--- license: mit library_name: ultralytics tags: - yolov10 - object-detection - computer-vision - pytorch - pascal-voc - Pascal-VOC - from-scratch pipeline_tag: object-detection datasets: - pascal-voc widget: - src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bounding-boxes-sample.png example_title: "Sample Image" model-index: - name: yolov10-voc-vanilla results: - task: type: object-detection dataset: type: pascal-voc name: Pascal Visual Object Classes (VOC) metrics: - type: mean_average_precision name: mAP value: "TBD" --- # YOLOv10 - Pascal Visual Object Classes (VOC) Vanilla YOLOv10 model trained from scratch on Pascal VOC dataset for general object detection. ## Model Details - **Model Type**: YOLOv10 Object Detection - **Dataset**: Pascal Visual Object Classes (VOC) - **Training Method**: trained from scratch - **Framework**: PyTorch/Ultralytics - **Task**: Object Detection ## Dataset Information This model was trained on the **Pascal Visual Object Classes (VOC)** dataset, which contains the following object classes: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person, pottedplant, sheep, sofa, train, tvmonitor ### Dataset-specific Details: **Pascal Visual Object Classes (VOC) Dataset:** - Standard benchmark dataset for object detection - Contains 20 object classes representing common objects - Widely used for evaluating computer vision models - High-quality annotations with precise bounding boxes ## Usage This model can be used with the Ultralytics YOLOv10 framework: ```python from ultralytics import YOLO # Load the model model = YOLO('path/to/best.pt') # Run inference results = model('path/to/image.jpg') # Process results for result in results: boxes = result.boxes.xyxy # bounding boxes scores = result.boxes.conf # confidence scores classes = result.boxes.cls # class predictions ``` ## Model Performance This model was trained from scratch on the Pascal Visual Object Classes (VOC) dataset using YOLOv10 architecture. ## Intended Use - **Primary Use**: Object detection in general computer vision applications - **Suitable for**: Research, development, and deployment of object detection systems - **Limitations**: Performance may vary on images significantly different from the training distribution ## Citation If you use this model, please cite: ```bibtex @article{yolov10, title={YOLOv10: Real-Time End-to-End Object Detection}, author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang}, journal={arXiv preprint arXiv:2405.14458}, year={2024} } ``` ## License This model is released under the MIT License. ## Keywords YOLOv10, Object Detection, Computer Vision, Pascal-VOC, Autonomous Driving, Deep Learning