|
| 38 |
+
|
| 39 |
+
The following table summarizes the comparison between the weights of the original PyTorch model and the converted JAX/Flax model. This detailed verification confirms that the conversion was accurate and that both models should produce (approximately) the same outputs given the same inputs.
|
| 40 |
+
|
| 41 |
+
| Layer | PyTorch Shape | Flax Shape | Allclose | Max Diff | Mean Diff | Std Diff |
|
| 42 |
+
| :---- | :------------ | :--------- | :------- | :------- | :-------- | :------- |
|
| 43 |
+
| model.embed_tokens.weight | (256000, 2048) | (256000, 2048) | True | 0 | 0 | 0 |
|
| 44 |
+
| model.layers.0.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 45 |
+
| model.layers.0.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 46 |
+
| model.layers.0.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 47 |
+
| model.layers.0.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 48 |
+
| model.layers.0.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 49 |
+
| model.layers.0.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 50 |
+
| model.layers.0.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 51 |
+
| model.layers.0.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 52 |
+
| model.layers.0.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 53 |
+
| model.layers.1.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 54 |
+
| model.layers.1.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 55 |
+
| model.layers.1.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 56 |
+
| model.layers.1.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 57 |
+
| model.layers.1.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 58 |
+
| model.layers.1.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 59 |
+
| model.layers.1.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 60 |
+
| model.layers.1.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 61 |
+
| model.layers.1.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 62 |
+
| model.layers.2.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 63 |
+
| model.layers.2.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 64 |
+
| model.layers.2.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 65 |
+
| model.layers.2.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 66 |
+
| model.layers.2.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 67 |
+
| model.layers.2.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 68 |
+
| model.layers.2.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 69 |
+
| model.layers.2.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 70 |
+
| model.layers.2.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 71 |
+
| model.layers.3.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 72 |
+
| model.layers.3.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 73 |
+
| model.layers.3.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 74 |
+
| model.layers.3.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 75 |
+
| model.layers.3.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 76 |
+
| model.layers.3.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 77 |
+
| model.layers.3.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 78 |
+
| model.layers.3.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 79 |
+
| model.layers.3.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 80 |
+
| model.layers.4.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 81 |
+
| model.layers.4.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 82 |
+
| model.layers.4.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 83 |
+
| model.layers.4.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 84 |
+
| model.layers.4.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 85 |
+
| model.layers.4.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 86 |
+
| model.layers.4.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 87 |
+
| model.layers.4.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 88 |
+
| model.layers.4.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 89 |
+
| model.layers.5.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 90 |
+
| model.layers.5.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 91 |
+
| model.layers.5.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 92 |
+
| model.layers.5.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 93 |
+
| model.layers.5.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 94 |
+
| model.layers.5.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 95 |
+
| model.layers.5.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 96 |
+
| model.layers.5.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 97 |
+
| model.layers.5.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 98 |
+
| model.layers.6.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 99 |
+
| model.layers.6.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 100 |
+
| model.layers.6.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 101 |
+
| model.layers.6.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 102 |
+
| model.layers.6.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 103 |
+
| model.layers.6.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 104 |
+
| model.layers.6.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 105 |
+
| model.layers.6.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 106 |
+
| model.layers.6.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 107 |
+
| model.layers.7.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 108 |
+
| model.layers.7.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 109 |
+
| model.layers.7.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 110 |
+
| model.layers.7.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 111 |
+
| model.layers.7.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 112 |
+
| model.layers.7.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 113 |
+
| model.layers.7.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 114 |
+
| model.layers.7.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 115 |
+
| model.layers.7.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 116 |
+
| model.layers.8.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 117 |
+
| model.layers.8.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 118 |
+
| model.layers.8.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 119 |
+
| model.layers.8.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 120 |
+
| model.layers.8.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 121 |
+
| model.layers.8.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 122 |
+
| model.layers.8.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 123 |
+
| model.layers.8.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 124 |
+
| model.layers.8.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 125 |
+
| model.layers.9.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 126 |
+
| model.layers.9.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 127 |
+
| model.layers.9.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 128 |
+
| model.layers.9.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 129 |
+
| model.layers.9.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 130 |
+
| model.layers.9.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 131 |
+
| model.layers.9.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 132 |
+
| model.layers.9.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 133 |
+
| model.layers.9.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 134 |
+
| model.layers.10.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 135 |
+
| model.layers.10.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 136 |
+
| model.layers.10.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 137 |
+
| model.layers.10.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 138 |
+
| model.layers.10.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 139 |
+
| model.layers.10.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 140 |
+
| model.layers.10.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 141 |
+
| model.layers.10.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 142 |
+
| model.layers.10.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 143 |
+
| model.layers.11.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 144 |
+
| model.layers.11.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 145 |
+
| model.layers.11.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 146 |
+
| model.layers.11.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 147 |
+
| model.layers.11.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 148 |
+
| model.layers.11.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 149 |
+
| model.layers.11.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 150 |
+
| model.layers.11.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 151 |
+
| model.layers.11.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 152 |
+
| model.layers.12.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 153 |
+
| model.layers.12.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 154 |
+
| model.layers.12.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 155 |
+
| model.layers.12.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 156 |
+
| model.layers.12.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 157 |
+
| model.layers.12.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 158 |
+
| model.layers.12.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 159 |
+
| model.layers.12.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 160 |
+
| model.layers.12.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 161 |
+
| model.layers.13.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 162 |
+
| model.layers.13.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 163 |
+
| model.layers.13.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 164 |
+
| model.layers.13.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 165 |
+
| model.layers.13.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 166 |
+
| model.layers.13.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 167 |
+
| model.layers.13.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 168 |
+
| model.layers.13.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 169 |
+
| model.layers.13.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 170 |
+
| model.layers.14.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 171 |
+
| model.layers.14.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 172 |
+
| model.layers.14.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 173 |
+
| model.layers.14.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 174 |
+
| model.layers.14.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 175 |
+
| model.layers.14.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 176 |
+
| model.layers.14.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 177 |
+
| model.layers.14.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 178 |
+
| model.layers.14.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 179 |
+
| model.layers.15.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 180 |
+
| model.layers.15.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 181 |
+
| model.layers.15.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 182 |
+
| model.layers.15.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 183 |
+
| model.layers.15.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 184 |
+
| model.layers.15.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 185 |
+
| model.layers.15.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 186 |
+
| model.layers.15.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 187 |
+
| model.layers.15.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 188 |
+
| model.layers.16.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 189 |
+
| model.layers.16.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 190 |
+
| model.layers.16.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 191 |
+
| model.layers.16.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 192 |
+
| model.layers.16.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 193 |
+
| model.layers.16.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 194 |
+
| model.layers.16.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 195 |
+
| model.layers.16.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 196 |
+
| model.layers.16.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 197 |
+
| model.layers.17.self_attn.q_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 198 |
+
| model.layers.17.self_attn.k_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 199 |
+
| model.layers.17.self_attn.v_proj.weight | (2048, 256) | (2048, 256) | True | 0 | 0 | 0 |
|
| 200 |
+
| model.layers.17.self_attn.o_proj.weight | (2048, 2048) | (2048, 2048) | True | 0 | 0 | 0 |
|
| 201 |
+
| model.layers.17.mlp.gate_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 202 |
+
| model.layers.17.mlp.up_proj.weight | (2048, 16384) | (2048, 16384) | True | 0 | 0 | 0 |
|
| 203 |
+
| model.layers.17.mlp.down_proj.weight | (16384, 2048) | (16384, 2048) | True | 0 | 0 | 0 |
|
| 204 |
+
| model.layers.17.input_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 205 |
+
| model.layers.17.post_attention_layernorm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 206 |
+
| model.norm.weight | (2048,) | (2048,) | True | 0 | 0 | 0 |
|
| 207 |
+
| lm_head.weight | (2048, 256000) | (2048, 256000) | True | 0 | 0 | 0 |
|
| 208 |
+
|
| 209 |
+
**Note:**
|
| 210 |
+
|
| 211 |
+
* `Allclose` indicates whether the weights are approximately equal within the specified relative (`rtol=1e-5`) and absolute (`atol=1e-3`) tolerances using `jnp.allclose()`.
|
| 212 |
+
* `Max Diff`, `Mean Diff`, and `Std Diff` provide further details on the differences between the weights if `Allclose` is `False`, which might be expected for some layers due to numerical precision differences between frameworks.
|
| 213 |
+
|
| 214 |
+
## Hardware Used for Conversion
|
| 215 |
+
|
| 216 |
+
The conversion process was performed on the following hardware configuration:
|
| 217 |
+
|
| 218 |
+
* **CPU:**
|
| 219 |
+
* **RAM:** 251.67 GB
|
| 220 |
+
* **OS:** Linux-5.15.0-107-generic-x86_64-with-glibc2.36
|
| 221 |
+
* **JAX version:** 0.3.22
|
| 222 |
+
* **Flax version:** 0.6.2
|
| 223 |
+
* **Transformers version:** 4.47.0
|
| 224 |
+
* **GPU:** NVIDIA A100-SXM4-40GB
|
| 225 |
+
|
| 226 |
+
This conversion took approximately 184.13 seconds to complete.
|
| 227 |
+
|
| 228 |
+
## Usage
|
| 229 |
+
|
| 230 |
+
Here's how you can use the converted model in JAX/Flax for text generation:
|
| 231 |
+
|
| 232 |
+
```python
|
| 233 |
+
import jax
|
| 234 |
+
import jax.numpy as jnp
|
| 235 |
+
from transformers import FlaxAutoModelForCausalLM, AutoTokenizer
|
| 236 |
+
|
| 237 |
+
model_name = "Erland/gemma-2b-JAX" # Replace with your repository name
|
| 238 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 239 |
+
model = FlaxAutoModelForCausalLM.from_pretrained(model_name, from_pt=False) # from_pt should be False since it's already flax
|
| 240 |
+
|
| 241 |
+
# Example prompt
|
| 242 |
+
prompt = "The quick brown fox"
|
| 243 |
+
|
| 244 |
+
# Tokenize the prompt
|
| 245 |
+
tokenized_prompt = tokenizer(prompt, return_tensors="np")
|
| 246 |
+
|
| 247 |
+
# Generate text
|
| 248 |
+
output_ids = model.generate(tokenized_prompt.input_ids, max_length=50)
|
| 249 |
+
|
| 250 |
+
# Decode the generated text
|
| 251 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 252 |
+
```
|
| 253 |
+
## Limitations
|
| 254 |
+
|
| 255 |
+
Sequence Length: As mentioned earlier, the max_position_embeddings has been modified to 8192. Be mindful of this limitation when working with long sequences.
|
| 256 |
+
|
| 257 |
+
Numerical Precision: Minor differences in outputs compared to the original PyTorch model might be observed due to numerical precision variations between PyTorch and JAX/Flax, particularly on different hardware.
|
| 258 |
+
|
| 259 |
+
## Acknowledgements
|
| 260 |
+
|
| 261 |
+
We thank the original authors of google/gemma-2b at `google` for their groundbreaking work in developing this powerful language model.
|
| 262 |
+
|
| 263 |
+
We acknowledge the Hugging Face Transformers library for providing the essential tools and infrastructure that made this conversion possible.
|
| 264 |
+
|
| 265 |
+
Thanks to the JAX and Flax teams for developing such performant and flexible frameworks for numerical computation and deep learning.
|
| 266 |
+
|
| 267 |
+
## License
|
| 268 |
+
|
| 269 |
+
This JAX/Flax model is released under the original model license.
|