File size: 153,731 Bytes
bc59815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
import math
import copy
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, EncoderDecoderCache, SlidingWindowCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_attn_mask_utils import (
    AttentionMaskConverter,
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    BaseModelOutput,
    ModelOutput,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.modeling_utils import PreTrainedModel
from transformers.cache_utils import DynamicCache
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)

# from seallm 
from transformers.generation.logits_process import (
    RepetitionPenaltyLogitsProcessor,
    TopKLogitsWarper,
    TopPLogitsWarper,
    TemperatureLogitsWarper,
    ExponentialDecayLengthPenalty
)

# import config class
from .configuration_hithinkomni import HithinkOmniConfig, HithinkOmniVisionConfig, HithinkAudioEncoderConfig

if is_flash_attn_2_available():
    from flash_attn import flash_attn_varlen_func

    from transformers.modeling_flash_attention_utils import _flash_attention_forward
else:
    flash_attn_varlen_func = None

try:
    from flash_attn.layers.rotary import apply_rotary_emb_func
except ImportError:
    apply_rotary_emb_func = None

try:
    from flash_attn.ops.rms_norm import dropout_add_rms_norm
except ImportError:
    dropout_add_rms_norm = None

try:
    from flash_attn.ops.activations import swiglu
except ImportError:
    swiglu = None

if torch.cuda.is_available():
    try:
        from flash_attn.losses.cross_entropy import CrossEntropyLoss
    except ImportError:
        pass

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "HithinkOmniConfig"


@dataclass
class HithinkOmniCausalLMOutputWithPast(ModelOutput):
    """
    Base class for HithinkOmni causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
            The rope index difference between sequence length and multimodal rope.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    audio_past_key_values: Optional[Cache] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    rope_deltas: Optional[torch.LongTensor] = None

# audio part start
class CausalConv1d(nn.Conv1d):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias=True,
        **kwargs
    ):
        super(CausalConv1d, self).__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=0,
            dilation=dilation,
            groups=groups,
            bias=bias,
            **kwargs
        )

        self.left_padding = dilation * (kernel_size - 1)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        x = torch.nn.functional.pad(input.unsqueeze(2), (self.left_padding, 0, 0, 0)).squeeze(2)
        return super().forward(x)


# Copied from transformers.models.whisper.modeling_whisper.WhisperAttention with Whisper->HithinkAudio
class HithinkAudioAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        is_causal: bool = False,
        layer_idx: Optional[int] = None,
        config: Optional[HithinkOmniConfig] = None,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        self.config = config

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder
        self.is_causal = is_causal

        if layer_idx is None and is_decoder:
            logger.warning_once(
                f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
                "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )
        self.layer_idx = layer_idx

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper
    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz)
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
        if past_key_value is not None:
            # save all key/value_states to cache to be re-used for fast auto-regressive generation
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.layer_idx, {"cache_position": cache_position}
            )

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))

        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
            attn_weights = attn_weights + causal_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
        attn_output = torch.matmul(attn_probs, value_states)

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)
        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights, past_key_value


# Copied from transformers.models.whisper.modeling_whisper.WhisperFlashAttention2 with Whisper->HithinkAudio
class HithinkAudioFlashAttention2(HithinkAudioAttention):
    """
    HithinkAudio flash attention module. This module inherits from `HithinkAudioAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if isinstance(past_key_value, StaticCache):
            raise ValueError(
                "The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. "
                "Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers"
            )
        # HithinkAudioFlashAttention2 attention does not support output_attentions
        if output_attentions:
            raise ValueError("HithinkAudioFlashAttention2 attention does not support output_attentions")

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim))
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
        if past_key_value is not None:
            # save all key/value_states to cache to be re-used for fast auto-regressive generation
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.layer_idx, {"cache_position": cache_position}
            )

        # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]
        #  We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view.
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        causal_mask = attention_mask
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, : key_states.shape[1]]

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        # in fp32. (LlamaRMSNorm handles it correctly)

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        attn_output = _flash_attention_forward(
            query_states,
            key_states,
            value_states,
            causal_mask,
            tgt_len,
            dropout=self.dropout if self.training else 0.0,
            is_causal=self.is_causal,
            use_top_left_mask=self._flash_attn_uses_top_left_mask,
        )

        attn_output = attn_output.reshape(bsz, tgt_len, -1)
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


# Copied from transformers.models.whisper.modeling_whisper.WhisperSdpaAttention with Whisper->HithinkAudio
class HithinkAudioSdpaAttention(HithinkAudioAttention):
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""
        if output_attentions or layer_head_mask is not None:
            # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "HithinkAudioModel is using HithinkAudioSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
                ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states,
                past_key_value=past_key_value,
                attention_mask=attention_mask,
                layer_head_mask=layer_head_mask,
                output_attentions=output_attentions,
                cache_position=cache_position,
            )
        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz)
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
        if past_key_value is not None:
            # save all key/value_states to cache to be re-used for fast auto-regressive generation
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.layer_idx, {"cache_position": cache_position}
            )

        causal_mask = attention_mask
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
        is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False

        # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
        # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.dropout if self.training else 0.0,
            is_causal=is_causal,
        )

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, None, past_key_value


HITHINKAUDIO_ATTENTION_CLASSES = {
    "eager": HithinkAudioAttention,
    "flash_attention_2": HithinkAudioFlashAttention2,
    "sdpa": HithinkAudioSdpaAttention,
}


# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer with Whisper->HithinkAudio, WHISPER->HITHINKAUDIO
class HithinkAudioEncoderLayer(nn.Module):
    def __init__(self, config: HithinkAudioEncoderConfig, layer_idx: int):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = HITHINKAUDIO_ATTENTION_CLASSES[config._attn_implementation](
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
            config=config,
            layer_idx=layer_idx,
            is_causal=True
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_head_mask: torch.Tensor,
        past_key_value: Optional[Cache],
        output_attentions: bool = False,
        use_cache: bool = False,
    ) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)
        hidden_states, attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


HITHINKAUDIO_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`HithinkOmniConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare HithinkAudio Model outputting raw hidden-states without any specific head on top.",
    HITHINKAUDIO_START_DOCSTRING,
)
class HithinkAudioPreTrainedModel(PreTrainedModel):
    config_class = HithinkOmniConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["HithinkAudioAttention"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True

    def _init_weights(self, module):
        # important: this ported version of HithinkAudio isn't meant for training from scratch - only
        # inference and fine-tuning - so the proper init weights code has been removed
        std = self.config.init_std if hasattr(self.config, "init_std") else self.config.audio_config.init_std

        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def _supports_sdpa(self):
        """
        Retrieve language_model's attribute to check whether the model supports
        SDPA or not.
        """
        return self.language_model._supports_sdpa


HITHINKAUDIOENCODER_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`HithinkAudioEncoderConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    """The audio model from HithinkAudio without any head or projection on top.""",
    HITHINKAUDIOENCODER_START_DOCSTRING,
)
# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoder with Whisper->HithinkAudio
class HithinkAudioEncoder(HithinkAudioPreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    [`HithinkAudioEncoderLayer`].

    Args:
        config: HithinkAudioEncoderConfig
    """

    # Ignore copy
    config_class = HithinkAudioEncoderConfig
    main_input_name = "input_features"
    _no_split_modules = ["HithinkAudioEncoderLayer"]

    def __init__(self, config: HithinkAudioEncoderConfig):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.num_mel_bins = config.num_mel_bins
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_source_positions
        self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        self.conv1 = CausalConv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1)
        self.conv2 = CausalConv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)

        self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
        self.embed_positions.requires_grad_(False)

        self.layers = nn.ModuleList([
            HithinkAudioEncoderLayer(config, layer_idx) for layer_idx in range(config.encoder_layers)
        ])
        self.layer_norm = nn.LayerNorm(config.d_model)
        # Ignore copy
        self.avg_pooler = nn.AvgPool1d(2, stride=2)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def _freeze_parameters(self):
        for param in self.parameters():
            param.requires_grad = False
        self._requires_grad = False

    def get_input_embeddings(self) -> nn.Module:
        return self.conv1

    def set_input_embeddings(self, value: nn.Module):
        self.conv1 = value

    def forward(
        self,
        input_features,
        attention_mask=None,
        head_mask=None,
        past_key_values=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        use_cache=False,
    ):
        r"""
        Args:
            input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
                Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
                obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
                `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
                `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
                and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
            attention_mask (`torch.Tensor`)`, *optional*):
                HithinkAudio does not support masking of the `input_features`, this argument is preserved for compatibility,
                but it is not used. By default the silence in the input log mel spectrogram are ignored.
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # torch.jit.trace() doesn't support cache objects in the output
        if use_cache and past_key_values is None and not torch.jit.is_tracing():
            past_key_values = DynamicCache()

        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0

        # Ignore copy
        input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)

        inputs_embeds = nn.functional.gelu(self.conv1(input_features))
        inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))

        inputs_embeds = inputs_embeds.permute(0, 2, 1)
        if past_seen_tokens > 0:  # 流式输入的后续chunk,需要去除与之前chunk重合的部分(这部分保留在输入中只是为了卷积计算正确性)
            inputs_embeds = inputs_embeds[:, 2:]
        embed_pos = self.embed_positions.weight[past_seen_tokens: past_seen_tokens + inputs_embeds.shape[1]]

        hidden_states = inputs_embeds + embed_pos
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        next_cache = None

        attention_mask = self._prepare_attention_mask(input_features, attention_mask, past_seen_tokens)

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            assert head_mask.size()[0] == (
                len(self.layers)
            ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            to_drop = False
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:  # skip the layer
                    to_drop = True

            # Ignore copy
            if to_drop:
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        encoder_layer.__call__,
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                        past_key_values,
                        output_attentions,
                        use_cache,
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        past_key_value=past_key_values,
                        output_attentions=output_attentions,
                        use_cache=use_cache,
                    )

                hidden_states = layer_outputs[0]

            if use_cache:
                next_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        # Ignore copy
        hidden_states = hidden_states.permute(0, 2, 1)
        hidden_states = self.avg_pooler(hidden_states)
        hidden_states = hidden_states.permute(0, 2, 1)

        hidden_states = self.layer_norm(hidden_states)
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, encoder_states, all_attentions] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=encoder_states,
            attentions=all_attentions
        )

    # Ignore copy
    def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
        """
        Computes the output length of the convolutional layers and the output length of the audio encoder
        """
        input_lengths = (input_lengths - 1) // 2 + 1
        output_lengths = (input_lengths - 2) // 2 + 1
        return input_lengths, output_lengths

    def _prepare_attention_mask(self, input_features, feature_attention_mask, past_seen_tokens):
        feat_lengths, output_lengths = self._get_feat_extract_output_lengths(
            feature_attention_mask.sum(-1)
        )
        batch_size, _, max_mel_seq_len = input_features.shape
        max_seq_len = (max_mel_seq_len - 1) // 2 + 1
        # Create a sequence tensor of shape (batch_size, max_seq_len)
        seq_range = (
            torch.arange(0, max_seq_len, dtype=feat_lengths.dtype, device=feat_lengths.device)
            .unsqueeze(0)
            .expand(batch_size, max_seq_len)
        )
        lengths_expand = feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len)
        # Create mask
        padding_mask = seq_range >= lengths_expand
        if self.config._attn_implementation == "flash_attention_2":
            attention_mask = ~padding_mask
            if past_seen_tokens > 0:
                attention_mask = attention_mask[:, 2:]  # 去除当前chunk与之前重合的部分
                past_mask = torch.ones(
                    (batch_size, past_seen_tokens,),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device
                )
                attention_mask = torch.cat([past_mask, attention_mask], dim=1)
        else:
            position_ids = torch.arange(max_seq_len, device=padding_mask.device)
            causal_mask = position_ids > position_ids.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
                batch_size, 1, max_seq_len, max_seq_len
            )
            attention_mask_ = attention_mask_.clone() | causal_mask
            attention_mask = attention_mask_.to(
                dtype=input_features.dtype, device=input_features.device
            )
            attention_mask[attention_mask_] = float("-inf")
            if past_seen_tokens > 0:
                attention_mask = attention_mask[:, :, 2:, 2:]  # 去除当前chunk与之前重合的部分
                past_mask = torch.zeros(
                    attention_mask.shape[:3] + (past_seen_tokens,),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device
                )
                attention_mask = torch.cat([past_mask, attention_mask], dim=-1)
        return attention_mask


class HithinkAudioMultiModalProjector(nn.Module):
    def __init__(self, config: HithinkOmniConfig):
        super().__init__()
        self.linear = nn.Linear(config.audio_config.d_model, config.hidden_size, bias=True)

    def forward(self, audio_features):
        hidden_states = self.linear(audio_features)
        return hidden_states
# audio part end

class HithinkOmniRotaryEmbedding(nn.Module):
    def __init__(self, config: HithinkOmniConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    def _dynamic_frequency_update(self, position_ids, device):
        """
        dynamic RoPE layers should recompute `inv_freq` in the following situations:
        1 - growing beyond the cached sequence length (allow scaling)
        2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
        """
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len_cached:  # growth
            inv_freq, self.attention_scaling = self.rope_init_fn(
                self.config, device, seq_len=seq_len, **self.rope_kwargs
            )
            self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: may break with compilation
            self.max_seq_len_cached = seq_len

        if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:  # reset
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len_cached = self.original_max_seq_len

    @torch.no_grad()
    def forward(self, x, position_ids):
        if "dynamic" in self.rope_type:
            self._dynamic_frequency_update(position_ids, device=x.device)

        # Core RoPE block. In contrast to other models, HithinkOmni has different position ids for thw grids
        # So we expand the inv_freq to shape (3, ...)
        inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
        position_ids_expanded = position_ids[:, :, None, :].float()  # shape (3, bs, 1, positions)
        # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()

        # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
        cos = cos * self.attention_scaling
        sin = sin * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


class HithinkOmniMLP(nn.Module):
    def __init__(self, config, bias: bool = False):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, hidden_state):
        return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))



def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
    """Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).

    Explanation:
        Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
        sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
        vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately.
        Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
        For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
        height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
        difference with modern LLMs.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        mrope_section(`List(int)`):
            Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    mrope_section = mrope_section * 2
    cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
        unsqueeze_dim
    )
    sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
        unsqueeze_dim
    )

    if q.is_cuda:
        if apply_rotary_emb_func is not None:
            rot_dim = cos.shape[-1] // 2
            bs, qheads, seqlen, headdim = q.size()
            kheads = k.size(1)
            cos = cos[:, 0, :, :rot_dim].view(bs * seqlen, rot_dim)
            sin = sin[:, 0, :, :rot_dim].view(bs * seqlen, rot_dim)
            q = q.transpose(1, 2).view(1, bs * seqlen, qheads, headdim)
            k = k.transpose(1, 2).view(1, bs * seqlen, kheads, headdim)
            q_embed = apply_rotary_emb_func(q, cos, sin, False, False)  # interleaved=False, inplace=False
            k_embed = apply_rotary_emb_func(k, cos, sin, False, False)  # interleaved=False, inplace=False
            q_embed = q_embed.view(bs, seqlen, qheads, headdim).transpose(1, 2)
            k_embed = k_embed.view(bs, seqlen, kheads, headdim).transpose(1, 2)
            return q_embed, k_embed
        else:
            logger.warning_once("rotary_emb is not installed. If you want to accelerate training please install: "
                                "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary")

    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
    orig_dtype = tensor.dtype
    tensor = tensor.float()
    cos = freqs.cos().float()
    sin = freqs.sin().float()
    if tensor.is_cuda:
        if apply_rotary_emb_func is not None:
            output = apply_rotary_emb_func(tensor, cos, sin, False, False)  # interleaved=False, inplace=False
            return output.to(orig_dtype)
        else:
            logger.warning_once("rotary_emb is not installed. If you want to accelerate training please install: "
                                "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary")

    cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    output = (tensor * cos) + (rotate_half(tensor) * sin)
    output = output.to(orig_dtype)
    return output


class VisionRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs


class PatchEmbed(nn.Module):
    def __init__(
        self,
        patch_size: int = 14,
        temporal_patch_size: int = 2,
        in_channels: int = 3,
        embed_dim: int = 1152,
    ) -> None:
        super().__init__()
        self.patch_size = patch_size
        self.temporal_patch_size = temporal_patch_size
        self.in_channels = in_channels
        self.embed_dim = embed_dim

        kernel_size = [temporal_patch_size, patch_size, patch_size]
        self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        target_dtype = self.proj.weight.dtype
        hidden_states = hidden_states.view(
            -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
        )
        hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
        return hidden_states


class PatchMerger(nn.Module):
    def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
        super().__init__()
        self.hidden_size = context_dim * (spatial_merge_size**2)
        self.ln_q = HithinkRMSNorm(context_dim, eps=1e-6)
        self.mlp = nn.Sequential(
            nn.Linear(self.hidden_size, self.hidden_size),
            nn.GELU(),
            nn.Linear(self.hidden_size, dim),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
        return x


class VisionAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 16) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.proj = nn.Linear(dim, dim)

    def forward(
        self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attention_mask = torch.full(
            [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
        )
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0

        q = q.transpose(0, 1)
        k = k.transpose(0, 1)
        v = v.transpose(0, 1)
        attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
        attn_weights = attn_weights + attention_mask
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
        attn_output = torch.matmul(attn_weights, v)
        attn_output = attn_output.transpose(0, 1)
        attn_output = attn_output.reshape(seq_length, -1)
        attn_output = self.proj(attn_output)
        return attn_output


class VisionFlashAttention2(nn.Module):
    def __init__(self, dim: int, num_heads: int = 16) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.proj = nn.Linear(dim, dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        rotary_pos_emb: torch.Tensor = None,
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
        attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
            seq_length, -1
        )
        attn_output = self.proj(attn_output)
        return attn_output


class VisionSdpaAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int = 16) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.proj = nn.Linear(dim, dim)

    def forward(
        self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
    ) -> torch.Tensor:
        seq_length = hidden_states.shape[0]
        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)

        attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
        for i in range(1, len(cu_seqlens)):
            attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
        q = q.transpose(0, 1)
        k = k.transpose(0, 1)
        v = v.transpose(0, 1)
        attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
        attn_output = attn_output.transpose(0, 1)
        attn_output = attn_output.reshape(seq_length, -1)
        attn_output = self.proj(attn_output)
        return attn_output


VISION_ATTENTION_CLASSES = {
    "eager": VisionAttention,
    "flash_attention_2": VisionFlashAttention2,
    "sdpa": VisionSdpaAttention,
}


class HithinkOmniVisionBlock(nn.Module):
    def __init__(self, config, attn_implementation: str = "sdpa") -> None:
        super().__init__()
        self.norm1 = HithinkRMSNorm(config.hidden_size, eps=1e-6)
        self.norm2 = HithinkRMSNorm(config.hidden_size, eps=1e-6)
        self.attn = VISION_ATTENTION_CLASSES[attn_implementation](
            config.hidden_size, num_heads=config.num_heads
        )
        self.mlp = HithinkOmniMLP(config, bias=True)

    def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
        hidden_states = hidden_states + self.attn(
            self.norm1(hidden_states),
            cu_seqlens=cu_seqlens,
            rotary_pos_emb=rotary_pos_emb,
        )
        hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
        return hidden_states


class HithinkRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        HithinkRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states, residual=None):
        if hidden_states.is_cuda:
            if dropout_add_rms_norm is not None:
                out, res = dropout_add_rms_norm(
                    hidden_states,
                    residual,
                    self.weight,
                    None,  # bias
                    0.,  # dropout_p
                    self.variance_epsilon,
                    prenorm=True,
                    residual_in_fp32=False,
                    return_dropout_mask=False,
                )
                return out if residual is None else (out, res)
            else:
                logger.warning_once("dropout_add_rms_norm is not installed. If you want to accelerate training please install: "
                                    "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm")

        if residual is not None:
            hidden_states = residual + hidden_states
            residual = hidden_states
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        hidden_states = self.weight * hidden_states.to(input_dtype)
        return hidden_states if residual is None else (hidden_states, residual)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class HithinkMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        if self.config.hidden_act == 'silu' and x.is_cuda:
            if swiglu is not None:
                down_proj = self.down_proj(swiglu(self.gate_proj(x), self.up_proj(x)))
            else:
                logger.warning_once("swiglu is not installed. If you want to accelerate training please install: "
                                    "https://github.com/Dao-AILab/flash-attention")
        down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        return down_proj


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class HithinkOmniAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
    and "Generating Long Sequences with Sparse Transformers".
    """

    def __init__(self, config: HithinkOmniConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.is_causal = True
        self.attention_dropout = config.attention_dropout
        self.rope_scaling = config.rope_scaling

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.rotary_emb = HithinkOmniRotaryEmbedding(config=config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_multimodal_rotary_pos_emb(
            query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
        )

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
            attn_weights = attn_weights + causal_mask

        # Fix precision issues in HithinkOmni float16 inference
        # Replace inf values with zeros in attention weights to prevent NaN propagation
        if query_states.dtype == torch.float16:
            attn_weights = torch.where(torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights)

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, -1)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class HithinkOmniFlashAttention2(HithinkOmniAttention):
    """
    HithinkOmni flash attention module, following HithinkOmni attention module. This module inherits from `HithinkOmniAttention`
    as the weights of the module stays untouched. The only required change would be on the forward pass
    where it needs to correctly call the public API of flash attention and deal with padding tokens
    in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
    config.max_window_layers layers.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
    ):
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)

        # Because the input can be padded, the absolute sequence length depends on the max position id.
        cos, sin = position_embeddings
        query_states, key_states = apply_multimodal_rotary_pos_emb(
            query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
        )

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in float16 just to be sure everything works as expected.
        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        # Reashape to the expected shape for Flash Attention
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        if (
            self.config.use_sliding_window
            and getattr(self.config, "sliding_window", None) is not None
            and self.layer_idx >= self.config.max_window_layers
        ):
            sliding_window = self.config.sliding_window
        else:
            sliding_window = None

        attn_output = _flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            dropout=dropout_rate,
            sliding_window=sliding_window,
            is_causal=self.is_causal,
            use_top_left_mask=self._flash_attn_uses_top_left_mask,
        )
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class HithinkOmniSdpaAttention(HithinkOmniAttention):
    """
    Hithink attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    `HithinkAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
    SDPA API.
    """

    # Adapted from HithinkAttention.forward
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "HithinkOmniModel is using HithinkOmniSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
            )

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_multimodal_rotary_pos_emb(
            query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
        )

        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        causal_mask = attention_mask
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and attention_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
        is_causal = True if causal_mask is None and q_len > 1 else False

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            is_causal=is_causal,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value


HITHINKOMNI_ATTENTION_CLASSES = {
    "eager": HithinkOmniAttention,
    "flash_attention_2": HithinkOmniFlashAttention2,
    "sdpa": HithinkOmniSdpaAttention,
}


class HithinkOmniDecoderLayer(nn.Module):
    def __init__(self, config: HithinkOmniConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
            logger.warning_once(
                f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
                "unexpected results may be encountered."
            )
        self.self_attn = HITHINKOMNI_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)

        self.mlp = HithinkMLP(config)
        self.input_layernorm = HithinkRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = HithinkRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
                Indices depicting the position of the input sequence tokens in the sequence.
            position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
                Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
                with `head_dim` being the embedding dimension of each attention head.
            kwargs (`dict`, *optional*):
                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
                into the model
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


HITHINKOMNI_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`HithinkOmniConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare HithinkOmni Model outputting raw hidden-states without any specific head on top.",
    HITHINKOMNI_START_DOCSTRING,
)
class HithinkOmniPreTrainedModel(PreTrainedModel):
    config_class = HithinkOmniConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["HithinkOmniDecoderLayer", "HithinkOmniVisionBlock"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_static_cache = False  # TODO (joao): fix. torch.compile failing probably due to `cache_positions`

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv3d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class HithinkVisionTransformerPretrainedModel(HithinkOmniPreTrainedModel):
    config_class = HithinkOmniVisionConfig
    _no_split_modules = ["HithinkOmniVisionBlock"]

    def __init__(self, config, *inputs, **kwargs) -> None:
        super().__init__(config, *inputs, **kwargs)
        self.spatial_merge_size = config.spatial_merge_size
        self.patch_size = config.patch_size
        self.fullatt_block_indexes = config.fullatt_block_indexes
        self.window_size = config.window_size
        self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size

        self.patch_embed = PatchEmbed(
            patch_size=config.patch_size,
            temporal_patch_size=config.temporal_patch_size,
            in_channels=config.in_channels,
            embed_dim=config.hidden_size,
        )

        head_dim = config.hidden_size // config.num_heads
        self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)

        self.blocks = nn.ModuleList(
            [HithinkOmniVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
        )
        self.merger = PatchMerger(
            dim=config.out_hidden_size,
            context_dim=config.hidden_size,
            spatial_merge_size=config.spatial_merge_size,
        )
        self.gradient_checkpointing = False

    def rot_pos_emb(self, grid_thw):
        pos_ids = []
        for t, h, w in grid_thw:
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(
                h // self.spatial_merge_size,
                self.spatial_merge_size,
                w // self.spatial_merge_size,
                self.spatial_merge_size,
            )
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()

            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(
                h // self.spatial_merge_size,
                self.spatial_merge_size,
                w // self.spatial_merge_size,
                self.spatial_merge_size,
            )
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = grid_thw[:, 1:].max()
        rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb

    def get_window_index(self, grid_thw):
        window_index: list = []
        cu_window_seqlens: list = [0]
        window_index_id = 0
        vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size

        for grid_t, grid_h, grid_w in grid_thw:
            llm_grid_h, llm_grid_w = (
                grid_h // self.spatial_merge_size,
                grid_w // self.spatial_merge_size,
            )
            index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
            pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
            pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
            num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
            num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
            index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
            index_padded = index_padded.reshape(
                grid_t,
                num_windows_h,
                vit_merger_window_size,
                num_windows_w,
                vit_merger_window_size,
            )
            index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
                grid_t,
                num_windows_h * num_windows_w,
                vit_merger_window_size,
                vit_merger_window_size,
            )
            seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
            index_padded = index_padded.reshape(-1)
            index_new = index_padded[index_padded != -100]
            window_index.append(index_new + window_index_id)
            cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
            cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
            window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
        window_index = torch.cat(window_index, dim=0)

        return window_index, cu_window_seqlens

    def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.Tensor` of shape `(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
                The temporal, height and width of feature shape of each image in LLM.

        Returns:
            `torch.Tensor`: hidden_states.
        """
        hidden_states = self.patch_embed(hidden_states)
        rotary_pos_emb = self.rot_pos_emb(grid_thw)
        window_index, cu_window_seqlens = self.get_window_index(grid_thw)
        cu_window_seqlens = torch.tensor(
            cu_window_seqlens,
            device=hidden_states.device,
            dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
        )
        cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)

        seq_len, _ = hidden_states.size()
        hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
        hidden_states = hidden_states[window_index, :, :]
        hidden_states = hidden_states.reshape(seq_len, -1)
        rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
        rotary_pos_emb = rotary_pos_emb[window_index, :, :]
        rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)

        cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
            dim=0,
            # Select dtype based on the following factors:
            #  - FA2 requires that cu_seqlens_q must have dtype int32
            #  - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
            # See https://github.com/huggingface/transformers/pull/34852 for more information
            dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
        )
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)

        for layer_num, blk in enumerate(self.blocks):
            if layer_num in self.fullatt_block_indexes:
                cu_seqlens_now = cu_seqlens
            else:
                cu_seqlens_now = cu_window_seqlens
            if self.gradient_checkpointing and self.training:
                hidden_states = self._gradient_checkpointing_func(
                    blk.__call__, hidden_states, cu_seqlens_now, rotary_pos_emb
                )
            else:
                hidden_states = blk(
                    hidden_states,
                    cu_seqlens=cu_seqlens_now,
                    rotary_pos_emb=rotary_pos_emb,
                )

        hidden_states = self.merger(hidden_states)
        reverse_indices = torch.argsort(window_index)
        hidden_states = hidden_states[reverse_indices, :]

        return hidden_states


@add_start_docstrings(
    "The bare HithinkOmni Model outputting raw hidden-states without any specific head on top.",
    HITHINKOMNI_START_DOCSTRING,
)
class HithinkOmniModel(HithinkOmniPreTrainedModel):
    def __init__(self, config: HithinkOmniConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        if config.vocab_size:
            self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        else:
            self.embed_tokens = None

        if config.vocab_size_ext:
            self.embed_tokens_ext = nn.Embedding(config.vocab_size_ext, config.hidden_size)
        else:
            self.embed_tokens_ext = None

        self.layers = nn.ModuleList(
            [HithinkOmniDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self._attn_implementation = config._attn_implementation
        self.norm = HithinkRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = HithinkOmniRotaryEmbedding(config=config)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def convert_token_ids_to_embedding(self, input_ids):
        if self.embed_tokens_ext is None:
            inputs_embeds = self.embed_tokens(input_ids)
        else:
            ext_mask = (input_ids >= self.vocab_size)
            input_ids_base = input_ids.clone()
            input_ids_base.masked_fill_(ext_mask, 0)
            inputs_embeds = self.embed_tokens(input_ids_base)
            inputs_embeds_ext = self.embed_tokens_ext(input_ids[ext_mask] - self.vocab_size)
            ext_embed_mask = ext_mask.unsqueeze(-1).expand_as(inputs_embeds)
            inputs_embeds.masked_scatter_(ext_embed_mask, inputs_embeds_ext)
        return inputs_embeds

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # torch.jit.trace() doesn't support cache objects in the output
        if use_cache and past_key_values is None and not torch.jit.is_tracing():
            past_key_values = DynamicCache()

        if inputs_embeds is None:
            inputs_embeds = self.convert_token_ids_to_embedding(input_ids)

        if (
            use_cache and not isinstance(past_key_values, Cache) and not self.training
        ):
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        # the hard coded `3` is for temporal, height and width.
        if position_ids is None:
            position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
        elif position_ids.dim() == 2:
            position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)

        causal_mask = self._update_causal_mask(
            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        )

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                    position_embeddings,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                    position_embeddings=position_embeddings,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)
        using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if (
            self.config._attn_implementation == "sdpa"
            and not (using_static_cache or using_sliding_window_cache)
            and not output_attentions
        ):
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                sliding_window=self.config.sliding_window,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        # SlidingWindowCache or StaticCache
        if using_sliding_window_cache or using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        # DynamicCache or no cache
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            device=device,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
            config=self.config,
            past_key_values=past_key_values,
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        device: torch.device,
        cache_position: torch.Tensor,
        batch_size: int,
        config: HithinkOmniConfig,
        past_key_values: Cache,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            device (`torch.device`):
                The device to plcae the 4D attention mask on.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
            config (`HithinkOmniConfig`):
                The model's configuration class
            past_key_values (`Cache`):
                The cache class that is being used currently to generate
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            )
            diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
            if config.sliding_window is not None:
                # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
                # the check is needed to verify is current checkpoint was trained with sliding window or not
                if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
                    sliding_attend_mask = torch.arange(target_length, device=device) <= (
                        cache_position.reshape(-1, 1) - config.sliding_window
                    )
                    diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
            causal_mask *= diagonal_attend_mask
            causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                if attention_mask.shape[-1] > target_length:
                    attention_mask = attention_mask[:, :target_length]
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )
        return causal_mask


HITHINKOMNI_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
            The tensors corresponding to the input images. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`HithinkOmniImageProcessor.__call__`] for details. [`HithinkOmniProcessor`] uses
            [`HithinkOmniImageProcessor`] for processing images.
        pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
            The tensors corresponding to the input videos. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`HithinkOmniImageProcessor.__call__`] for details. [`HithinkOmniProcessor`] uses
            [`HithinkOmniImageProcessor`] for processing videos.
        input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`):
            Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
            loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
            the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
            [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
            tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
        feature_attention_mask (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`):
            Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
            The temporal, height and width of feature shape of each image in LLM.
        video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
            The temporal, height and width of feature shape of each video in LLM.
        rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
            The rope index difference between sequence length and multimodal rope.
"""


class HithinkOmniForConditionalGeneration(HithinkOmniPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    config_class = HithinkOmniConfig
    _no_split_modules = ["HithinkOmniDecoderLayer", "HithinkOmniVisionBlock"]

    def __init__(self, config: HithinkOmniConfig):
        super().__init__(config)
        self.visual = HithinkVisionTransformerPretrainedModel._from_config(config.vision_config)
        self.audio_tower = HithinkAudioEncoder._from_config(config.audio_config, attn_implementation=config._attn_implementation)
        self.multi_modal_projector = HithinkAudioMultiModalProjector(config)
        self.model = HithinkOmniModel(config)
        self.turn_taking_head = nn.Linear(config.hidden_size, 1, bias=False)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        if config.vocab_size_ext:
            self.lm_head_ext = nn.Linear(config.hidden_size, config.vocab_size_ext, bias=False)
        else:
            self.lm_head_ext = None
        self.rope_deltas = None  # cache rope_deltas here

        if config.audio_decoder_config is None:
            self.audio_decoder = None
        else:
            audio_decoder_config = copy.deepcopy(config)
            audio_decoder_config.vocab_size = None
            audio_decoder_config.vocab_size_ext = None
            audio_decoder_config.num_hidden_layers = config.audio_decoder_config.num_hidden_layers
            self.audio_decoder = HithinkOmniModel(audio_decoder_config)

            speech_vocab_size = config.audio_decoder_config.codebook_size + 3  # +3 means bos, eos and pad
            num_codebooks = config.audio_decoder_config.num_codebooks
            self.codebook_embeddings = nn.ModuleList([
                nn.Embedding(speech_vocab_size, config.hidden_size) for _ in range(num_codebooks)
            ])
            self.codebook_heads = nn.Linear(config.hidden_size, speech_vocab_size * num_codebooks)
            self.num_codebooks = num_codebooks

        # Initialize weights and apply final processing
        self.post_init()

        if CrossEntropyLoss.__module__.startswith('flash_attn'):
            self.z_loss = 0.0
        else:
            logger.warn("CrossEntropyLoss is not installed. If you want to accelerate training please install: "
                        "https://github.com/Dao-AILab/flash-attention")

    def audio_first_chunk_size(self, output_length):
        """流式推理时,输入音频第一个chunk的大小"""
        return 4 * output_length - 1

    def audio_next_chunk_size(self, output_length):
        """流式推理时,输入音频后续chunk的大小"""
        return 4 * output_length

    def audio_prev_chunk_overlap(self):
        """流式推理时,输入音频后续chunk与之前chunk重合部分的大小"""
        return 3

    def convert_audio_ids_to_embedding(self, audio_ids):
        audio_embedding = torch.stack([
            self.codebook_embeddings[i](audio_ids[:, :, i]) for i in range(self.num_codebooks)
        ]).sum(dim=0).to(self.model.embed_tokens.weight.dtype)  # (M, o_seq_len, hidden_size)
        audio_pad_token_id = self.config.audio_decoder_config.codebook_size + 2
        audio_mask = audio_ids.ne(audio_pad_token_id).any(dim=-1) # (M, o_seq_len,)
        return audio_embedding, audio_mask

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def get_rope_index(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        second_per_grid_ts: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Calculate the 3D rope index based on image and video's temporal, height and width in LLM.

        Explanation:
            Each embedding sequence contains vision embedding and text embedding or just contains text embedding.

            For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
            Examples:
                input_ids: [T T T T T], here T is for text.
                temporal position_ids: [0, 1, 2, 3, 4]
                height position_ids: [0, 1, 2, 3, 4]
                width position_ids: [0, 1, 2, 3, 4]

            For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
            and 1D rotary position embeddin for text part.
            Examples:
                Temporal (Time): 3 patches, representing different segments of the video in time.
                Height: 2 patches, dividing each frame vertically.
                Width: 2 patches, dividing each frame horizontally.
                We also have some important parameters:
                fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
                tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
                temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
                interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
                input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
                vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
                vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
                vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
                text temporal position_ids: [101, 102, 103, 104, 105]
                text height position_ids: [101, 102, 103, 104, 105]
                text width position_ids: [101, 102, 103, 104, 105]
                Here we calculate the text start position_ids as the max vision position_ids plus 1.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
                it.
            image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
                The temporal, height and width of feature shape of each image in LLM.
            video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
                The temporal, height and width of feature shape of each video in LLM.
            second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
                The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

        Returns:
            position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
            mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
        """
        spatial_merge_size = self.config.vision_config.spatial_merge_size
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id
        mrope_position_deltas = []
        if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
            total_input_ids = input_ids
            if attention_mask is None:
                attention_mask = torch.ones_like(total_input_ids)
            position_ids = torch.ones(
                3,
                input_ids.shape[0],
                input_ids.shape[1],
                dtype=input_ids.dtype,
                device=input_ids.device,
            )
            image_index, video_index = 0, 0
            attention_mask = attention_mask.to(total_input_ids.device)
            for i, input_ids in enumerate(total_input_ids):
                input_ids = input_ids[attention_mask[i] == 1]
                image_nums, video_nums = 0, 0
                vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
                vision_tokens = input_ids[vision_start_indices + 1]
                image_nums = (vision_tokens == image_token_id).sum()
                video_nums = (vision_tokens == video_token_id).sum()
                input_tokens = input_ids.tolist()
                llm_pos_ids_list: list = []
                st = 0
                remain_images, remain_videos = image_nums, video_nums
                for _ in range(image_nums + video_nums):
                    if image_token_id in input_tokens and remain_images > 0:
                        ed_image = input_tokens.index(image_token_id, st)
                    else:
                        ed_image = len(input_tokens) + 1
                    if video_token_id in input_tokens and remain_videos > 0:
                        ed_video = input_tokens.index(video_token_id, st)
                    else:
                        ed_video = len(input_tokens) + 1
                    if ed_image < ed_video:
                        t, h, w = (
                            image_grid_thw[image_index][0],
                            image_grid_thw[image_index][1],
                            image_grid_thw[image_index][2],
                        )
                        second_per_grid_t = 0
                        image_index += 1
                        remain_images -= 1
                        ed = ed_image

                    else:
                        t, h, w = (
                            video_grid_thw[video_index][0],
                            video_grid_thw[video_index][1],
                            video_grid_thw[video_index][2],
                        )
                        if second_per_grid_ts is not None:
                            second_per_grid_t = second_per_grid_ts[video_index]
                        else:
                            second_per_grid_t = 1.0
                        video_index += 1
                        remain_videos -= 1
                        ed = ed_video
                    llm_grid_t, llm_grid_h, llm_grid_w = (
                        t.item(),
                        h.item() // spatial_merge_size,
                        w.item() // spatial_merge_size,
                    )
                    text_len = ed - st

                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                    range_tensor = torch.arange(llm_grid_t).view(-1, 1)
                    expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)

                    time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second

                    time_tensor_long = time_tensor.long()
                    t_index = time_tensor_long.flatten()

                    h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
                    w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
                    llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
                    st = ed + llm_grid_t * llm_grid_h * llm_grid_w

                if st < len(input_tokens):
                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    text_len = len(input_tokens) - st
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
                position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
                mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
            mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
            return position_ids, mrope_position_deltas
        else:
            if attention_mask is not None:
                position_ids = attention_mask.long().cumsum(-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
                max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
                mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
            else:
                position_ids = (
                    torch.arange(input_ids.shape[1], device=input_ids.device)
                    .view(1, 1, -1)
                    .expand(3, input_ids.shape[0], -1)
                )
                mrope_position_deltas = torch.zeros(
                    [input_ids.shape[0], 1],
                    device=input_ids.device,
                    dtype=input_ids.dtype,
                )

            return position_ids, mrope_position_deltas

    @add_start_docstrings_to_model_forward(HITHINKOMNI_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=HithinkOmniCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        input_features: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        feature_attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        audio_past_key_values: Optional[Cache] = None,
        audio_use_cache: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_logits: bool = True,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        rope_deltas: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        second_per_grid_ts: Optional[torch.Tensor] = None,
        audio_ids: Optional[torch.LongTensor] = None,  # input of audio_decoder
        add_image: Optional[bool] = None,
        add_video: Optional[bool] = None,
        add_audio: Optional[bool] = None,
        is_turn_taking: Optional[bool] = None,
    ) -> Union[Tuple, HithinkOmniCausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, HithinkOmniForConditionalGeneration

        >>> model = HithinkOmniForConditionalGeneration.from_pretrained("hithink-omni-qw25-audio-vocab-split")
        >>> processor = AutoProcessor.from_pretrained("hithink-omni-qw25-audio-vocab-split")

        >>> messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": "What is shown in this image?"},
                ],
            },
        ]
        >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        >>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # for audio part
        target_device = self.audio_tower.device
        if input_features is not None:
            # print(f'we have input audio feature')
            input_features = input_features.to(target_device)
            feature_attention_mask = feature_attention_mask.to(target_device)

        if inputs_embeds is None:
            inputs_embeds = self.model.convert_token_ids_to_embedding(input_ids)

            # print(f'inputs_embeds: {inputs_embeds.shape}')
            visual_dtype = self.visual.dtype
            if pixel_values is not None:
                pixel_values = pixel_values.type(visual_dtype)
                image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
                n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
                n_image_features = image_embeds.shape[0]
                if n_image_tokens != n_image_features:
                    raise ValueError(
                        f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
                    )

                mask = input_ids == self.config.image_token_id
                mask_unsqueezed = mask.unsqueeze(-1)
                mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
                image_mask = mask_expanded.to(inputs_embeds.device)

                image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

            elif add_image:  # 当前样本不包含图像,需要添加dummy图像(为保证多卡训练时模型参数/梯度同步一致性)
                # from PIL import Image
                # images = [Image.new('RGB', (32, 32), (0, 0, 0))]
                # media_inputs = processor.image_processor(images=images, videos=None, return_tensors='pt')
                m = self.visual.patch_embed
                d = 3 * m.temporal_patch_size * m.patch_size * m.patch_size
                pixels = torch.ones((16, d), dtype=visual_dtype, device=inputs_embeds.device)
                grid_thw = torch.tensor([[1, 4, 4]], device=inputs_embeds.device)
                image_embeds = self.visual(pixels, grid_thw)
                inputs_embeds += image_embeds.mean() * 0.

            if pixel_values_videos is not None:
                pixel_values_videos = pixel_values_videos.type(visual_dtype)
                video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
                n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
                n_video_features = video_embeds.shape[0]
                if n_video_tokens != n_video_features:
                    raise ValueError(
                        f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
                    )

                mask = input_ids == self.config.video_token_id
                mask_unsqueezed = mask.unsqueeze(-1)
                mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
                video_mask = mask_expanded.to(inputs_embeds.device)

                video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)

            elif add_video:  # 当前样本不包含视频,需要添加dummy图像(为保证多卡训练时模型参数/梯度同步一致性)
                # from PIL import Image
                # images = [Image.new('RGB', (32, 32), (0, 0, 0))]
                # media_inputs = processor.image_processor(images=images, videos=None, return_tensors='pt')
                m = self.visual.patch_embed
                d = 3 * m.temporal_patch_size * m.patch_size * m.patch_size
                pixels = torch.ones((16, d), dtype=visual_dtype, device=inputs_embeds.device)
                grid_thw = torch.tensor([[1, 4, 4]], device=inputs_embeds.device)
                image_embeds = self.visual(pixels, grid_thw)
                inputs_embeds += image_embeds.mean() * 0.

            # merge audio and text embeddings
            if input_features is not None and (input_ids.shape[1] != 1 or audio_use_cache):
                audio_feat_lengths, audio_output_lengths = self.audio_tower._get_feat_extract_output_lengths(
                    feature_attention_mask.sum(-1)
                )
                # print(f'input_features: {input_features.shape}')
                audio_outputs = self.audio_tower(
                    input_features,
                    attention_mask=feature_attention_mask,
                    past_key_values=audio_past_key_values,
                    use_cache=audio_use_cache,
                )
                selected_audio_feature = audio_outputs.last_hidden_state
                audio_features = self.multi_modal_projector(selected_audio_feature)
                # print(f'audio_features: {audio_features.shape}')
                num_audios, max_audio_tokens, embed_dim = audio_features.shape
                audio_features_mask = torch.arange(max_audio_tokens, device=audio_features.device) \
                    .expand(num_audios, max_audio_tokens) < audio_output_lengths.unsqueeze(1)
                audio_features = audio_features[audio_features_mask].view(-1, embed_dim)
                audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype)
                audio_token_mask = (input_ids == self.config.audio_token_index).unsqueeze(-1).expand_as(inputs_embeds)
                inputs_embeds = inputs_embeds.masked_scatter(audio_token_mask, audio_features)
                # print(f'after mege audio and text embeddings: {inputs_embeds.shape}')

            elif add_audio:  # 当前样本不包含音频,需要添加dummy音频(为保证多卡训练时模型参数/梯度同步一致性)
                m = self.audio_tower
                expected_seq_length = 3000  # m.config.max_source_positions * m.conv1.stride[0] * m.conv2.stride[0]
                n_channels = 128  # m.conv1.weight.size(1)
                audio_outputs = m(torch.ones((1, n_channels, expected_seq_length), dtype=m.dtype, device=m.device))
                audio_features = self.multi_modal_projector(audio_outputs.last_hidden_state)
                inputs_embeds += audio_features.mean() * 0.

            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

        # if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
        if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
            # calculate RoPE index once per generation in the pre-fill stage only
            if (
                (cache_position is not None and cache_position[0] == 0)
                or self.rope_deltas is None
                or (past_key_values is None or past_key_values.get_seq_length() == 0)
            ):
                position_ids, rope_deltas = self.get_rope_index(
                    input_ids,
                    image_grid_thw,
                    video_grid_thw,
                    second_per_grid_ts,
                    attention_mask,
                )
                self.rope_deltas = rope_deltas
            # then use the prev pre-calculated rope-deltas to get the correct position ids
            else:
                batch_size, seq_length, _ = inputs_embeds.shape
                delta = (
                    (cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
                    if cache_position is not None
                    else 0
                )
                position_ids = torch.arange(seq_length, device=inputs_embeds.device)
                position_ids = position_ids.view(1, -1).expand(batch_size, -1)
                if cache_position is not None:  # otherwise `deltas` is an int `0`
                    delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
                position_ids = position_ids.add(delta)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)

        outputs = self.model(
            input_ids=None,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]

        if is_turn_taking:  # 全双工语音分类(判断用户说话是否结束)
            logits = self.turn_taking_head(hidden_states)
            loss = None
            if labels is not None:
                loss_fct = BCEWithLogitsLoss()
                logits = logits.float()
                loss_mask = labels != -100
                loss = loss_fct(logits[loss_mask].squeeze(-1), labels[loss_mask].to(logits.dtype))

        elif self.training and labels is not None:  # 针对训练场景,降低显存占用
            is_train_flash = CrossEntropyLoss.__module__.startswith('flash_attn')
            if is_train_flash:
                loss_fct = CrossEntropyLoss(inplace_backward=True, lse_square_scale=self.z_loss)  # inplace_backward - saves memory
            else:
                loss_fct = CrossEntropyLoss()

            if audio_ids is not None:  # audio decoder 训练
                assert self.audio_decoder.config._attn_implementation != 'flash_attention_2', \
                        'Audio decoder 训练不支持 FlashAttention-2,建议使用 attn_implementation="sdpa"'

                audio_embeds, audio_attention_mask = self.convert_audio_ids_to_embedding(audio_ids)
                output_start_idx = (labels != -100).int().argmax(dim=1).unsqueeze(1)
                bsz, a_len, _ = audio_embeds.shape
                ii = torch.arange(bsz).unsqueeze(1).expand(-1, a_len)
                jj = torch.arange(a_len, device=audio_embeds.device).unsqueeze(0).expand(bsz, -1) + output_start_idx
                jj.masked_fill_(~audio_attention_mask, 0)
                final_embeds = (hidden_states[ii, jj] + audio_embeds) / (1 + self.num_codebooks)

                audio_hidden_states = self.audio_decoder(
                    inputs_embeds=final_embeds,
                    attention_mask=audio_attention_mask
                )[0]  # (batch_size, len, hidden_size)
                logits = self.codebook_heads(audio_hidden_states)  # (batch_size, len, codebook_num * (codebook_vocab_size + 3))

                codebook_size = self.config.audio_decoder_config.codebook_size
                audio_bos_token_id = codebook_size
                audio_pad_token_id = codebook_size + 2
                label_mask = (audio_ids == audio_bos_token_id) | (audio_ids == audio_pad_token_id)
                audio_labels = audio_ids.masked_fill(label_mask, loss_fct.ignore_index)
                logits = logits[:, :-1].reshape(-1, codebook_size + 3)
                labels = audio_labels[:, 1:].reshape(-1)

            else:  # 文本 labels 训练
                hidden_states = hidden_states[..., :-1, :]
                labels = labels[..., 1:]
                loss_mask = labels != loss_fct.ignore_index  # 只取需要计算loss的token,可节省大量显存!
                hidden_states = hidden_states[loss_mask].contiguous()
                logits = self.lm_head(hidden_states)
                if self.lm_head_ext is not None:
                    logits = torch.cat((logits, self.lm_head_ext(hidden_states)), dim=-1)
                if not is_train_flash:
                    logits = logits.float()
                labels = labels[loss_mask].contiguous().to(logits.device)

            loss = loss_fct(logits, labels)
            logits = None

        elif output_logits:
            logits = self.lm_head(hidden_states)
            if self.lm_head_ext is not None:
                logits = torch.cat((logits, self.lm_head_ext(hidden_states)), dim=-1)

            loss = None
            if labels is not None:
                # Upcast to float if we need to compute the loss to avoid potential precision issues
                logits = logits.float()
                # Shift so that tokens < n predict n
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
                # Flatten the tokens
                loss_fct = CrossEntropyLoss()
                shift_logits = shift_logits.view(-1, shift_logits.size(-1))
                shift_labels = shift_labels.view(-1)
                # Enable model parallelism
                shift_labels = shift_labels.to(shift_logits.device)
                loss = loss_fct(shift_logits, shift_labels)

        else:
            loss = None
            logits = None

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return HithinkOmniCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            audio_past_key_values=audio_outputs.past_key_values if audio_use_cache else None,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            rope_deltas=self.rope_deltas,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        input_features = None,
        feature_attention_mask = None,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        pixel_values=None,
        pixel_values_videos=None,
        image_grid_thw=None,
        video_grid_thw=None,
        second_per_grid_ts=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
        # Exception 1: when passing input_embeds, input_ids may be missing entries
        # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
        if past_key_values is not None:
            if inputs_embeds is not None:  # Exception 1
                input_ids = input_ids[:, -cache_position.shape[0] :]
            elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
                input_ids = input_ids[:, cache_position]

        if cache_position[0] != 0:
            pixel_values = None
            pixel_values_videos = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and cache_position[0] == 0:
            model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
        else:
            model_inputs = {"input_ids": input_ids, "inputs_embeds": None}

        if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
            if model_inputs["inputs_embeds"] is not None:
                batch_size, sequence_length, _ = inputs_embeds.shape
                device = inputs_embeds.device
            else:
                batch_size, sequence_length = input_ids.shape
                device = input_ids.device

            attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
                attention_mask,
                sequence_length=sequence_length,
                target_length=past_key_values.get_max_cache_shape(),
                dtype=self.lm_head.weight.dtype,
                device=device,
                cache_position=cache_position,
                batch_size=batch_size,
                config=self.config,
                past_key_values=past_key_values,
            )

        model_inputs.update(
            {
                "input_features": input_features,
                "feature_attention_mask": feature_attention_mask,
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "pixel_values": pixel_values,
                "pixel_values_videos": pixel_values_videos,
                "image_grid_thw": image_grid_thw,
                "video_grid_thw": video_grid_thw,
                "cache_position": cache_position,
                "second_per_grid_ts": second_per_grid_ts,
            }
        )
        # import pdb; pdb.set_trace()
        return model_inputs

    @torch.no_grad()
    def stream_inference(
        self,
        input_ids: torch.LongTensor = None,
        input_features: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        position_ids: Optional[torch.Tensor] = None,
        feature_attention_mask: Optional[torch.Tensor] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_txts: Optional[torch.LongTensor] = None,
        first_chunk_size: int = 25,
        chunk_size: int = 50,
        max_new_tokens: int = 512,
        top_k: int = 25,
        top_p: float = 0.95,
        temperature: float = 1.0,
        repeat_penalty: float = 1.0,
        length_penalty_params: Tuple[int, float] = (20, 1.01),
        **kwargs,
    ):
        """Streaming version of inference that yields partial results for batch_size=1"""
        assert input_ids.shape[0] == 1, "stream_inference only supports batch_size=1"

        # import pdb; pdb.set_trace()
        outputs = self(
            input_ids=input_ids,
            input_features=input_features,
            attention_mask=attention_mask,
            feature_attention_mask=feature_attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=True,
            output_hidden_states=True,
            return_dict=True,
            pixel_values=pixel_values,
            pixel_values_videos=pixel_values_videos,
            image_grid_thw=image_grid_thw,
            video_grid_thw=video_grid_thw,
            cache_position=cache_position,
        )
        past_key_values = outputs.past_key_values
        last_hidden_state = outputs.hidden_states[-1][:, -1]

        # Initialize audio transformer states
        a_last_hidden_state = None
        a_past_key_values = None
        audio_attention_mask = None

        codebook_size = self.config.audio_decoder_config.codebook_size
        audio_bos_token_id = codebook_size
        audio_eos_token_id = codebook_size + 1
        audio_pad_token_id = codebook_size + 2

        # Initialize generation tensors
        hyps = torch.ones((1, self.num_codebooks + 1, max_new_tokens), dtype=torch.long, device=self.device) * audio_pad_token_id
        hyps[:, 0] = self.config.pad_token_id

        # if output_txts is not None, then the model is only responsible for generating the audio tokens
        if output_txts is not None:
            output_txts = output_txts.to(self.device)
            hyps[:, 0, :output_txts.shape[1]] = output_txts

        # Track generation completion
        end_flag = torch.zeros((1, self.num_codebooks + 1), dtype=torch.bool, device=self.device)

        # first_coden_idx = self.num_codebooks - 1 + 1 + chunk_size - 1
        first_coden_idx = self.num_codebooks - 1 + 1 + first_chunk_size - 1

        for i in range(max_new_tokens):

            if output_txts is None:
                text_logits = self.lm_head(last_hidden_state)
                if length_penalty_params[1] != 1.0:
                    text_logits = length_penalty(hyps[:, 0, :i], text_logits, length_penalty_params, self.config.eos_token_id)
                # text_token = text_logits.argmax(dim=-1)
                text_token = sample(hyps[:, :1, :i], text_logits.unsqueeze(1), top_p=0.6, temperature=0.6).squeeze(1)
                text_token = text_token.masked_fill(end_flag[:, 0], self.config.pad_token_id)
                hyps[:, 0, i] = text_token

            # generate the audio tokens
            if i == 0:
                hyps[:, 1:, i] = audio_bos_token_id
            else:
                audio_logits = self.codebook_heads(a_last_hidden_state.to(self.codebook_heads.weight.dtype))
                audio_logits = audio_logits.view(1, self.num_codebooks, codebook_size + 3)
                audio_token = sample(hyps[:, 1:, :i], audio_logits, top_k=top_k, top_p=top_p, temperature=temperature, repeat_penalty=repeat_penalty)
                # Apply masking
                audio_token = audio_token.masked_fill(end_flag[:, 1:], audio_pad_token_id)
                delay_mask = torch.arange(self.num_codebooks).expand(1, -1).to(self.device) > (i-1)
                audio_token = audio_token.masked_fill(delay_mask, audio_pad_token_id)
                hyps[:, 1:, i] = audio_token

            # Update end flag
            end_flag[:, 0] = end_flag[:, 0] | (hyps[:, 0, i] == self.config.eos_token_id)
            end_flag[:, 1:] = end_flag[:, 1:] | (hyps[:, 1:, i] == audio_eos_token_id)

            # Yield when buffer is full or generation is complete
            if i == first_coden_idx or (i > first_coden_idx and (i - first_coden_idx) % chunk_size == 0) or i == max_new_tokens - 1 or end_flag.all():
                if i <= first_coden_idx:
                    buffer_size = i - self.num_codebooks + 1
                elif (i - first_coden_idx) % chunk_size == 0:
                    buffer_size = chunk_size
                else:
                    buffer_size = (i - first_coden_idx) % chunk_size
                buffer = []
                for j in range(self.num_codebooks + 1):
                    st_idx = i - buffer_size + 1 - (self.num_codebooks - j)
                    buffer.append(hyps[:, j, st_idx:st_idx+buffer_size])  # (1, buffer_size)
                buffer = torch.cat(buffer, dim=0)  # (codebook_num + 1, buffer_size)
                text_tokens = buffer[0].unsqueeze(0)  # (1, buffer_size)
                audio_tokens = buffer[1:]  # (codebook_num, buffer_size)
                audio_token_len = (audio_tokens[0].ne(audio_pad_token_id) & audio_tokens[0].ne(audio_eos_token_id)).sum().item()
                audio_tokens = audio_tokens[:, :audio_token_len]  # (codebook_num, audio_token_len)
                pad_token_mask = audio_tokens.eq(audio_pad_token_id)
                eos_token_mask = audio_tokens.eq(audio_eos_token_id)
                if pad_token_mask.sum().item() > 0:
                    audio_tokens = audio_tokens.masked_fill(pad_token_mask, torch.randint(0, codebook_size, (1,)).item())
                if eos_token_mask.sum().item() > 0:
                    audio_tokens = audio_tokens.masked_fill(eos_token_mask, torch.randint(0, codebook_size, (1,)).item())
                yield text_tokens, [audio_tokens.cpu().numpy()], past_key_values, attention_mask

            # Stop if all batch ended
            if end_flag.all():
                break

            # update the last_hidden_state and past_key_values
            this_input_ids = hyps[:, :, i]
            this_input_ids = this_input_ids.unsqueeze(1)
            this_inputs_text_embeds = self.model.convert_token_ids_to_embedding(this_input_ids[:, :, 0])
            this_inputs_audio_embeds, audio_att_mask = self.convert_audio_ids_to_embedding(this_input_ids[:, :, 1:])
            attention_mask = torch.cat([attention_mask, this_input_ids[:, 0, 0].unsqueeze(-1).ne(self.config.pad_token_id)], dim=1)
            last_hidden_state, past_key_values = self.model(
                attention_mask=attention_mask,
                past_key_values=past_key_values,
                inputs_embeds=this_inputs_text_embeds,
                use_cache=True,
                return_dict=False,
            )
            last_hidden_state = last_hidden_state[:, -1]
            this_inputs_audio_embeds = (this_inputs_audio_embeds + last_hidden_state.unsqueeze(1)) / (1 + self.num_codebooks)
            if audio_attention_mask is None:
                audio_attention_mask = audio_att_mask
            else:
                audio_attention_mask = torch.cat([audio_attention_mask, audio_att_mask], dim=1)
            # if the audio tokens are too long, then we need to truncate the audio tokens, it's wrong, it will affect the prediction
            # if a_past_key_values is not None and a_past_key_values[0][0].shape[2] >= audio_chunk_max_tokens:
            #     audio_attention_mask = audio_attention_mask[:, audio_chunk_max_tokens//2+1:]
            #     # concat the first one and the last half
            #     a_past_key_values = tuple(
            #         tuple(torch.cat([kv[:, :, :1, :], kv[:, :, audio_chunk_max_tokens//2:, :]], dim=2) for kv in layer)
            #         for layer in a_past_key_values
            #     )

            a_last_hidden_state, a_past_key_values = self.audio_decoder(
                inputs_embeds=this_inputs_audio_embeds,
                attention_mask=audio_attention_mask.to(torch.int64), 
                past_key_values=a_past_key_values, 
                use_cache=True,
                return_dict=False,
            )
            a_last_hidden_state = a_last_hidden_state[:, -1]


def length_penalty(input_ids, scores, length_penalty_params=(20, 1.01), eos_token_id=None):
    """
        Args:
            input_ids: torch.LongTensor of shape (batch_size, seq_len)
            scores: torch.FloatTensor of shape (batch_size, vocab_size)
            length_penalty_params: Tuple[int, float]
            eos_token_id: int
    """
    processor = ExponentialDecayLengthPenalty(length_penalty_params, eos_token_id=eos_token_id, input_ids_seq_length=1)
    scores = processor(input_ids, scores)
    return scores


def sample(
        input_ids: torch.LongTensor,
        scores: torch.Tensor,
        top_k: int = 50,
        top_p: float = 0.95,
        temperature: float = 1.0,
        repeat_penalty: float = 1.0,
        ):
    """
        Args:
            input_ids: torch.LongTensor of shape (batch_size, C, seq_len)
            scores: torch.FloatTensor of shape (batch_size, C, vocab_size)
            top_k: int
            top_p: float
            temperature: float
            repeat_penalty: float
            C is the number of channels
    """
    repeat_logits_processor = RepetitionPenaltyLogitsProcessor(repeat_penalty)
    top_p_logits_processor = TopPLogitsWarper(top_p)
    top_k_logits_processor = TopKLogitsWarper(top_k)
    temperature_logits_processor = TemperatureLogitsWarper(temperature)

    assert len(input_ids.shape) == 3, f"input_ids shape is {input_ids.shape}"
    assert len(scores.shape) == 3, f"scores shape is {scores.shape}"
    assert input_ids.shape[1] == scores.shape[1], f"input_ids shape is {input_ids.shape}, scores shape is {scores.shape}"
    batch_size, c, seq_len = input_ids.shape
    for i in range(c):
        input_id = input_ids[:, i]
        score = scores[:, i]
        # Apply repetition penalty
        score = repeat_logits_processor(input_id, score)
        # Apply top-p sampling
        score = top_p_logits_processor(input_id, score)
        # Apply top-k sampling
        # score = top_k_logits_processor(input_id, score)
        # Apply temperature
        score = temperature_logits_processor(input_id, score)
        # replace to the scores
        scores[:, i] = score
    
    # sample
    probs = scores.softmax(dim=-1) # (batch_size, C, vocab_size)
    q = torch.empty_like(probs).exponential_(1)
    return torch.argmax((probs / q), dim=-1) # (batch_size, C)