prateeky2806's picture
Training in progress, step 4000
df834f0
raw
history blame
122 kB
{
"best_metric": null,
"best_model_checkpoint": null,
"epoch": 1.292824822236587,
"global_step": 4000,
"is_hyper_param_search": false,
"is_local_process_zero": true,
"is_world_process_zero": true,
"log_history": [
{
"epoch": 0.0,
"learning_rate": 0.0002,
"loss": 0.9529,
"step": 10
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7908,
"step": 20
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7173,
"step": 30
},
{
"epoch": 0.01,
"learning_rate": 0.0002,
"loss": 0.7776,
"step": 40
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.6779,
"step": 50
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7011,
"step": 60
},
{
"epoch": 0.02,
"learning_rate": 0.0002,
"loss": 0.7156,
"step": 70
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7418,
"step": 80
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7465,
"step": 90
},
{
"epoch": 0.03,
"learning_rate": 0.0002,
"loss": 0.7595,
"step": 100
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.6816,
"step": 110
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.7981,
"step": 120
},
{
"epoch": 0.04,
"learning_rate": 0.0002,
"loss": 0.6494,
"step": 130
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7423,
"step": 140
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.7555,
"step": 150
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.5799,
"step": 160
},
{
"epoch": 0.05,
"learning_rate": 0.0002,
"loss": 0.699,
"step": 170
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.7154,
"step": 180
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.6096,
"step": 190
},
{
"epoch": 0.06,
"learning_rate": 0.0002,
"loss": 0.5713,
"step": 200
},
{
"epoch": 0.06,
"eval_loss": 0.6557502150535583,
"eval_runtime": 92.7109,
"eval_samples_per_second": 10.786,
"eval_steps_per_second": 5.393,
"step": 200
},
{
"epoch": 0.06,
"mmlu_eval_accuracy": 0.47294392264572244,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.3333333333333333,
"mmlu_eval_accuracy_high_school_european_history": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.5,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.18181818181818182,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.5454545454545454,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.7727272727272727,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8432865626915472,
"step": 200
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.6339,
"step": 210
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.701,
"step": 220
},
{
"epoch": 0.07,
"learning_rate": 0.0002,
"loss": 0.689,
"step": 230
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6955,
"step": 240
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6124,
"step": 250
},
{
"epoch": 0.08,
"learning_rate": 0.0002,
"loss": 0.6648,
"step": 260
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7364,
"step": 270
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.558,
"step": 280
},
{
"epoch": 0.09,
"learning_rate": 0.0002,
"loss": 0.7089,
"step": 290
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.5691,
"step": 300
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.7079,
"step": 310
},
{
"epoch": 0.1,
"learning_rate": 0.0002,
"loss": 0.6558,
"step": 320
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.5887,
"step": 330
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.704,
"step": 340
},
{
"epoch": 0.11,
"learning_rate": 0.0002,
"loss": 0.638,
"step": 350
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.708,
"step": 360
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6203,
"step": 370
},
{
"epoch": 0.12,
"learning_rate": 0.0002,
"loss": 0.6288,
"step": 380
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.6725,
"step": 390
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.6849,
"step": 400
},
{
"epoch": 0.13,
"eval_loss": 0.6309903860092163,
"eval_runtime": 92.7675,
"eval_samples_per_second": 10.78,
"eval_steps_per_second": 5.39,
"step": 400
},
{
"epoch": 0.13,
"mmlu_eval_accuracy": 0.46759845160702646,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724,
"mmlu_eval_accuracy_high_school_microeconomics": 0.23076923076923078,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8323084239996289,
"step": 400
},
{
"epoch": 0.13,
"learning_rate": 0.0002,
"loss": 0.5261,
"step": 410
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6614,
"step": 420
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.6213,
"step": 430
},
{
"epoch": 0.14,
"learning_rate": 0.0002,
"loss": 0.7206,
"step": 440
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.6944,
"step": 450
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.675,
"step": 460
},
{
"epoch": 0.15,
"learning_rate": 0.0002,
"loss": 0.5907,
"step": 470
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.5778,
"step": 480
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.5583,
"step": 490
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.7171,
"step": 500
},
{
"epoch": 0.16,
"learning_rate": 0.0002,
"loss": 0.728,
"step": 510
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6037,
"step": 520
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6598,
"step": 530
},
{
"epoch": 0.17,
"learning_rate": 0.0002,
"loss": 0.6913,
"step": 540
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.6092,
"step": 550
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.589,
"step": 560
},
{
"epoch": 0.18,
"learning_rate": 0.0002,
"loss": 0.5608,
"step": 570
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.6251,
"step": 580
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.6527,
"step": 590
},
{
"epoch": 0.19,
"learning_rate": 0.0002,
"loss": 0.6518,
"step": 600
},
{
"epoch": 0.19,
"eval_loss": 0.618711531162262,
"eval_runtime": 92.7537,
"eval_samples_per_second": 10.781,
"eval_steps_per_second": 5.391,
"step": 600
},
{
"epoch": 0.19,
"mmlu_eval_accuracy": 0.4660645174643213,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.46875,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.3103448275862069,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.26,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.4,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.8410176051775718,
"step": 600
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.6876,
"step": 610
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.7174,
"step": 620
},
{
"epoch": 0.2,
"learning_rate": 0.0002,
"loss": 0.6002,
"step": 630
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.7426,
"step": 640
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.5213,
"step": 650
},
{
"epoch": 0.21,
"learning_rate": 0.0002,
"loss": 0.574,
"step": 660
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.6669,
"step": 670
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.5847,
"step": 680
},
{
"epoch": 0.22,
"learning_rate": 0.0002,
"loss": 0.7233,
"step": 690
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.6199,
"step": 700
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.5977,
"step": 710
},
{
"epoch": 0.23,
"learning_rate": 0.0002,
"loss": 0.6853,
"step": 720
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.5777,
"step": 730
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.5943,
"step": 740
},
{
"epoch": 0.24,
"learning_rate": 0.0002,
"loss": 0.6323,
"step": 750
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.6367,
"step": 760
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.6367,
"step": 770
},
{
"epoch": 0.25,
"learning_rate": 0.0002,
"loss": 0.6197,
"step": 780
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.5639,
"step": 790
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.6281,
"step": 800
},
{
"epoch": 0.26,
"eval_loss": 0.6189825534820557,
"eval_runtime": 92.99,
"eval_samples_per_second": 10.754,
"eval_steps_per_second": 5.377,
"step": 800
},
{
"epoch": 0.26,
"mmlu_eval_accuracy": 0.48167538061853127,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.08333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.3888888888888889,
"mmlu_eval_accuracy_high_school_geography": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9606302572954105,
"step": 800
},
{
"epoch": 0.26,
"learning_rate": 0.0002,
"loss": 0.637,
"step": 810
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.6902,
"step": 820
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.5872,
"step": 830
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.6115,
"step": 840
},
{
"epoch": 0.27,
"learning_rate": 0.0002,
"loss": 0.6499,
"step": 850
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.5977,
"step": 860
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.5873,
"step": 870
},
{
"epoch": 0.28,
"learning_rate": 0.0002,
"loss": 0.6776,
"step": 880
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.6804,
"step": 890
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.5914,
"step": 900
},
{
"epoch": 0.29,
"learning_rate": 0.0002,
"loss": 0.6313,
"step": 910
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.5869,
"step": 920
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.519,
"step": 930
},
{
"epoch": 0.3,
"learning_rate": 0.0002,
"loss": 0.4877,
"step": 940
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.5931,
"step": 950
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.6614,
"step": 960
},
{
"epoch": 0.31,
"learning_rate": 0.0002,
"loss": 0.6287,
"step": 970
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.5139,
"step": 980
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.6392,
"step": 990
},
{
"epoch": 0.32,
"learning_rate": 0.0002,
"loss": 0.7001,
"step": 1000
},
{
"epoch": 0.32,
"eval_loss": 0.5796898007392883,
"eval_runtime": 92.7581,
"eval_samples_per_second": 10.781,
"eval_steps_per_second": 5.39,
"step": 1000
},
{
"epoch": 0.32,
"mmlu_eval_accuracy": 0.47460361123181055,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.7142857142857143,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.53125,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.34615384615384615,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.6363636363636364,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.29,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.5588235294117647,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4927536231884058,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.6111111111111112,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.8773848874586836,
"step": 1000
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.6671,
"step": 1010
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.5942,
"step": 1020
},
{
"epoch": 0.33,
"learning_rate": 0.0002,
"loss": 0.6236,
"step": 1030
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.6162,
"step": 1040
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.734,
"step": 1050
},
{
"epoch": 0.34,
"learning_rate": 0.0002,
"loss": 0.6108,
"step": 1060
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.6669,
"step": 1070
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.6991,
"step": 1080
},
{
"epoch": 0.35,
"learning_rate": 0.0002,
"loss": 0.6696,
"step": 1090
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.6511,
"step": 1100
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.6007,
"step": 1110
},
{
"epoch": 0.36,
"learning_rate": 0.0002,
"loss": 0.5543,
"step": 1120
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.6399,
"step": 1130
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.569,
"step": 1140
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.6436,
"step": 1150
},
{
"epoch": 0.37,
"learning_rate": 0.0002,
"loss": 0.4886,
"step": 1160
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.5431,
"step": 1170
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.5516,
"step": 1180
},
{
"epoch": 0.38,
"learning_rate": 0.0002,
"loss": 0.5041,
"step": 1190
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.6737,
"step": 1200
},
{
"epoch": 0.39,
"eval_loss": 0.5647590160369873,
"eval_runtime": 92.7185,
"eval_samples_per_second": 10.785,
"eval_steps_per_second": 5.393,
"step": 1200
},
{
"epoch": 0.39,
"mmlu_eval_accuracy": 0.47729744414466774,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.5,
"mmlu_eval_accuracy_business_ethics": 0.36363636363636365,
"mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.08333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.4375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.53125,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.46511627906976744,
"mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.8,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3352941176470588,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.34782608695652173,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.7272727272727273,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9123951537490825,
"step": 1200
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.4926,
"step": 1210
},
{
"epoch": 0.39,
"learning_rate": 0.0002,
"loss": 0.5814,
"step": 1220
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.4985,
"step": 1230
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.5966,
"step": 1240
},
{
"epoch": 0.4,
"learning_rate": 0.0002,
"loss": 0.6493,
"step": 1250
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.5811,
"step": 1260
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.563,
"step": 1270
},
{
"epoch": 0.41,
"learning_rate": 0.0002,
"loss": 0.6206,
"step": 1280
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.5657,
"step": 1290
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.6061,
"step": 1300
},
{
"epoch": 0.42,
"learning_rate": 0.0002,
"loss": 0.5776,
"step": 1310
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.6702,
"step": 1320
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.5688,
"step": 1330
},
{
"epoch": 0.43,
"learning_rate": 0.0002,
"loss": 0.5237,
"step": 1340
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.5883,
"step": 1350
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.5206,
"step": 1360
},
{
"epoch": 0.44,
"learning_rate": 0.0002,
"loss": 0.6948,
"step": 1370
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.5656,
"step": 1380
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.6026,
"step": 1390
},
{
"epoch": 0.45,
"learning_rate": 0.0002,
"loss": 0.6319,
"step": 1400
},
{
"epoch": 0.45,
"eval_loss": 0.5552607774734497,
"eval_runtime": 92.7391,
"eval_samples_per_second": 10.783,
"eval_steps_per_second": 5.391,
"step": 1400
},
{
"epoch": 0.45,
"mmlu_eval_accuracy": 0.4812787579159337,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.7272727272727273,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.5,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.3333333333333333,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.6153846153846154,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.8453598066862896,
"step": 1400
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.4931,
"step": 1410
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.4544,
"step": 1420
},
{
"epoch": 0.46,
"learning_rate": 0.0002,
"loss": 0.563,
"step": 1430
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.4629,
"step": 1440
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.4903,
"step": 1450
},
{
"epoch": 0.47,
"learning_rate": 0.0002,
"loss": 0.5581,
"step": 1460
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.6571,
"step": 1470
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.5562,
"step": 1480
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.4745,
"step": 1490
},
{
"epoch": 0.48,
"learning_rate": 0.0002,
"loss": 0.6383,
"step": 1500
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.6477,
"step": 1510
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.5758,
"step": 1520
},
{
"epoch": 0.49,
"learning_rate": 0.0002,
"loss": 0.5195,
"step": 1530
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.5691,
"step": 1540
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.5451,
"step": 1550
},
{
"epoch": 0.5,
"learning_rate": 0.0002,
"loss": 0.5753,
"step": 1560
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.5859,
"step": 1570
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.6325,
"step": 1580
},
{
"epoch": 0.51,
"learning_rate": 0.0002,
"loss": 0.7023,
"step": 1590
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.5009,
"step": 1600
},
{
"epoch": 0.52,
"eval_loss": 0.5365247130393982,
"eval_runtime": 92.8248,
"eval_samples_per_second": 10.773,
"eval_steps_per_second": 5.386,
"step": 1600
},
{
"epoch": 0.52,
"mmlu_eval_accuracy": 0.4625997452457202,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.0,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.08333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.5625,
"mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907,
"mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.5454545454545454,
"mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.25,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6162790697674418,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.34705882352941175,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.463768115942029,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8016339474243377,
"step": 1600
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.5698,
"step": 1610
},
{
"epoch": 0.52,
"learning_rate": 0.0002,
"loss": 0.5115,
"step": 1620
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.5908,
"step": 1630
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.6114,
"step": 1640
},
{
"epoch": 0.53,
"learning_rate": 0.0002,
"loss": 0.5335,
"step": 1650
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.6275,
"step": 1660
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.4862,
"step": 1670
},
{
"epoch": 0.54,
"learning_rate": 0.0002,
"loss": 0.6334,
"step": 1680
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.6494,
"step": 1690
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.5298,
"step": 1700
},
{
"epoch": 0.55,
"learning_rate": 0.0002,
"loss": 0.5359,
"step": 1710
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.5049,
"step": 1720
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.5015,
"step": 1730
},
{
"epoch": 0.56,
"learning_rate": 0.0002,
"loss": 0.6523,
"step": 1740
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.5047,
"step": 1750
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.5321,
"step": 1760
},
{
"epoch": 0.57,
"learning_rate": 0.0002,
"loss": 0.5595,
"step": 1770
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.7094,
"step": 1780
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.6828,
"step": 1790
},
{
"epoch": 0.58,
"learning_rate": 0.0002,
"loss": 0.5355,
"step": 1800
},
{
"epoch": 0.58,
"eval_loss": 0.533126711845398,
"eval_runtime": 92.8481,
"eval_samples_per_second": 10.77,
"eval_steps_per_second": 5.385,
"step": 1800
},
{
"epoch": 0.58,
"mmlu_eval_accuracy": 0.4894584764122198,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.5384615384615384,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.6,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.8636363636363636,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3488372093023256,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5,
"mmlu_eval_accuracy_high_school_physics": 0.17647058823529413,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.5909090909090909,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5833333333333334,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3870967741935484,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5925925925925926,
"mmlu_eval_accuracy_sociology": 0.7272727272727273,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9346268427978919,
"step": 1800
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.4742,
"step": 1810
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.5088,
"step": 1820
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.459,
"step": 1830
},
{
"epoch": 0.59,
"learning_rate": 0.0002,
"loss": 0.5195,
"step": 1840
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.617,
"step": 1850
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.4523,
"step": 1860
},
{
"epoch": 0.6,
"learning_rate": 0.0002,
"loss": 0.646,
"step": 1870
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.4423,
"step": 1880
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.5904,
"step": 1890
},
{
"epoch": 0.61,
"learning_rate": 0.0002,
"loss": 0.5508,
"step": 1900
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.4987,
"step": 1910
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.5466,
"step": 1920
},
{
"epoch": 0.62,
"learning_rate": 0.0002,
"loss": 0.5342,
"step": 1930
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.6875,
"step": 1940
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.5443,
"step": 1950
},
{
"epoch": 0.63,
"learning_rate": 0.0002,
"loss": 0.5367,
"step": 1960
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.5529,
"step": 1970
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.438,
"step": 1980
},
{
"epoch": 0.64,
"learning_rate": 0.0002,
"loss": 0.4422,
"step": 1990
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.5624,
"step": 2000
},
{
"epoch": 0.65,
"eval_loss": 0.5018913745880127,
"eval_runtime": 92.7994,
"eval_samples_per_second": 10.776,
"eval_steps_per_second": 5.388,
"step": 2000
},
{
"epoch": 0.65,
"mmlu_eval_accuracy": 0.4873839805836957,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5625,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.45454545454545453,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.08333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.4375,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.5789473684210527,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.4857142857142857,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3588235294117647,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.4492753623188406,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.5909090909090909,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8898517729972268,
"step": 2000
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.4835,
"step": 2010
},
{
"epoch": 0.65,
"learning_rate": 0.0002,
"loss": 0.5138,
"step": 2020
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.4579,
"step": 2030
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.6192,
"step": 2040
},
{
"epoch": 0.66,
"learning_rate": 0.0002,
"loss": 0.5606,
"step": 2050
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.5427,
"step": 2060
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.5302,
"step": 2070
},
{
"epoch": 0.67,
"learning_rate": 0.0002,
"loss": 0.5107,
"step": 2080
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.5849,
"step": 2090
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.4736,
"step": 2100
},
{
"epoch": 0.68,
"learning_rate": 0.0002,
"loss": 0.5274,
"step": 2110
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.5004,
"step": 2120
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.4559,
"step": 2130
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.4954,
"step": 2140
},
{
"epoch": 0.69,
"learning_rate": 0.0002,
"loss": 0.5255,
"step": 2150
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.3956,
"step": 2160
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.446,
"step": 2170
},
{
"epoch": 0.7,
"learning_rate": 0.0002,
"loss": 0.4923,
"step": 2180
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.5505,
"step": 2190
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.6295,
"step": 2200
},
{
"epoch": 0.71,
"eval_loss": 0.49923792481422424,
"eval_runtime": 92.7241,
"eval_samples_per_second": 10.785,
"eval_steps_per_second": 5.392,
"step": 2200
},
{
"epoch": 0.71,
"mmlu_eval_accuracy": 0.46882014178817705,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.08333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.34146341463414637,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.40625,
"mmlu_eval_accuracy_high_school_chemistry": 0.3181818181818182,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.75,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.68,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.23,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.38235294117647056,
"mmlu_eval_accuracy_prehistory": 0.42857142857142855,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.36470588235294116,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8042322283090328,
"step": 2200
},
{
"epoch": 0.71,
"learning_rate": 0.0002,
"loss": 0.5447,
"step": 2210
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.5842,
"step": 2220
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.4748,
"step": 2230
},
{
"epoch": 0.72,
"learning_rate": 0.0002,
"loss": 0.5358,
"step": 2240
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.4141,
"step": 2250
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.4624,
"step": 2260
},
{
"epoch": 0.73,
"learning_rate": 0.0002,
"loss": 0.5596,
"step": 2270
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.5622,
"step": 2280
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.5275,
"step": 2290
},
{
"epoch": 0.74,
"learning_rate": 0.0002,
"loss": 0.4613,
"step": 2300
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.5599,
"step": 2310
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.5232,
"step": 2320
},
{
"epoch": 0.75,
"learning_rate": 0.0002,
"loss": 0.485,
"step": 2330
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.5091,
"step": 2340
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.5513,
"step": 2350
},
{
"epoch": 0.76,
"learning_rate": 0.0002,
"loss": 0.5351,
"step": 2360
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.5042,
"step": 2370
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.5317,
"step": 2380
},
{
"epoch": 0.77,
"learning_rate": 0.0002,
"loss": 0.5015,
"step": 2390
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.4993,
"step": 2400
},
{
"epoch": 0.78,
"eval_loss": 0.4968625605106354,
"eval_runtime": 92.831,
"eval_samples_per_second": 10.772,
"eval_steps_per_second": 5.386,
"step": 2400
},
{
"epoch": 0.78,
"mmlu_eval_accuracy": 0.4950372743506906,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5625,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.5625,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.45454545454545453,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.08333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.5,
"mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.7391304347826086,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.5263157894736842,
"mmlu_eval_accuracy_moral_scenarios": 0.25,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.3,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.6111111111111112,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9267964519307446,
"step": 2400
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.4947,
"step": 2410
},
{
"epoch": 0.78,
"learning_rate": 0.0002,
"loss": 0.4746,
"step": 2420
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.5745,
"step": 2430
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.5345,
"step": 2440
},
{
"epoch": 0.79,
"learning_rate": 0.0002,
"loss": 0.5506,
"step": 2450
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.5117,
"step": 2460
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.5503,
"step": 2470
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.6092,
"step": 2480
},
{
"epoch": 0.8,
"learning_rate": 0.0002,
"loss": 0.4803,
"step": 2490
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.5619,
"step": 2500
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.5649,
"step": 2510
},
{
"epoch": 0.81,
"learning_rate": 0.0002,
"loss": 0.4675,
"step": 2520
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.3825,
"step": 2530
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.3774,
"step": 2540
},
{
"epoch": 0.82,
"learning_rate": 0.0002,
"loss": 0.6572,
"step": 2550
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.5841,
"step": 2560
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.4091,
"step": 2570
},
{
"epoch": 0.83,
"learning_rate": 0.0002,
"loss": 0.4902,
"step": 2580
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.3788,
"step": 2590
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.5437,
"step": 2600
},
{
"epoch": 0.84,
"eval_loss": 0.49346765875816345,
"eval_runtime": 92.8693,
"eval_samples_per_second": 10.768,
"eval_steps_per_second": 5.384,
"step": 2600
},
{
"epoch": 0.84,
"mmlu_eval_accuracy": 0.48036715840748917,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5625,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.3793103448275862,
"mmlu_eval_accuracy_college_biology": 0.3125,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156,
"mmlu_eval_accuracy_econometrics": 0.08333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.42857142857142855,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.5,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.18181818181818182,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.6666666666666666,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.5454545454545454,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.6111111111111112,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9441872774270745,
"step": 2600
},
{
"epoch": 0.84,
"learning_rate": 0.0002,
"loss": 0.3932,
"step": 2610
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.4533,
"step": 2620
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.55,
"step": 2630
},
{
"epoch": 0.85,
"learning_rate": 0.0002,
"loss": 0.5148,
"step": 2640
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.4371,
"step": 2650
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.4694,
"step": 2660
},
{
"epoch": 0.86,
"learning_rate": 0.0002,
"loss": 0.6459,
"step": 2670
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.4738,
"step": 2680
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.532,
"step": 2690
},
{
"epoch": 0.87,
"learning_rate": 0.0002,
"loss": 0.516,
"step": 2700
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.505,
"step": 2710
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.5387,
"step": 2720
},
{
"epoch": 0.88,
"learning_rate": 0.0002,
"loss": 0.5307,
"step": 2730
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.4942,
"step": 2740
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.5934,
"step": 2750
},
{
"epoch": 0.89,
"learning_rate": 0.0002,
"loss": 0.4751,
"step": 2760
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.6256,
"step": 2770
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.4482,
"step": 2780
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.525,
"step": 2790
},
{
"epoch": 0.9,
"learning_rate": 0.0002,
"loss": 0.4123,
"step": 2800
},
{
"epoch": 0.9,
"eval_loss": 0.4873571991920471,
"eval_runtime": 92.9027,
"eval_samples_per_second": 10.764,
"eval_steps_per_second": 5.382,
"step": 2800
},
{
"epoch": 0.9,
"mmlu_eval_accuracy": 0.4788798955105805,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.5625,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.5,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.4090909090909091,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536,
"mmlu_eval_accuracy_formal_logic": 0.2857142857142857,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.46875,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.23529411764705882,
"mmlu_eval_accuracy_high_school_psychology": 0.7833333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.391304347826087,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6511627906976745,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.26,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.3870967741935484,
"mmlu_eval_accuracy_professional_law": 0.3411764705882353,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9054499416181686,
"step": 2800
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.4438,
"step": 2810
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.4154,
"step": 2820
},
{
"epoch": 0.91,
"learning_rate": 0.0002,
"loss": 0.4255,
"step": 2830
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.4833,
"step": 2840
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.5216,
"step": 2850
},
{
"epoch": 0.92,
"learning_rate": 0.0002,
"loss": 0.5155,
"step": 2860
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.3956,
"step": 2870
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.4986,
"step": 2880
},
{
"epoch": 0.93,
"learning_rate": 0.0002,
"loss": 0.4809,
"step": 2890
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.4222,
"step": 2900
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.4685,
"step": 2910
},
{
"epoch": 0.94,
"learning_rate": 0.0002,
"loss": 0.4816,
"step": 2920
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.559,
"step": 2930
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.4976,
"step": 2940
},
{
"epoch": 0.95,
"learning_rate": 0.0002,
"loss": 0.4644,
"step": 2950
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.4328,
"step": 2960
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.3755,
"step": 2970
},
{
"epoch": 0.96,
"learning_rate": 0.0002,
"loss": 0.4862,
"step": 2980
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.3602,
"step": 2990
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.4969,
"step": 3000
},
{
"epoch": 0.97,
"eval_loss": 0.4759189486503601,
"eval_runtime": 92.7764,
"eval_samples_per_second": 10.779,
"eval_steps_per_second": 5.389,
"step": 3000
},
{
"epoch": 0.97,
"mmlu_eval_accuracy": 0.47644674735610876,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.5714285714285714,
"mmlu_eval_accuracy_astronomy": 0.625,
"mmlu_eval_accuracy_business_ethics": 0.36363636363636365,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231,
"mmlu_eval_accuracy_econometrics": 0.25,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.375,
"mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091,
"mmlu_eval_accuracy_high_school_computer_science": 0.3333333333333333,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.4186046511627907,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384,
"mmlu_eval_accuracy_high_school_physics": 0.17647058823529413,
"mmlu_eval_accuracy_high_school_psychology": 0.8166666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.4230769230769231,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.4166666666666667,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.45454545454545453,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6744186046511628,
"mmlu_eval_accuracy_moral_disputes": 0.4473684210526316,
"mmlu_eval_accuracy_moral_scenarios": 0.27,
"mmlu_eval_accuracy_nutrition": 0.5757575757575758,
"mmlu_eval_accuracy_philosophy": 0.47058823529411764,
"mmlu_eval_accuracy_prehistory": 0.6,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3235294117647059,
"mmlu_eval_accuracy_professional_medicine": 0.4838709677419355,
"mmlu_eval_accuracy_professional_psychology": 0.2898550724637681,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.8384745381577986,
"step": 3000
},
{
"epoch": 0.97,
"learning_rate": 0.0002,
"loss": 0.3811,
"step": 3010
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.4609,
"step": 3020
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.4465,
"step": 3030
},
{
"epoch": 0.98,
"learning_rate": 0.0002,
"loss": 0.4319,
"step": 3040
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.3987,
"step": 3050
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.4333,
"step": 3060
},
{
"epoch": 0.99,
"learning_rate": 0.0002,
"loss": 0.4409,
"step": 3070
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.5345,
"step": 3080
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.4889,
"step": 3090
},
{
"epoch": 1.0,
"learning_rate": 0.0002,
"loss": 0.5426,
"step": 3100
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.3533,
"step": 3110
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.2978,
"step": 3120
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.3878,
"step": 3130
},
{
"epoch": 1.01,
"learning_rate": 0.0002,
"loss": 0.2189,
"step": 3140
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.4635,
"step": 3150
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.3747,
"step": 3160
},
{
"epoch": 1.02,
"learning_rate": 0.0002,
"loss": 0.3886,
"step": 3170
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.405,
"step": 3180
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.3307,
"step": 3190
},
{
"epoch": 1.03,
"learning_rate": 0.0002,
"loss": 0.3314,
"step": 3200
},
{
"epoch": 1.03,
"eval_loss": 0.4710354208946228,
"eval_runtime": 92.8548,
"eval_samples_per_second": 10.769,
"eval_steps_per_second": 5.385,
"step": 3200
},
{
"epoch": 1.03,
"mmlu_eval_accuracy": 0.48093919104536653,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.5625,
"mmlu_eval_accuracy_business_ethics": 0.36363636363636365,
"mmlu_eval_accuracy_clinical_knowledge": 0.41379310344827586,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.125,
"mmlu_eval_accuracy_college_computer_science": 0.2727272727272727,
"mmlu_eval_accuracy_college_mathematics": 0.45454545454545453,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.2926829268292683,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.5625,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023,
"mmlu_eval_accuracy_high_school_mathematics": 0.1724137931034483,
"mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.3333333333333333,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.72,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6395348837209303,
"mmlu_eval_accuracy_moral_disputes": 0.5526315789473685,
"mmlu_eval_accuracy_moral_scenarios": 0.22,
"mmlu_eval_accuracy_nutrition": 0.5454545454545454,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.5142857142857142,
"mmlu_eval_accuracy_professional_accounting": 0.25806451612903225,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.42028985507246375,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5555555555555556,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.9746437882104835,
"step": 3200
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.3397,
"step": 3210
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.3717,
"step": 3220
},
{
"epoch": 1.04,
"learning_rate": 0.0002,
"loss": 0.3644,
"step": 3230
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.408,
"step": 3240
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.3467,
"step": 3250
},
{
"epoch": 1.05,
"learning_rate": 0.0002,
"loss": 0.3149,
"step": 3260
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.3619,
"step": 3270
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.387,
"step": 3280
},
{
"epoch": 1.06,
"learning_rate": 0.0002,
"loss": 0.365,
"step": 3290
},
{
"epoch": 1.07,
"learning_rate": 0.0002,
"loss": 0.4566,
"step": 3300
},
{
"epoch": 1.07,
"learning_rate": 0.0002,
"loss": 0.2898,
"step": 3310
},
{
"epoch": 1.07,
"learning_rate": 0.0002,
"loss": 0.3508,
"step": 3320
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.3188,
"step": 3330
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.3325,
"step": 3340
},
{
"epoch": 1.08,
"learning_rate": 0.0002,
"loss": 0.3382,
"step": 3350
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.2875,
"step": 3360
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.3696,
"step": 3370
},
{
"epoch": 1.09,
"learning_rate": 0.0002,
"loss": 0.3008,
"step": 3380
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.4654,
"step": 3390
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.4212,
"step": 3400
},
{
"epoch": 1.1,
"eval_loss": 0.4838115870952606,
"eval_runtime": 92.8008,
"eval_samples_per_second": 10.776,
"eval_steps_per_second": 5.388,
"step": 3400
},
{
"epoch": 1.1,
"mmlu_eval_accuracy": 0.4748766842351904,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.5,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.6363636363636364,
"mmlu_eval_accuracy_clinical_knowledge": 0.3448275862068966,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.2727272727272727,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.36363636363636365,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3902439024390244,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.46875,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.32558139534883723,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.38461538461538464,
"mmlu_eval_accuracy_high_school_physics": 0.35294117647058826,
"mmlu_eval_accuracy_high_school_psychology": 0.7333333333333333,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384,
"mmlu_eval_accuracy_human_aging": 0.6521739130434783,
"mmlu_eval_accuracy_human_sexuality": 0.5833333333333334,
"mmlu_eval_accuracy_international_law": 0.7692307692307693,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5,
"mmlu_eval_accuracy_machine_learning": 0.09090909090909091,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.29,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5,
"mmlu_eval_accuracy_prehistory": 0.45714285714285713,
"mmlu_eval_accuracy_professional_accounting": 0.3548387096774194,
"mmlu_eval_accuracy_professional_law": 0.3058823529411765,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.6818181818181818,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5555555555555556,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.852231516500366,
"step": 3400
},
{
"epoch": 1.1,
"learning_rate": 0.0002,
"loss": 0.3756,
"step": 3410
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.448,
"step": 3420
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.3674,
"step": 3430
},
{
"epoch": 1.11,
"learning_rate": 0.0002,
"loss": 0.3219,
"step": 3440
},
{
"epoch": 1.12,
"learning_rate": 0.0002,
"loss": 0.3858,
"step": 3450
},
{
"epoch": 1.12,
"learning_rate": 0.0002,
"loss": 0.3591,
"step": 3460
},
{
"epoch": 1.12,
"learning_rate": 0.0002,
"loss": 0.4104,
"step": 3470
},
{
"epoch": 1.12,
"learning_rate": 0.0002,
"loss": 0.3449,
"step": 3480
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.3806,
"step": 3490
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.3801,
"step": 3500
},
{
"epoch": 1.13,
"learning_rate": 0.0002,
"loss": 0.3832,
"step": 3510
},
{
"epoch": 1.14,
"learning_rate": 0.0002,
"loss": 0.2705,
"step": 3520
},
{
"epoch": 1.14,
"learning_rate": 0.0002,
"loss": 0.2491,
"step": 3530
},
{
"epoch": 1.14,
"learning_rate": 0.0002,
"loss": 0.306,
"step": 3540
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.3281,
"step": 3550
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.3485,
"step": 3560
},
{
"epoch": 1.15,
"learning_rate": 0.0002,
"loss": 0.4544,
"step": 3570
},
{
"epoch": 1.16,
"learning_rate": 0.0002,
"loss": 0.327,
"step": 3580
},
{
"epoch": 1.16,
"learning_rate": 0.0002,
"loss": 0.3357,
"step": 3590
},
{
"epoch": 1.16,
"learning_rate": 0.0002,
"loss": 0.498,
"step": 3600
},
{
"epoch": 1.16,
"eval_loss": 0.4635956287384033,
"eval_runtime": 92.9064,
"eval_samples_per_second": 10.764,
"eval_steps_per_second": 5.382,
"step": 3600
},
{
"epoch": 1.16,
"mmlu_eval_accuracy": 0.4806370203028222,
"mmlu_eval_accuracy_abstract_algebra": 0.2727272727272727,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.4375,
"mmlu_eval_accuracy_business_ethics": 0.5454545454545454,
"mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655,
"mmlu_eval_accuracy_college_biology": 0.375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.45454545454545453,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.38461538461538464,
"mmlu_eval_accuracy_econometrics": 0.08333333333333333,
"mmlu_eval_accuracy_electrical_engineering": 0.375,
"mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073,
"mmlu_eval_accuracy_formal_logic": 0.14285714285714285,
"mmlu_eval_accuracy_global_facts": 0.5,
"mmlu_eval_accuracy_high_school_biology": 0.5,
"mmlu_eval_accuracy_high_school_chemistry": 0.36363636363636365,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.7727272727272727,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5714285714285714,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.37209302325581395,
"mmlu_eval_accuracy_high_school_mathematics": 0.20689655172413793,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.7666666666666667,
"mmlu_eval_accuracy_high_school_statistics": 0.34782608695652173,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.46153846153846156,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.2727272727272727,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.36363636363636365,
"mmlu_eval_accuracy_management": 0.7272727272727273,
"mmlu_eval_accuracy_marketing": 0.84,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.47368421052631576,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6060606060606061,
"mmlu_eval_accuracy_philosophy": 0.5294117647058824,
"mmlu_eval_accuracy_prehistory": 0.5428571428571428,
"mmlu_eval_accuracy_professional_accounting": 0.2903225806451613,
"mmlu_eval_accuracy_professional_law": 0.32941176470588235,
"mmlu_eval_accuracy_professional_medicine": 0.3870967741935484,
"mmlu_eval_accuracy_professional_psychology": 0.391304347826087,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.48148148148148145,
"mmlu_eval_accuracy_sociology": 0.6363636363636364,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.4444444444444444,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.9088846339549937,
"step": 3600
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.3504,
"step": 3610
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.3137,
"step": 3620
},
{
"epoch": 1.17,
"learning_rate": 0.0002,
"loss": 0.3356,
"step": 3630
},
{
"epoch": 1.18,
"learning_rate": 0.0002,
"loss": 0.389,
"step": 3640
},
{
"epoch": 1.18,
"learning_rate": 0.0002,
"loss": 0.3724,
"step": 3650
},
{
"epoch": 1.18,
"learning_rate": 0.0002,
"loss": 0.3269,
"step": 3660
},
{
"epoch": 1.19,
"learning_rate": 0.0002,
"loss": 0.2583,
"step": 3670
},
{
"epoch": 1.19,
"learning_rate": 0.0002,
"loss": 0.4136,
"step": 3680
},
{
"epoch": 1.19,
"learning_rate": 0.0002,
"loss": 0.3767,
"step": 3690
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.4162,
"step": 3700
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.3691,
"step": 3710
},
{
"epoch": 1.2,
"learning_rate": 0.0002,
"loss": 0.3066,
"step": 3720
},
{
"epoch": 1.21,
"learning_rate": 0.0002,
"loss": 0.4164,
"step": 3730
},
{
"epoch": 1.21,
"learning_rate": 0.0002,
"loss": 0.3298,
"step": 3740
},
{
"epoch": 1.21,
"learning_rate": 0.0002,
"loss": 0.4793,
"step": 3750
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.3191,
"step": 3760
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.3991,
"step": 3770
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.3472,
"step": 3780
},
{
"epoch": 1.22,
"learning_rate": 0.0002,
"loss": 0.398,
"step": 3790
},
{
"epoch": 1.23,
"learning_rate": 0.0002,
"loss": 0.3852,
"step": 3800
},
{
"epoch": 1.23,
"eval_loss": 0.45864441990852356,
"eval_runtime": 92.8133,
"eval_samples_per_second": 10.774,
"eval_steps_per_second": 5.387,
"step": 3800
},
{
"epoch": 1.23,
"mmlu_eval_accuracy": 0.4741328353924988,
"mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.5625,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.4827586206896552,
"mmlu_eval_accuracy_college_biology": 0.4375,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.36363636363636365,
"mmlu_eval_accuracy_college_mathematics": 0.36363636363636365,
"mmlu_eval_accuracy_college_medicine": 0.36363636363636365,
"mmlu_eval_accuracy_college_physics": 0.5454545454545454,
"mmlu_eval_accuracy_computer_security": 0.6363636363636364,
"mmlu_eval_accuracy_conceptual_physics": 0.3076923076923077,
"mmlu_eval_accuracy_econometrics": 0.16666666666666666,
"mmlu_eval_accuracy_electrical_engineering": 0.3125,
"mmlu_eval_accuracy_elementary_mathematics": 0.2682926829268293,
"mmlu_eval_accuracy_formal_logic": 0.21428571428571427,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.5,
"mmlu_eval_accuracy_high_school_chemistry": 0.22727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.5555555555555556,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023,
"mmlu_eval_accuracy_high_school_mathematics": 0.13793103448275862,
"mmlu_eval_accuracy_high_school_microeconomics": 0.5384615384615384,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.8,
"mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654,
"mmlu_eval_accuracy_high_school_us_history": 0.6363636363636364,
"mmlu_eval_accuracy_high_school_world_history": 0.5,
"mmlu_eval_accuracy_human_aging": 0.6086956521739131,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.6363636363636364,
"mmlu_eval_accuracy_marketing": 0.76,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.6627906976744186,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.28,
"mmlu_eval_accuracy_nutrition": 0.6666666666666666,
"mmlu_eval_accuracy_philosophy": 0.4411764705882353,
"mmlu_eval_accuracy_prehistory": 0.5714285714285714,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.3176470588235294,
"mmlu_eval_accuracy_professional_medicine": 0.41935483870967744,
"mmlu_eval_accuracy_professional_psychology": 0.4057971014492754,
"mmlu_eval_accuracy_public_relations": 0.5,
"mmlu_eval_accuracy_security_studies": 0.4444444444444444,
"mmlu_eval_accuracy_sociology": 0.7727272727272727,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.6842105263157895,
"mmlu_loss": 0.8557860668330373,
"step": 3800
},
{
"epoch": 1.23,
"learning_rate": 0.0002,
"loss": 0.3525,
"step": 3810
},
{
"epoch": 1.23,
"learning_rate": 0.0002,
"loss": 0.3821,
"step": 3820
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.3034,
"step": 3830
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.4402,
"step": 3840
},
{
"epoch": 1.24,
"learning_rate": 0.0002,
"loss": 0.4403,
"step": 3850
},
{
"epoch": 1.25,
"learning_rate": 0.0002,
"loss": 0.3717,
"step": 3860
},
{
"epoch": 1.25,
"learning_rate": 0.0002,
"loss": 0.2817,
"step": 3870
},
{
"epoch": 1.25,
"learning_rate": 0.0002,
"loss": 0.3473,
"step": 3880
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.3621,
"step": 3890
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.3355,
"step": 3900
},
{
"epoch": 1.26,
"learning_rate": 0.0002,
"loss": 0.3012,
"step": 3910
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.3306,
"step": 3920
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.419,
"step": 3930
},
{
"epoch": 1.27,
"learning_rate": 0.0002,
"loss": 0.3715,
"step": 3940
},
{
"epoch": 1.28,
"learning_rate": 0.0002,
"loss": 0.403,
"step": 3950
},
{
"epoch": 1.28,
"learning_rate": 0.0002,
"loss": 0.4401,
"step": 3960
},
{
"epoch": 1.28,
"learning_rate": 0.0002,
"loss": 0.3677,
"step": 3970
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.3942,
"step": 3980
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.3138,
"step": 3990
},
{
"epoch": 1.29,
"learning_rate": 0.0002,
"loss": 0.4405,
"step": 4000
},
{
"epoch": 1.29,
"eval_loss": 0.4552951157093048,
"eval_runtime": 92.8831,
"eval_samples_per_second": 10.766,
"eval_steps_per_second": 5.383,
"step": 4000
},
{
"epoch": 1.29,
"mmlu_eval_accuracy": 0.49984985070715504,
"mmlu_eval_accuracy_abstract_algebra": 0.36363636363636365,
"mmlu_eval_accuracy_anatomy": 0.6428571428571429,
"mmlu_eval_accuracy_astronomy": 0.375,
"mmlu_eval_accuracy_business_ethics": 0.45454545454545453,
"mmlu_eval_accuracy_clinical_knowledge": 0.5172413793103449,
"mmlu_eval_accuracy_college_biology": 0.5625,
"mmlu_eval_accuracy_college_chemistry": 0.25,
"mmlu_eval_accuracy_college_computer_science": 0.45454545454545453,
"mmlu_eval_accuracy_college_mathematics": 0.18181818181818182,
"mmlu_eval_accuracy_college_medicine": 0.3181818181818182,
"mmlu_eval_accuracy_college_physics": 0.6363636363636364,
"mmlu_eval_accuracy_computer_security": 0.5454545454545454,
"mmlu_eval_accuracy_conceptual_physics": 0.5,
"mmlu_eval_accuracy_econometrics": 0.4166666666666667,
"mmlu_eval_accuracy_electrical_engineering": 0.25,
"mmlu_eval_accuracy_elementary_mathematics": 0.24390243902439024,
"mmlu_eval_accuracy_formal_logic": 0.35714285714285715,
"mmlu_eval_accuracy_global_facts": 0.4,
"mmlu_eval_accuracy_high_school_biology": 0.5,
"mmlu_eval_accuracy_high_school_chemistry": 0.2727272727272727,
"mmlu_eval_accuracy_high_school_computer_science": 0.4444444444444444,
"mmlu_eval_accuracy_high_school_european_history": 0.6111111111111112,
"mmlu_eval_accuracy_high_school_geography": 0.8181818181818182,
"mmlu_eval_accuracy_high_school_government_and_politics": 0.5238095238095238,
"mmlu_eval_accuracy_high_school_macroeconomics": 0.3953488372093023,
"mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276,
"mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156,
"mmlu_eval_accuracy_high_school_physics": 0.29411764705882354,
"mmlu_eval_accuracy_high_school_psychology": 0.8333333333333334,
"mmlu_eval_accuracy_high_school_statistics": 0.43478260869565216,
"mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818,
"mmlu_eval_accuracy_high_school_world_history": 0.5769230769230769,
"mmlu_eval_accuracy_human_aging": 0.6956521739130435,
"mmlu_eval_accuracy_human_sexuality": 0.5,
"mmlu_eval_accuracy_international_law": 0.8461538461538461,
"mmlu_eval_accuracy_jurisprudence": 0.36363636363636365,
"mmlu_eval_accuracy_logical_fallacies": 0.6111111111111112,
"mmlu_eval_accuracy_machine_learning": 0.2727272727272727,
"mmlu_eval_accuracy_management": 0.8181818181818182,
"mmlu_eval_accuracy_marketing": 0.8,
"mmlu_eval_accuracy_medical_genetics": 0.7272727272727273,
"mmlu_eval_accuracy_miscellaneous": 0.686046511627907,
"mmlu_eval_accuracy_moral_disputes": 0.5,
"mmlu_eval_accuracy_moral_scenarios": 0.24,
"mmlu_eval_accuracy_nutrition": 0.6363636363636364,
"mmlu_eval_accuracy_philosophy": 0.4117647058823529,
"mmlu_eval_accuracy_prehistory": 0.5714285714285714,
"mmlu_eval_accuracy_professional_accounting": 0.3225806451612903,
"mmlu_eval_accuracy_professional_law": 0.35294117647058826,
"mmlu_eval_accuracy_professional_medicine": 0.45161290322580644,
"mmlu_eval_accuracy_professional_psychology": 0.37681159420289856,
"mmlu_eval_accuracy_public_relations": 0.5833333333333334,
"mmlu_eval_accuracy_security_studies": 0.5185185185185185,
"mmlu_eval_accuracy_sociology": 0.7727272727272727,
"mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364,
"mmlu_eval_accuracy_virology": 0.5,
"mmlu_eval_accuracy_world_religions": 0.7368421052631579,
"mmlu_loss": 0.8634209213413628,
"step": 4000
}
],
"max_steps": 5000,
"num_train_epochs": 2,
"total_flos": 3.236194208470303e+17,
"trial_name": null,
"trial_params": null
}