Cody Dostal commited on
Commit
611e83d
·
verified ·
1 Parent(s): 57c2fc7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +236 -0
README.md CHANGED
@@ -2,9 +2,245 @@
2
  tags:
3
  - unsloth
4
  - mlx
 
5
  base_model: unsloth/Qwen3-30B-A3B-Instruct-2507
6
  library_name: mlx
7
  license: apache-2.0
8
  license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE
9
  pipeline_tag: text-generation
10
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - unsloth
4
  - mlx
5
+ - mxfp4
6
  base_model: unsloth/Qwen3-30B-A3B-Instruct-2507
7
  library_name: mlx
8
  license: apache-2.0
9
  license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE
10
  pipeline_tag: text-generation
11
  ---
12
+
13
+ # MLX-MXFP4 Version of Unsloth Qwen3 30B A3B Thinking 2507
14
+ The Model [pivotraze/unsloth-Qwen3-30B-A3B-Instruct-2507-mlx-mxfp4](https://huggingface.co/pivotraze/pivotraze/unsloth-Qwen3-30B-A3B-Instruct-2507-mlx-mxfp4) was converted to MLX-MXFP4 format from [unsloth/Qwen3-30B-A3B-Thinking-2507](https://huggingface.co/unsloth/Qwen3-30B-A3B-Instruct-2507) using mlx-lm version **0.28.3**.
15
+
16
+ # Original Unsloth Model Card Below
17
+ > [!NOTE]
18
+ > Includes Unsloth **chat template fixes**! <br> For `llama.cpp`, use `--jinja`
19
+ >
20
+
21
+ <div>
22
+ <p style="margin-top: 0;margin-bottom: 0;">
23
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
24
+ </p>
25
+ <div style="display: flex; gap: 5px; align-items: center; ">
26
+ <a href="https://github.com/unslothai/unsloth/">
27
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
28
+ </a>
29
+ <a href="https://discord.gg/unsloth">
30
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
31
+ </a>
32
+ <a href="https://docs.unsloth.ai/">
33
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
34
+ </a>
35
+ </div>
36
+ </div>
37
+
38
+
39
+ # Qwen3-30B-A3B-Instruct-2507
40
+ <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
41
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
42
+ </a>
43
+
44
+ ## Highlights
45
+
46
+ We introduce the updated version of the **Qwen3-30B-A3B non-thinking mode**, named **Qwen3-30B-A3B-Instruct-2507**, featuring the following key enhancements:
47
+
48
+ - **Significant improvements** in general capabilities, including **instruction following, logical reasoning, text comprehension, mathematics, science, coding and tool usage**.
49
+ - **Substantial gains** in long-tail knowledge coverage across **multiple languages**.
50
+ - **Markedly better alignment** with user preferences in **subjective and open-ended tasks**, enabling more helpful responses and higher-quality text generation.
51
+ - **Enhanced capabilities** in **256K long-context understanding**.
52
+
53
+ ![image/jpeg](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-2507/Qwen3-30B-A3B-Instruct-2507.jpeg)
54
+
55
+ ## Model Overview
56
+
57
+ **Qwen3-30B-A3B-Instruct-2507** has the following features:
58
+ - Type: Causal Language Models
59
+ - Training Stage: Pretraining & Post-training
60
+ - Number of Parameters: 30.5B in total and 3.3B activated
61
+ - Number of Paramaters (Non-Embedding): 29.9B
62
+ - Number of Layers: 48
63
+ - Number of Attention Heads (GQA): 32 for Q and 4 for KV
64
+ - Number of Experts: 128
65
+ - Number of Activated Experts: 8
66
+ - Context Length: **262,144 natively**.
67
+
68
+ **NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
69
+
70
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
71
+
72
+
73
+ ## Performance
74
+
75
+ | | Deepseek-V3-0324 | GPT-4o-0327 | Gemini-2.5-Flash Non-Thinking | Qwen3-235B-A22B Non-Thinking | Qwen3-30B-A3B Non-Thinking | Qwen3-30B-A3B-Instruct-2507 |
76
+ |--- | --- | --- | --- | --- | --- | --- |
77
+ | **Knowledge** | | | | | | |
78
+ | MMLU-Pro | **81.2** | 79.8 | 81.1 | 75.2 | 69.1 | 78.4 |
79
+ | MMLU-Redux | 90.4 | **91.3** | 90.6 | 89.2 | 84.1 | 89.3 |
80
+ | GPQA | 68.4 | 66.9 | **78.3** | 62.9 | 54.8 | 70.4 |
81
+ | SuperGPQA | **57.3** | 51.0 | 54.6 | 48.2 | 42.2 | 53.4 |
82
+ | **Reasoning** | | | | | | |
83
+ | AIME25 | 46.6 | 26.7 | **61.6** | 24.7 | 21.6 | 61.3 |
84
+ | HMMT25 | 27.5 | 7.9 | **45.8** | 10.0 | 12.0 | 43.0 |
85
+ | ZebraLogic | 83.4 | 52.6 | 57.9 | 37.7 | 33.2 | **90.0** |
86
+ | LiveBench 20241125 | 66.9 | 63.7 | **69.1** | 62.5 | 59.4 | 69.0 |
87
+ | **Coding** | | | | | | |
88
+ | LiveCodeBench v6 (25.02-25.05) | **45.2** | 35.8 | 40.1 | 32.9 | 29.0 | 43.2 |
89
+ | MultiPL-E | 82.2 | 82.7 | 77.7 | 79.3 | 74.6 | **83.8** |
90
+ | Aider-Polyglot | 55.1 | 45.3 | 44.0 | **59.6** | 24.4 | 35.6 |
91
+ | **Alignment** | | | | | | |
92
+ | IFEval | 82.3 | 83.9 | 84.3 | 83.2 | 83.7 | **84.7** |
93
+ | Arena-Hard v2* | 45.6 | 61.9 | 58.3 | 52.0 | 24.8 | **69.0** |
94
+ | Creative Writing v3 | 81.6 | 84.9 | 84.6 | 80.4 | 68.1 | **86.0** |
95
+ | WritingBench | 74.5 | 75.5 | 80.5 | 77.0 | 72.2 | **85.5** |
96
+ | **Agent** | | | | | | |
97
+ | BFCL-v3 | 64.7 | 66.5 | 66.1 | **68.0** | 58.6 | 65.1 |
98
+ | TAU1-Retail | 49.6 | 60.3# | **65.2** | 65.2 | 38.3 | 59.1 |
99
+ | TAU1-Airline | 32.0 | 42.8# | **48.0** | 32.0 | 18.0 | 40.0 |
100
+ | TAU2-Retail | **71.1** | 66.7# | 64.3 | 64.9 | 31.6 | 57.0 |
101
+ | TAU2-Airline | 36.0 | 42.0# | **42.5** | 36.0 | 18.0 | 38.0 |
102
+ | TAU2-Telecom | **34.0** | 29.8# | 16.9 | 24.6 | 18.4 | 12.3 |
103
+ | **Multilingualism** | | | | | | |
104
+ | MultiIF | 66.5 | 70.4 | 69.4 | 70.2 | **70.8** | 67.9 |
105
+ | MMLU-ProX | 75.8 | 76.2 | **78.3** | 73.2 | 65.1 | 72.0 |
106
+ | INCLUDE | 80.1 | 82.1 | **83.8** | 75.6 | 67.8 | 71.9 |
107
+ | PolyMATH | 32.2 | 25.5 | 41.9 | 27.0 | 23.3 | **43.1** |
108
+
109
+ *: For reproducibility, we report the win rates evaluated by GPT-4.1.
110
+
111
+ \#: Results were generated using GPT-4o-20241120, as access to the native function calling API of GPT-4o-0327 was unavailable.
112
+
113
+
114
+ ## Quickstart
115
+
116
+ The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
117
+
118
+ With `transformers<4.51.0`, you will encounter the following error:
119
+ ```
120
+ KeyError: 'qwen3_moe'
121
+ ```
122
+
123
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
124
+ ```python
125
+ from transformers import AutoModelForCausalLM, AutoTokenizer
126
+
127
+ model_name = "Qwen/Qwen3-30B-A3B-Instruct-2507"
128
+
129
+ # load the tokenizer and the model
130
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
131
+ model = AutoModelForCausalLM.from_pretrained(
132
+ model_name,
133
+ torch_dtype="auto",
134
+ device_map="auto"
135
+ )
136
+
137
+ # prepare the model input
138
+ prompt = "Give me a short introduction to large language model."
139
+ messages = [
140
+ {"role": "user", "content": prompt}
141
+ ]
142
+ text = tokenizer.apply_chat_template(
143
+ messages,
144
+ tokenize=False,
145
+ add_generation_prompt=True,
146
+ )
147
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
148
+
149
+ # conduct text completion
150
+ generated_ids = model.generate(
151
+ **model_inputs,
152
+ max_new_tokens=16384
153
+ )
154
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
155
+
156
+ content = tokenizer.decode(output_ids, skip_special_tokens=True)
157
+
158
+ print("content:", content)
159
+ ```
160
+
161
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
162
+ - SGLang:
163
+ ```shell
164
+ python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B-Instruct-2507 --context-length 262144
165
+ ```
166
+ - vLLM:
167
+ ```shell
168
+ vllm serve Qwen/Qwen3-30B-A3B-Instruct-2507 --max-model-len 262144
169
+ ```
170
+
171
+ **Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
172
+
173
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
174
+
175
+ ## Agentic Use
176
+
177
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
178
+
179
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
180
+ ```python
181
+ from qwen_agent.agents import Assistant
182
+
183
+ # Define LLM
184
+ llm_cfg = {
185
+ 'model': 'Qwen3-30B-A3B-Instruct-2507',
186
+
187
+ # Use a custom endpoint compatible with OpenAI API:
188
+ 'model_server': 'http://localhost:8000/v1', # api_base
189
+ 'api_key': 'EMPTY',
190
+ }
191
+
192
+ # Define Tools
193
+ tools = [
194
+ {'mcpServers': { # You can specify the MCP configuration file
195
+ 'time': {
196
+ 'command': 'uvx',
197
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
198
+ },
199
+ "fetch": {
200
+ "command": "uvx",
201
+ "args": ["mcp-server-fetch"]
202
+ }
203
+ }
204
+ },
205
+ 'code_interpreter', # Built-in tools
206
+ ]
207
+
208
+ # Define Agent
209
+ bot = Assistant(llm=llm_cfg, function_list=tools)
210
+
211
+ # Streaming generation
212
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
213
+ for responses in bot.run(messages=messages):
214
+ pass
215
+ print(responses)
216
+ ```
217
+
218
+ ## Best Practices
219
+
220
+ To achieve optimal performance, we recommend the following settings:
221
+
222
+ 1. **Sampling Parameters**:
223
+ - We suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
224
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
225
+
226
+ 2. **Adequate Output Length**: We recommend using an output length of 16,384 tokens for most queries, which is adequate for instruct models.
227
+
228
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
229
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
230
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
231
+
232
+ ### Citation
233
+
234
+ If you find our work helpful, feel free to give us a cite.
235
+
236
+ ```
237
+ @misc{qwen3technicalreport,
238
+ title={Qwen3 Technical Report},
239
+ author={Qwen Team},
240
+ year={2025},
241
+ eprint={2505.09388},
242
+ archivePrefix={arXiv},
243
+ primaryClass={cs.CL},
244
+ url={https://arxiv.org/abs/2505.09388},
245
+ }
246
+ ```