Update README.md
Browse files
README.md
CHANGED
|
@@ -5,8 +5,199 @@ language:
|
|
| 5 |
base_model:
|
| 6 |
- LiquidAI/LFM2-1.2B
|
| 7 |
- openai/clip-vit-base-patch32
|
| 8 |
-
pipeline_tag: text-
|
| 9 |
library_name: transformers
|
| 10 |
tags:
|
| 11 |
- merge
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
base_model:
|
| 6 |
- LiquidAI/LFM2-1.2B
|
| 7 |
- openai/clip-vit-base-patch32
|
| 8 |
+
pipeline_tag: image-text-to-text
|
| 9 |
library_name: transformers
|
| 10 |
tags:
|
| 11 |
- merge
|
| 12 |
+
datasets:
|
| 13 |
+
- crag-mm-2025/crag-mm-multi-turn-public
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# N2-Eye: Multimodal Conversational AI
|
| 17 |
+
|
| 18 |
+
N2-Eye is a multimodal language model that combines the power of LiquidAI's LFM2-1.2B language model with OpenAI's CLIP vision encoder to enable image understanding and conversation capabilities.
|
| 19 |
+
|
| 20 |
+
## Model Details
|
| 21 |
+
|
| 22 |
+
- **Base Language Model**: LiquidAI/LFM2-1.2B (1.26B parameters)
|
| 23 |
+
- **Vision Encoder**: OpenAI CLIP-ViT-Base-Patch32
|
| 24 |
+
- **Model Type**: Image-Text-to-Text (Multimodal Conversational)
|
| 25 |
+
- **Training Dataset**: CRAG-MM Multi-Turn Public Dataset
|
| 26 |
+
- **License**: MIT
|
| 27 |
+
- **Framework**: PyTorch + Transformers
|
| 28 |
+
|
| 29 |
+
## Architecture
|
| 30 |
+
|
| 31 |
+
N2-Eye uses a modular architecture that combines:
|
| 32 |
+
|
| 33 |
+
1. **Language Model**: LFM2-1.2B for text generation and conversation
|
| 34 |
+
2. **Vision Encoder**: CLIP for image understanding (frozen during training)
|
| 35 |
+
3. **Projection Layer**: A trainable MLP that maps CLIP features to the language model's embedding space
|
| 36 |
+
|
| 37 |
+
The model processes images by:
|
| 38 |
+
- Encoding images with CLIP to extract visual features
|
| 39 |
+
- Projecting these features through a learnable projection layer
|
| 40 |
+
- Integrating projected features into the language model at special `<image>` token positions
|
| 41 |
+
|
| 42 |
+
## Training Details
|
| 43 |
+
|
| 44 |
+
### Dataset
|
| 45 |
+
- **Source**: CRAG-MM Multi-Turn Public Dataset (v0.1.1)
|
| 46 |
+
- **Format**: Multi-turn conversations with images
|
| 47 |
+
- **Preprocessing**: Conversations formatted with ChatML-style tokens
|
| 48 |
+
|
| 49 |
+
### Training Configuration
|
| 50 |
+
- **Batch Size**: 2 per device (with gradient accumulation steps: 4)
|
| 51 |
+
- **Learning Rate**: 2e-5
|
| 52 |
+
- **Training Length**: 3 epoch on validation split (we got down to loss 0.703300)
|
| 53 |
+
- **Precision**: bfloat16
|
| 54 |
+
- **Max Sequence Length**: 2048 tokens
|
| 55 |
+
- **Optimization**: Gradient checkpointing enabled
|
| 56 |
+
|
| 57 |
+
### Special Tokens
|
| 58 |
+
- `<image>`: Placeholder for image embeddings in conversation
|
| 59 |
+
- System prompt: "You are a helpful assistant trained by Liquid AI. You can see and understand images."
|
| 60 |
+
|
| 61 |
+
## Usage
|
| 62 |
+
|
| 63 |
+
### Basic Inference
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
# Load model directly
|
| 67 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 68 |
+
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained("GoofyLM/N2.1-Eye-1.3B", trust_remote_code=True)
|
| 70 |
+
model = AutoModelForCausalLM.from_pretrained("GoofyLM/N2.1-Eye-1.3B", trust_remote_code=True)
|
| 71 |
+
messages = [
|
| 72 |
+
{
|
| 73 |
+
"role": "user",
|
| 74 |
+
"content": [
|
| 75 |
+
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
|
| 76 |
+
{"type": "text", "text": "What animal is on the candy?"}
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
]
|
| 80 |
+
inputs = tokenizer.apply_chat_template(
|
| 81 |
+
messages,
|
| 82 |
+
add_generation_prompt=True,
|
| 83 |
+
tokenize=True,
|
| 84 |
+
return_dict=True,
|
| 85 |
+
return_tensors="pt",
|
| 86 |
+
).to(model.device)
|
| 87 |
+
|
| 88 |
+
outputs = model.generate(**inputs, max_new_tokens=40)
|
| 89 |
+
print(tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:]))
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Chat Template
|
| 93 |
+
|
| 94 |
+
N2-Eye uses an advanced ChatML-based format with support for tools and multimodal content. The model includes a sophisticated Jinja2 template that handles:
|
| 95 |
+
|
| 96 |
+
- **System prompts**: Automatically formatted with `<|im_start|>system` tags
|
| 97 |
+
- **Tool integration**: Special `<|tool_list_start|>` and `<|tool_list_end|>` markers for tool definitions
|
| 98 |
+
- **Tool responses**: Wrapped with `<|tool_response_start|>` and `<|tool_response_end|>` markers
|
| 99 |
+
- **Multimodal content**: JSON serialization for complex message content including images
|
| 100 |
+
|
| 101 |
+
Basic conversation format:
|
| 102 |
+
```
|
| 103 |
+
<|im_start|>system
|
| 104 |
+
You are a helpful assistant trained by Liquid AI. You can see and understand images.<|im_end|>
|
| 105 |
+
<image>
|
| 106 |
+
<|im_start|>user
|
| 107 |
+
{user_message}<|im_end|>
|
| 108 |
+
<|im_start|>assistant
|
| 109 |
+
{assistant_response}<|im_end|>
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
For tool-enabled conversations:
|
| 113 |
+
```
|
| 114 |
+
<|im_start|>system
|
| 115 |
+
{system_prompt}
|
| 116 |
+
List of tools: <|tool_list_start|>[{tool_definitions}]<|tool_list_end|><|im_end|>
|
| 117 |
+
<|im_start|>user
|
| 118 |
+
{user_message}<|im_end|>
|
| 119 |
+
<|im_start|>assistant
|
| 120 |
+
{assistant_response}<|im_end|>
|
| 121 |
+
<|im_start|>tool
|
| 122 |
+
<|tool_response_start|>{tool_output}<|tool_response_end|><|im_end|>
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## Capabilities
|
| 126 |
+
|
| 127 |
+
N2-Eye can:
|
| 128 |
+
- **Visual Understanding**: Understand and describe images in detail
|
| 129 |
+
- **Visual Q&A**: Answer questions about visual content
|
| 130 |
+
- **Multi-turn Conversations**: Engage in extended conversations that reference images
|
| 131 |
+
- **Tool Integration**: Support for tool calling and structured responses
|
| 132 |
+
- **Multimodal Reasoning**: Combine visual and textual information for comprehensive responses
|
| 133 |
+
- **Structured Output**: Handle complex message formats including JSON content
|
| 134 |
+
|
| 135 |
+
## Limitations
|
| 136 |
+
|
| 137 |
+
- **Image Token Handling**: Requires specific placement of `<image>` tokens in conversation format
|
| 138 |
+
- **Single Image**: Currently optimized for single image per conversation
|
| 139 |
+
- **Training Scale**: Trained on a limited dataset (validation split only)
|
| 140 |
+
- **Frozen Vision**: CLIP encoder is frozen, limiting adaptation to new visual domains
|
| 141 |
+
|
| 142 |
+
## Technical Implementation
|
| 143 |
+
|
| 144 |
+
### Model Architecture Classes
|
| 145 |
+
|
| 146 |
+
The implementation includes several key components:
|
| 147 |
+
|
| 148 |
+
1. **MultimodalLFM2Model**: Main model class combining language and vision
|
| 149 |
+
2. **CRAGMMDataset**: Dataset handler for CRAG-MM format
|
| 150 |
+
3. **MultimodalTrainer**: Custom trainer for multimodal inputs
|
| 151 |
+
|
| 152 |
+
### Key Features
|
| 153 |
+
|
| 154 |
+
- **Gradient Checkpointing**: Memory-efficient training
|
| 155 |
+
- **Custom Collation**: Handles multimodal batch processing
|
| 156 |
+
- **Flexible Image Integration**: Dynamic matching of image features to token positions
|
| 157 |
+
- **Safe Serialization**: Custom saving to handle shared tensors
|
| 158 |
+
|
| 159 |
+
## Requirements
|
| 160 |
+
|
| 161 |
+
```
|
| 162 |
+
torch
|
| 163 |
+
transformers
|
| 164 |
+
datasets
|
| 165 |
+
Pillow
|
| 166 |
+
clip-by-openai
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
## Training Your Own Version
|
| 170 |
+
|
| 171 |
+
To retrain or fine-tune N2-Eye:
|
| 172 |
+
|
| 173 |
+
1. Install dependencies
|
| 174 |
+
2. Prepare your dataset in CRAG-MM format
|
| 175 |
+
3. Modify configuration in the training script
|
| 176 |
+
4. Run the training pipeline
|
| 177 |
+
|
| 178 |
+
See the included training script for complete implementation details.
|
| 179 |
+
|
| 180 |
+
## Citation
|
| 181 |
+
|
| 182 |
+
If you use N2-Eye in your research, please cite:
|
| 183 |
+
|
| 184 |
+
```bibtex
|
| 185 |
+
@misc{n2eye2025,
|
| 186 |
+
title={N2-Eye: Multimodal Conversational AI},
|
| 187 |
+
author={GoofyLM Lab},
|
| 188 |
+
year={2025},
|
| 189 |
+
publisher={Hugging Face},
|
| 190 |
+
howpublished={\url{https://huggingface.co/GoofyLM/N2-Eye-v1-1.3B}}
|
| 191 |
+
}
|
| 192 |
+
```
|
| 193 |
+
|
| 194 |
+
## Acknowledgments
|
| 195 |
+
|
| 196 |
+
- **LiquidAI** for the LFM2-1.2B base model
|
| 197 |
+
- **OpenAI** for the CLIP vision encoder
|
| 198 |
+
- **CRAG-MM** dataset contributors for training data
|
| 199 |
+
- **Hugging Face** for the transformers library and model hosting
|
| 200 |
+
|
| 201 |
+
## License
|
| 202 |
+
|
| 203 |
+
This model is released under the MIT License. See the LICENSE file for details.
|