# coding=utf-8 # Copyright (c) 2025 Huawei Technologies Co., Ltd. All rights reserved. """openPanguUltraMoE 718B model configuration""" from transformers.configuration_utils import PretrainedConfig class PanguUltraMoEConfig(PretrainedConfig): model_type = "pangu_ultra_moe" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=153600, hidden_size=7680, intermediate_size=18432, moe_intermediate_size=2048, num_hidden_layers=61, num_mtp_layers=1, num_attention_heads=128, num_key_value_heads=128, num_shared_experts=1, num_routed_experts=256, routed_scaling_factor=2.5, attention_kv_lora_dim=512, attention_q_lora_dim=1536, attention_qk_rope_dim=64, attention_v_dim=128, attention_qk_dim=128, num_experts_per_tok=8, num_dense_layers=3, norm_topk_prob=True, hidden_act="silu", max_position_embeddings=131072, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=0, eos_token_id=1, tie_word_embeddings=False, rope_theta=25600000, attention_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.num_dense_layers = num_dense_layers self.intermediate_size = intermediate_size self.moe_intermediate_size = moe_intermediate_size self.num_shared_experts = num_shared_experts self.num_routed_experts = num_routed_experts self.routed_scaling_factor = routed_scaling_factor self.num_experts_per_tok = num_experts_per_tok self.norm_topk_prob = norm_topk_prob self.attention_kv_lora_dim = attention_kv_lora_dim self.attention_q_lora_dim = attention_q_lora_dim self.attention_qk_rope_dim = attention_qk_rope_dim self.attention_v_dim = attention_v_dim self.attention_qk_dim = attention_qk_dim self.attention_dropout = attention_dropout self.num_mtp_layers = num_mtp_layers super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )