NEXUS-O / processing_hithinkomni.py
hithink-ai's picture
Upload folder using huggingface_hub
bc59815 verified
from typing import List, Optional, Union
import numpy as np
from transformers import BatchFeature
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput
from transformers.image_utils import ImageInput, VideoInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
class HithinkOmniVideosProcessorKwargs(VideosKwargs, total=False):
fps: Union[List[float], float]
class HithinkOmniProcessorKwargs(ProcessingKwargs, total=False):
videos_kwargs: HithinkOmniVideosProcessorKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
"videos_kwargs": {"fps": 2.0},
}
class HithinkOmniProcessor(ProcessorMixin):
r"""
Constructs a HithinkOmni processor which wraps a Qwen2.5-VL image processor and a HithinkOmni tokenizer into a single processor.
[`HithinkOmniProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`PreTrainedTokenizerFast`]. See the
[`~HithinkOmniProcessor.__call__`] and [`~HithinkOmniProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
feature_extractor ([`WhisperFeatureExtractor`], *optional*):
The feature extractor is a required input.
tokenizer ([`PreTrainedTokenizerFast`], *optional*):
The tokenizer is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "feature_extractor", "tokenizer"]
valid_kwargs = ["chat_template"]
image_processor_class = "Qwen2VLImageProcessor"
feature_extractor_class = "WhisperFeatureExtractor"
tokenizer_class = "PreTrainedTokenizerFast"
def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None, chat_template=None, **kwargs):
tokenizer.model_input_names = ["input_ids", "attention_mask"] # do not include token_type_ids
super().__init__(image_processor, feature_extractor, tokenizer, chat_template=chat_template)
self.image_token = getattr(tokenizer, 'image_token', '<|image_pad|>')
self.video_token = getattr(tokenizer, 'video_token', '<|video_pad|>')
self.chat_template = tokenizer.chat_template if chat_template is None else chat_template
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
videos: VideoInput = None,
audios: Union[np.ndarray, List[np.ndarray]] = None,
sampling_rate: Optional[int] = None,
**kwargs: Unpack[HithinkOmniProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
audios (`np.ndarray`, `List[np.ndarray]`):
The audio or batch of audios to be prepared. Each audio can be a NumPy array.
sampling_rate (`int`, defaults to 16000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
- **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
HithinkOmniProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images=images, videos=None, **output_kwargs["images_kwargs"])
image_grid_thw = image_inputs["image_grid_thw"]
else:
image_inputs = {}
image_grid_thw = None
if videos is not None:
videos_inputs = self.image_processor(images=None, videos=videos, **output_kwargs["images_kwargs"])
video_grid_thw = videos_inputs["video_grid_thw"]
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
if isinstance(fps, (int, float)):
second_per_grid_ts = [self.image_processor.temporal_patch_size / fps] * len(video_grid_thw)
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
second_per_grid_ts = [self.image_processor.temporal_patch_size / tmp for tmp in fps]
else:
raise ValueError(
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
)
videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})
else:
videos_inputs = {}
video_grid_thw = None
if not isinstance(text, list):
text = [text]
if image_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
text[i] = text[i].replace(
self.image_token,
"<|placeholder|>" * (image_grid_thw[index].prod() // merge_length),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if video_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.video_token in text[i]:
text[i] = text[i].replace(
self.video_token,
"<|placeholder|>" * (video_grid_thw[index].prod() // merge_length),
1,
)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.video_token)
if audios is not None:
audio_inputs = self.feature_extractor(
audios, sampling_rate=sampling_rate, return_attention_mask=True, padding="max_length", **kwargs
)
audio_inputs["feature_attention_mask"] = audio_inputs.pop(
"attention_mask"
) # rename attention_mask to prevent conflicts later on
audio_output_lengths = self.get_feat_extract_output_lengths(
audio_inputs['feature_attention_mask'].sum(-1)
)
index = 0
for i in range(len(text)):
while "<|AUDIO|>" in text[i]:
text[i] = text[i].replace(
"<|AUDIO|>", "<|placeholder|>" * audio_output_lengths[index], 1
)
index += 1
text[i] = text[i].replace("<|placeholder|>", "<|AUDIO|>")
else:
audio_inputs = {}
text_inputs =self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs, **audio_inputs})
@staticmethod
def get_feat_extract_input_length(audio_length):
"""
Computes the input length of the audio encoder (i.e. output of the feature extractor)
e.g. 30-second audio has 480,000 samples (sampling_rate = 16,000), the feature length will be 3,000
"""
return int(np.ceil((audio_length - 40) / 160)) # 第一帧需要200样本,后续每帧需要160样本
@staticmethod
def get_feat_extract_output_lengths(input_lengths):
"""
Computes the output length of the convolutional layers and the output length of the audio encoder
"""
input_lengths = (input_lengths - 1) // 2 + 1
output_lengths = (input_lengths - 2) // 2 + 1
return output_lengths
def featurize_audio_chunk(self, audio: np.ndarray, is_last: bool, n_extracted_frames: int = 0, **kwargs):
"""
Extract the features from the audio chunk during streaming inference
"""
n_frames = (len(audio) - 40) / 160 # 第一帧需要200样本,后续每帧需要160样本
n_frames = int(np.ceil(n_frames) if is_last else np.floor(n_frames))
n_new_frames = n_frames - n_extracted_frames
i_end = n_frames * 160 + 40
i_start = max(0, (n_extracted_frames + 1 - 3) * 160) # 滑窗需要400样本,即最少3帧
if n_new_frames <= 0 or n_frames < 2:
return
a = audio[i_start: i_end] # 截取计算new frames需要的chunk
if is_last and (n_pad := int(np.ceil(len(a) / 160)) * 160 - len(a)): # pad to multiple of 160
a = np.pad(a, [0, n_pad])
features = self.feature_extractor(
a, sampling_rate=self.feature_extractor.sampling_rate, padding='do_not_pad', **kwargs
)['input_features']
return features[:, :, -n_new_frames:]
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(self, generated_outputs):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names
+ feature_extractor_input_names + ["feature_attention_mask"])) # audio