Token Classification
GLiNER
PyTorch
English
Vietnamese

Entity Types Classification

Personal Information

  • Date of birth
  • Age
  • Gender
  • Last name
  • Occupation
  • Education level
  • Phone number
  • Email
  • Street address
  • City
  • Country
  • Postcode
  • User name
  • Password
  • Tax ID
  • License plate
  • CVV
  • Bank routing number
  • Account number
  • SWIFT BIC
  • Biometric identifier
  • Device identifier
  • Location

Financial Information

  • Account number
  • Bank routing number
  • SWIFT BIC
  • CVV
  • Tax ID
  • API key

Health and Medical Information

  • Blood type
  • Biometric identifier
  • Organ
  • Diseases symptom
  • Diagnostics
  • Preventive medicine
  • Treatment
  • Surgery
  • Drug chemical
  • Medical device technique
  • Personal care

Online and Web-related Information

  • URL
  • IP address
  • Email
  • User name
  • API key

Professional Information

  • Occupation
  • Skill
  • Organization
  • Company name

Location Information

  • City
  • Country
  • Postcode
  • Street address
  • Location

Time-Related Information

  • Date
  • Date time

Miscellaneous

  • Event
  • Miscellaneous

Product and Goods Information

  • Product
  • Quantity
  • Food drink
  • Transportation

Identifiers

  • Device identifier
  • Biometric identifier
  • User name
  • Email
  • Phone number
  • URL
  • License plate

Model Card for GLiNER PII

GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.

This model has been trained by fine-tuning urchade/gliner_multi-v2.1 on the urchade/synthetic-pii-ner-mistral-v1 dataset.

Links

from gliner import GLiNER

model = GLiNER.from_pretrained("urchade/gliner_multi_pii-v1")

text = """
Harilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistré une nouvelle société nommée "Rasoanaivo Enterprises" au Lot II M 92 Antohomadinika. Son numéro est le +261 32 22 345 67, et son adresse électronique est [email protected]. Il a fourni son numéro de sécu 501-02-1234 pour l'enregistrement.
"""

labels = ["work", "booking number", "personally identifiable information", "driver licence", "person", "book", "full address", "company", "actor", "character", "email", "passport number", "Social Security Number", "phone number"]
entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
Harilala Rasoanaivo => person
Rasoanaivo Enterprises => company
Lot II M 92 Antohomadinika => full address
+261 32 22 345 67 => phone number
[email protected] => email
501-02-1234 => Social Security Number
Downloads last month
11
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train GreenNode/gliner_multi_pii-v1-tuned-2048

Space using GreenNode/gliner_multi_pii-v1-tuned-2048 1