Create modeling_n2_eye.py
Browse files- modeling_n2_eye.py +220 -0
modeling_n2_eye.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoModelForCausalLM,
|
| 6 |
+
CLIPVisionModel,
|
| 7 |
+
PreTrainedModel,
|
| 8 |
+
PretrainedConfig,
|
| 9 |
+
AutoConfig,
|
| 10 |
+
AutoModel
|
| 11 |
+
)
|
| 12 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING
|
| 13 |
+
from typing import Optional
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class MultimodalLFM2Config(PretrainedConfig):
|
| 17 |
+
model_type = "multimodal_lfm2"
|
| 18 |
+
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
lfm2_model_name="LiquidAI/LFM2-1.2B",
|
| 22 |
+
clip_model_name="openai/clip-vit-base-patch32",
|
| 23 |
+
vision_projection_dim=512,
|
| 24 |
+
**kwargs
|
| 25 |
+
):
|
| 26 |
+
super().__init__(**kwargs)
|
| 27 |
+
self.lfm2_model_name = lfm2_model_name
|
| 28 |
+
self.clip_model_name = clip_model_name
|
| 29 |
+
self.vision_projection_dim = vision_projection_dim
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class MultimodalLFM2Model(PreTrainedModel):
|
| 33 |
+
config_class = MultimodalLFM2Config
|
| 34 |
+
|
| 35 |
+
def __init__(self, config):
|
| 36 |
+
super().__init__(config)
|
| 37 |
+
|
| 38 |
+
# --- Language Model ---
|
| 39 |
+
self.language_model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
+
config.lfm2_model_name,
|
| 41 |
+
torch_dtype=torch.bfloat16,
|
| 42 |
+
trust_remote_code=True
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# --- Vision Encoder ---
|
| 46 |
+
self.vision_encoder = CLIPVisionModel.from_pretrained(config.clip_model_name)
|
| 47 |
+
for param in self.vision_encoder.parameters():
|
| 48 |
+
param.requires_grad = False
|
| 49 |
+
|
| 50 |
+
# --- Projection Layer ---
|
| 51 |
+
self.language_hidden_size = self.language_model.config.hidden_size
|
| 52 |
+
self.vision_hidden_size = self.vision_encoder.config.hidden_size
|
| 53 |
+
self.vision_projection = nn.Sequential(
|
| 54 |
+
nn.Linear(self.vision_hidden_size, config.vision_projection_dim),
|
| 55 |
+
nn.ReLU(),
|
| 56 |
+
nn.Dropout(0.1),
|
| 57 |
+
nn.Linear(config.vision_projection_dim, self.language_hidden_size),
|
| 58 |
+
nn.LayerNorm(self.language_hidden_size)
|
| 59 |
+
)
|
| 60 |
+
self.image_token_id = None
|
| 61 |
+
|
| 62 |
+
def gradient_checkpointing_enable(self, **kwargs):
|
| 63 |
+
"""Delegates gradient checkpointing to the language model."""
|
| 64 |
+
self.language_model.gradient_checkpointing_enable(**kwargs)
|
| 65 |
+
|
| 66 |
+
def _prepare_multimodal_inputs(
|
| 67 |
+
self,
|
| 68 |
+
input_ids: torch.Tensor,
|
| 69 |
+
images: torch.Tensor
|
| 70 |
+
) -> torch.Tensor:
|
| 71 |
+
"""
|
| 72 |
+
Prepares input embeddings by combining text and image features.
|
| 73 |
+
"""
|
| 74 |
+
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 75 |
+
vision_outputs = self.vision_encoder(pixel_values=images)
|
| 76 |
+
image_features = vision_outputs.last_hidden_state
|
| 77 |
+
projected_image_features = self.vision_projection(image_features).to(self.language_model.dtype)
|
| 78 |
+
|
| 79 |
+
batch_size = input_ids.shape[0]
|
| 80 |
+
image_token_mask = (input_ids == self.image_token_id)
|
| 81 |
+
|
| 82 |
+
for i in range(batch_size):
|
| 83 |
+
image_positions = torch.where(image_token_mask[i])[0]
|
| 84 |
+
if len(image_positions) > 0:
|
| 85 |
+
img_feat = projected_image_features[i]
|
| 86 |
+
# match length
|
| 87 |
+
if len(image_positions) > img_feat.shape[0]:
|
| 88 |
+
repeat_times = (len(image_positions) + img_feat.shape[0] - 1) // img_feat.shape[0]
|
| 89 |
+
img_feat = img_feat.repeat(repeat_times, 1)[:len(image_positions)]
|
| 90 |
+
elif len(image_positions) < img_feat.shape[0]:
|
| 91 |
+
img_feat = img_feat[:len(image_positions)]
|
| 92 |
+
inputs_embeds[i, image_positions] = img_feat
|
| 93 |
+
|
| 94 |
+
return inputs_embeds
|
| 95 |
+
|
| 96 |
+
def forward(
|
| 97 |
+
self,
|
| 98 |
+
input_ids: torch.Tensor,
|
| 99 |
+
attention_mask: torch.Tensor,
|
| 100 |
+
images: Optional[torch.Tensor] = None,
|
| 101 |
+
labels: Optional[torch.Tensor] = None,
|
| 102 |
+
**kwargs
|
| 103 |
+
):
|
| 104 |
+
"""
|
| 105 |
+
Forward pass for training.
|
| 106 |
+
"""
|
| 107 |
+
if images is not None and self.image_token_id is not None:
|
| 108 |
+
inputs_embeds = self._prepare_multimodal_inputs(input_ids, images)
|
| 109 |
+
final_input_ids = None
|
| 110 |
+
else:
|
| 111 |
+
inputs_embeds = None
|
| 112 |
+
final_input_ids = input_ids
|
| 113 |
+
|
| 114 |
+
return self.language_model(
|
| 115 |
+
input_ids=final_input_ids,
|
| 116 |
+
inputs_embeds=inputs_embeds,
|
| 117 |
+
attention_mask=attention_mask,
|
| 118 |
+
labels=labels,
|
| 119 |
+
return_dict=True
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
def generate(
|
| 123 |
+
self,
|
| 124 |
+
input_ids: torch.Tensor,
|
| 125 |
+
attention_mask: torch.Tensor,
|
| 126 |
+
images: Optional[torch.Tensor] = None,
|
| 127 |
+
**kwargs
|
| 128 |
+
):
|
| 129 |
+
"""
|
| 130 |
+
Generation method for inference.
|
| 131 |
+
"""
|
| 132 |
+
if images is not None and self.image_token_id is not None:
|
| 133 |
+
inputs_embeds = self._prepare_multimodal_inputs(input_ids, images)
|
| 134 |
+
final_input_ids = None
|
| 135 |
+
else:
|
| 136 |
+
inputs_embeds = None
|
| 137 |
+
final_input_ids = input_ids
|
| 138 |
+
|
| 139 |
+
return self.language_model.generate(
|
| 140 |
+
input_ids=final_input_ids,
|
| 141 |
+
inputs_embeds=inputs_embeds,
|
| 142 |
+
attention_mask=attention_mask,
|
| 143 |
+
**kwargs
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
def save_pretrained(self, save_directory, **kwargs):
|
| 147 |
+
"""
|
| 148 |
+
Custom save method - saves everything in one directory.
|
| 149 |
+
"""
|
| 150 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 151 |
+
|
| 152 |
+
# Save config
|
| 153 |
+
self.config.save_pretrained(save_directory)
|
| 154 |
+
|
| 155 |
+
# Save language model state dict directly
|
| 156 |
+
torch.save(
|
| 157 |
+
self.language_model.state_dict(),
|
| 158 |
+
os.path.join(save_directory, "language_model.bin")
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Save language model config
|
| 162 |
+
self.language_model.config.save_pretrained(save_directory, config_file_name="language_model_config.json")
|
| 163 |
+
|
| 164 |
+
# Save vision projection
|
| 165 |
+
torch.save(
|
| 166 |
+
self.vision_projection.state_dict(),
|
| 167 |
+
os.path.join(save_directory, "vision_projection.bin")
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
@classmethod
|
| 171 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
| 172 |
+
"""
|
| 173 |
+
Custom loading method - works with your current structure.
|
| 174 |
+
"""
|
| 175 |
+
config = cls.config_class.from_pretrained(pretrained_model_name_or_path)
|
| 176 |
+
model = cls(config)
|
| 177 |
+
|
| 178 |
+
# Try to load from pytorch_model.bin (your current structure)
|
| 179 |
+
main_model_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
| 180 |
+
if os.path.exists(main_model_path):
|
| 181 |
+
# Load the full model state dict
|
| 182 |
+
full_state_dict = torch.load(main_model_path, map_location="cpu")
|
| 183 |
+
|
| 184 |
+
# Separate language model and vision projection weights
|
| 185 |
+
language_state_dict = {}
|
| 186 |
+
projection_state_dict = {}
|
| 187 |
+
|
| 188 |
+
for key, value in full_state_dict.items():
|
| 189 |
+
if key.startswith("language_model."):
|
| 190 |
+
# Remove the "language_model." prefix
|
| 191 |
+
new_key = key[len("language_model."):]
|
| 192 |
+
language_state_dict[new_key] = value
|
| 193 |
+
elif key.startswith("vision_projection."):
|
| 194 |
+
# Remove the "vision_projection." prefix
|
| 195 |
+
new_key = key[len("vision_projection."):]
|
| 196 |
+
projection_state_dict[new_key] = value
|
| 197 |
+
|
| 198 |
+
# Load the separated state dicts
|
| 199 |
+
if language_state_dict:
|
| 200 |
+
model.language_model.load_state_dict(language_state_dict)
|
| 201 |
+
if projection_state_dict:
|
| 202 |
+
model.vision_projection.load_state_dict(projection_state_dict)
|
| 203 |
+
else:
|
| 204 |
+
# Fallback to separate files
|
| 205 |
+
language_model_path = os.path.join(pretrained_model_name_or_path, "language_model.bin")
|
| 206 |
+
if os.path.exists(language_model_path):
|
| 207 |
+
language_state_dict = torch.load(language_model_path, map_location="cpu")
|
| 208 |
+
model.language_model.load_state_dict(language_state_dict)
|
| 209 |
+
|
| 210 |
+
projection_path = os.path.join(pretrained_model_name_or_path, "vision_projection.bin")
|
| 211 |
+
if os.path.exists(projection_path):
|
| 212 |
+
projection_state_dict = torch.load(projection_path, map_location="cpu")
|
| 213 |
+
model.vision_projection.load_state_dict(projection_state_dict)
|
| 214 |
+
|
| 215 |
+
return model
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
# Register the model with transformers
|
| 219 |
+
AutoConfig.register("multimodal_lfm2", MultimodalLFM2Config)
|
| 220 |
+
AutoModelForCausalLM.register(MultimodalLFM2Config, MultimodalLFM2Model)
|