make processing similar to transformers implementation
Browse files- image_processing_siglip.py +46 -50
image_processing_siglip.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# coding=utf-8
|
| 2 |
-
# Copyright
|
| 3 |
#
|
| 4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
# you may not use this file except in compliance with the License.
|
|
@@ -14,17 +14,16 @@
|
|
| 14 |
# limitations under the License.
|
| 15 |
"""Image processor class for SigLIP."""
|
| 16 |
|
| 17 |
-
from typing import Dict, Optional, Union
|
| 18 |
-
|
| 19 |
-
import numpy as np
|
| 20 |
|
| 21 |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
| 22 |
from transformers.image_transforms import (
|
| 23 |
-
rescale,
|
| 24 |
resize,
|
| 25 |
to_channel_dimension_format,
|
| 26 |
)
|
| 27 |
from transformers.image_utils import (
|
|
|
|
|
|
|
| 28 |
ChannelDimension,
|
| 29 |
ImageInput,
|
| 30 |
PILImageResampling,
|
|
@@ -54,7 +53,7 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
| 54 |
`do_resize` in the `preprocess` method.
|
| 55 |
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
| 56 |
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
| 57 |
-
resample (`PILImageResampling`, *optional*, defaults to `
|
| 58 |
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
| 59 |
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 60 |
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
|
@@ -62,6 +61,16 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
| 62 |
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 63 |
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
| 64 |
method.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
"""
|
| 66 |
|
| 67 |
model_input_names = ["pixel_values"]
|
|
@@ -70,60 +79,27 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
| 70 |
self,
|
| 71 |
do_resize: bool = True,
|
| 72 |
size: Dict[str, int] = None,
|
| 73 |
-
resample: PILImageResampling = PILImageResampling.
|
| 74 |
do_rescale: bool = True,
|
| 75 |
rescale_factor: Union[int, float] = 1 / 255,
|
|
|
|
|
|
|
|
|
|
| 76 |
**kwargs,
|
| 77 |
) -> None:
|
| 78 |
super().__init__(**kwargs)
|
| 79 |
size = size if size is not None else {"height": 224, "width": 224}
|
| 80 |
-
|
|
|
|
| 81 |
|
| 82 |
self.do_resize = do_resize
|
| 83 |
self.size = size
|
| 84 |
self.resample = resample
|
| 85 |
self.do_rescale = do_rescale
|
| 86 |
self.rescale_factor = rescale_factor
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
self
|
| 90 |
-
image: np.ndarray,
|
| 91 |
-
rescale_factor: float,
|
| 92 |
-
data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 93 |
-
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 94 |
-
**kwargs,
|
| 95 |
-
) -> np.ndarray:
|
| 96 |
-
"""
|
| 97 |
-
Rescale an image by a scale factor. image = image * scale, after which image = image * 2 - 1.
|
| 98 |
-
|
| 99 |
-
Args:
|
| 100 |
-
image (`np.ndarray`):
|
| 101 |
-
Image to rescale.
|
| 102 |
-
scale (`float`):
|
| 103 |
-
The scaling factor to rescale pixel values by.
|
| 104 |
-
data_format (`str` or `ChannelDimension`, *optional*):
|
| 105 |
-
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
| 106 |
-
image is used. Can be one of:
|
| 107 |
-
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 108 |
-
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 109 |
-
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 110 |
-
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 111 |
-
from the input image. Can be one of:
|
| 112 |
-
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 113 |
-
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 114 |
-
|
| 115 |
-
Returns:
|
| 116 |
-
`np.ndarray`: The rescaled image.
|
| 117 |
-
"""
|
| 118 |
-
# first, rescale to 0->1
|
| 119 |
-
rescaled_image = rescale(
|
| 120 |
-
image, scale=rescale_factor, data_format=data_format, input_data_format=input_data_format, **kwargs
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
-
# next, rescale to -1->1
|
| 124 |
-
rescaled_image = 2 * rescaled_image - 1
|
| 125 |
-
|
| 126 |
-
return rescaled_image
|
| 127 |
|
| 128 |
def preprocess(
|
| 129 |
self,
|
|
@@ -133,6 +109,9 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
| 133 |
resample: PILImageResampling = None,
|
| 134 |
do_rescale: bool = None,
|
| 135 |
rescale_factor: float = None,
|
|
|
|
|
|
|
|
|
|
| 136 |
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 137 |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 138 |
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
@@ -156,6 +135,13 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
| 156 |
Whether to rescale the image.
|
| 157 |
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 158 |
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
return_tensors (`str` or `TensorType`, *optional*):
|
| 160 |
The type of tensors to return. Can be one of:
|
| 161 |
- Unset: Return a list of `np.ndarray`.
|
|
@@ -181,6 +167,9 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
| 181 |
resample = resample if resample is not None else self.resample
|
| 182 |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 183 |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
images = make_list_of_images(images)
|
| 186 |
|
|
@@ -210,14 +199,21 @@ class SiglipImageProcessor(BaseImageProcessor):
|
|
| 210 |
input_data_format = infer_channel_dimension_format(images[0])
|
| 211 |
|
| 212 |
if do_resize:
|
|
|
|
| 213 |
images = [
|
| 214 |
-
resize(image=image, size=(
|
| 215 |
for image in images
|
| 216 |
]
|
| 217 |
|
| 218 |
if do_rescale:
|
| 219 |
images = [
|
| 220 |
-
self.rescale(image=image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
for image in images
|
| 222 |
]
|
| 223 |
|
|
|
|
| 1 |
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
#
|
| 4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
# you may not use this file except in compliance with the License.
|
|
|
|
| 14 |
# limitations under the License.
|
| 15 |
"""Image processor class for SigLIP."""
|
| 16 |
|
| 17 |
+
from typing import Dict, List, Optional, Union
|
|
|
|
|
|
|
| 18 |
|
| 19 |
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
| 20 |
from transformers.image_transforms import (
|
|
|
|
| 21 |
resize,
|
| 22 |
to_channel_dimension_format,
|
| 23 |
)
|
| 24 |
from transformers.image_utils import (
|
| 25 |
+
IMAGENET_STANDARD_MEAN,
|
| 26 |
+
IMAGENET_STANDARD_STD,
|
| 27 |
ChannelDimension,
|
| 28 |
ImageInput,
|
| 29 |
PILImageResampling,
|
|
|
|
| 53 |
`do_resize` in the `preprocess` method.
|
| 54 |
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
| 55 |
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
| 56 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 57 |
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
| 58 |
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 59 |
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
|
|
|
| 61 |
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 62 |
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
| 63 |
method.
|
| 64 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 65 |
+
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
|
| 66 |
+
`do_normalize` in the `preprocess` method.
|
| 67 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
| 68 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
| 69 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
| 70 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
| 71 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
| 72 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 73 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
| 74 |
"""
|
| 75 |
|
| 76 |
model_input_names = ["pixel_values"]
|
|
|
|
| 79 |
self,
|
| 80 |
do_resize: bool = True,
|
| 81 |
size: Dict[str, int] = None,
|
| 82 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 83 |
do_rescale: bool = True,
|
| 84 |
rescale_factor: Union[int, float] = 1 / 255,
|
| 85 |
+
do_normalize: bool = True,
|
| 86 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 87 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 88 |
**kwargs,
|
| 89 |
) -> None:
|
| 90 |
super().__init__(**kwargs)
|
| 91 |
size = size if size is not None else {"height": 224, "width": 224}
|
| 92 |
+
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
| 93 |
+
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
| 94 |
|
| 95 |
self.do_resize = do_resize
|
| 96 |
self.size = size
|
| 97 |
self.resample = resample
|
| 98 |
self.do_rescale = do_rescale
|
| 99 |
self.rescale_factor = rescale_factor
|
| 100 |
+
self.do_normalize = do_normalize
|
| 101 |
+
self.image_mean = image_mean
|
| 102 |
+
self.image_std = image_std
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
def preprocess(
|
| 105 |
self,
|
|
|
|
| 109 |
resample: PILImageResampling = None,
|
| 110 |
do_rescale: bool = None,
|
| 111 |
rescale_factor: float = None,
|
| 112 |
+
do_normalize: bool = None,
|
| 113 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 114 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 115 |
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 116 |
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 117 |
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
|
|
|
| 135 |
Whether to rescale the image.
|
| 136 |
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 137 |
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 138 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 139 |
+
Whether to normalize the image.
|
| 140 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 141 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 142 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 143 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
| 144 |
+
`True`.
|
| 145 |
return_tensors (`str` or `TensorType`, *optional*):
|
| 146 |
The type of tensors to return. Can be one of:
|
| 147 |
- Unset: Return a list of `np.ndarray`.
|
|
|
|
| 167 |
resample = resample if resample is not None else self.resample
|
| 168 |
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 169 |
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 170 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 171 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 172 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 173 |
|
| 174 |
images = make_list_of_images(images)
|
| 175 |
|
|
|
|
| 199 |
input_data_format = infer_channel_dimension_format(images[0])
|
| 200 |
|
| 201 |
if do_resize:
|
| 202 |
+
height, width = size["height"], size["width"]
|
| 203 |
images = [
|
| 204 |
+
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
|
| 205 |
for image in images
|
| 206 |
]
|
| 207 |
|
| 208 |
if do_rescale:
|
| 209 |
images = [
|
| 210 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
| 211 |
+
for image in images
|
| 212 |
+
]
|
| 213 |
+
|
| 214 |
+
if do_normalize:
|
| 215 |
+
images = [
|
| 216 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
| 217 |
for image in images
|
| 218 |
]
|
| 219 |
|