Commit 
							
							·
						
						60ee357
	
1
								Parent(s):
							
							6ef5cee
								
Remove hmp from config and README (#1)
Browse files- Remove hmp from config and README (97dafc920ab239d70134771e9ea8dc3b4cd0e49d)
- Update README.md (9a03693df5b9117733f36e331a78dd78c8be8f07)
Co-authored-by: Jan Wieczorek <[email protected]>
- README.md +3 -6
 - gaudi_config.json +1 -46
 
    	
        README.md
    CHANGED
    
    | 
         @@ -13,16 +13,13 @@ This model only contains the `GaudiConfig` file for running **Stable Diffusion v 
     | 
|
| 13 | 
         
             
            **This model contains no model weights, only a GaudiConfig.**
         
     | 
| 14 | 
         | 
| 15 | 
         
             
            This enables to specify:
         
     | 
| 16 | 
         
            -
            - ` 
     | 
| 17 | 
         
            -
                - `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_Mixed_Precision/PT_Mixed_Precision.html#configuration-options) for a detailed explanation
         
     | 
| 18 | 
         
            -
                - `hmp_bf16_ops`: list of operators that should run in bf16
         
     | 
| 19 | 
         
            -
                - `hmp_fp32_ops`: list of operators that should run in fp32
         
     | 
| 20 | 
         
            -
                - `hmp_is_verbose`: verbosity
         
     | 
| 21 | 
         | 
| 22 | 
         
             
            ## Usage
         
     | 
| 23 | 
         | 
| 24 | 
         
             
            The `GaudiStableDiffusionPipeline` (`GaudiDDIMScheduler`) is instantiated the same way as the `StableDiffusionPipeline` (`DDIMScheduler`) in the 🤗 Diffusers library.
         
     | 
| 25 | 
         
            -
            The only difference is that there are a few new training arguments specific to HPUs 
     | 
| 
         | 
|
| 26 | 
         | 
| 27 | 
         
             
            Here is an example with one prompt:
         
     | 
| 28 | 
         
             
            ```python
         
     | 
| 
         | 
|
| 13 | 
         
             
            **This model contains no model weights, only a GaudiConfig.**
         
     | 
| 14 | 
         | 
| 15 | 
         
             
            This enables to specify:
         
     | 
| 16 | 
         
            +
            - `use_torch_autocast`: whether to use Torch Autocast for managing mixed precision
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 17 | 
         | 
| 18 | 
         
             
            ## Usage
         
     | 
| 19 | 
         | 
| 20 | 
         
             
            The `GaudiStableDiffusionPipeline` (`GaudiDDIMScheduler`) is instantiated the same way as the `StableDiffusionPipeline` (`DDIMScheduler`) in the 🤗 Diffusers library.
         
     | 
| 21 | 
         
            +
            The only difference is that there are a few new training arguments specific to HPUs.\
         
     | 
| 22 | 
         
            +
            It is strongly recommended to train this model doing bf16 mixed-precision training for optimal performance and accuracy.
         
     | 
| 23 | 
         | 
| 24 | 
         
             
            Here is an example with one prompt:
         
     | 
| 25 | 
         
             
            ```python
         
     | 
    	
        gaudi_config.json
    CHANGED
    
    | 
         @@ -1,50 +1,5 @@ 
     | 
|
| 1 | 
         
             
            {
         
     | 
| 2 | 
         
            -
              "use_habana_mixed_precision": true,
         
     | 
| 3 | 
         
            -
              "hmp_is_verbose": false,
         
     | 
| 4 | 
         
             
              "use_fused_adam": true,
         
     | 
| 5 | 
         
             
              "use_fused_clip_norm": true,
         
     | 
| 6 | 
         
            -
              " 
     | 
| 7 | 
         
            -
                "addmm",
         
     | 
| 8 | 
         
            -
                "batch_norm",
         
     | 
| 9 | 
         
            -
                "bmm",
         
     | 
| 10 | 
         
            -
                "conv1d",
         
     | 
| 11 | 
         
            -
                "conv2d",
         
     | 
| 12 | 
         
            -
                "conv3d",
         
     | 
| 13 | 
         
            -
                "conv_transpose1d",
         
     | 
| 14 | 
         
            -
                "conv_transpose2d",
         
     | 
| 15 | 
         
            -
                "conv_transpose3d",
         
     | 
| 16 | 
         
            -
                "dot",
         
     | 
| 17 | 
         
            -
                "dropout",
         
     | 
| 18 | 
         
            -
                "dropout1d",
         
     | 
| 19 | 
         
            -
                "dropout2d",
         
     | 
| 20 | 
         
            -
                "dropout3d",
         
     | 
| 21 | 
         
            -
                "group_norm",
         
     | 
| 22 | 
         
            -
                "instance_norm",
         
     | 
| 23 | 
         
            -
                "layer_norm",
         
     | 
| 24 | 
         
            -
                "leaky_relu",
         
     | 
| 25 | 
         
            -
                "linear",
         
     | 
| 26 | 
         
            -
                "matmul",
         
     | 
| 27 | 
         
            -
                "mean",
         
     | 
| 28 | 
         
            -
                "mm",
         
     | 
| 29 | 
         
            -
                "mv",
         
     | 
| 30 | 
         
            -
                "relu",
         
     | 
| 31 | 
         
            -
                "t"
         
     | 
| 32 | 
         
            -
              ],
         
     | 
| 33 | 
         
            -
              "hmp_fp32_ops": [
         
     | 
| 34 | 
         
            -
                "binary_cross_entropy",
         
     | 
| 35 | 
         
            -
                "binary_cross_entropy_with_logits",
         
     | 
| 36 | 
         
            -
                "cross_entropy",
         
     | 
| 37 | 
         
            -
                "div",
         
     | 
| 38 | 
         
            -
                "divide",
         
     | 
| 39 | 
         
            -
                "embedding",
         
     | 
| 40 | 
         
            -
                "embedding_bag",
         
     | 
| 41 | 
         
            -
                "log",
         
     | 
| 42 | 
         
            -
                "log2",
         
     | 
| 43 | 
         
            -
                "log_softmax",
         
     | 
| 44 | 
         
            -
                "nll_loss",
         
     | 
| 45 | 
         
            -
                "smooth_l1_loss",
         
     | 
| 46 | 
         
            -
                "softmax",
         
     | 
| 47 | 
         
            -
                "topk",
         
     | 
| 48 | 
         
            -
                "truediv"
         
     | 
| 49 | 
         
            -
              ]
         
     | 
| 50 | 
         
             
            }
         
     | 
| 
         | 
|
| 1 | 
         
             
            {
         
     | 
| 
         | 
|
| 
         | 
|
| 2 | 
         
             
              "use_fused_adam": true,
         
     | 
| 3 | 
         
             
              "use_fused_clip_norm": true,
         
     | 
| 4 | 
         
            +
              "use_torch_autocast": true
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 5 | 
         
             
            }
         
     |